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a b s t r a c t

Huanglongbing (HLB) is an incurable disease that affects citrus trees. To better understand
the transmission of HLB, the mathematical model is developed to investigate the trans-
mission dynamics of the disease between Asian citrus psyllid (ACP) and citrus trees.
Through rigorous mathematical derivations, we derive the expression of the basic repro-
duction number (R0) of HLB. The findings show that the disease-free equilibrium is locally
asymptotically stable if R0 < 1, and if R0 > 1 the system is uniformly persistent. By applying
the global sensitivity analysis of R0, we can obtain some parameters that have the greatest
influence on the HLB transmission dynamics. Additionally, the optimal control theory is
used to explore the corresponding optimal control problem of the HLB model. Numerical
simulations are conducted to reinforce the analytical results. These theoretical and nu-
merical results provide useful insights for understanding the transmission dynamics of
HLB and may help policy makers to develop intervention strategies for the disease.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Huanglongbing (HLB) is one of the most destructive diseases of citrus, which is caused by the bacterium Candidatus Lib-
eribacterasiaticus (CLas)andvectoredby theAsiancitruspsyllid (ACP) (Bov�e, 2006;Gottwald,2010; Li et al., 2015). It is regardedas
the most devastating citrus disease worldwide, and was first found in southern China in 1919, and now it is transmitted in fifty
different countries (Bov�e, 2006; Wang & Trivedi, 2013). It causes substantial economic burdens to individual growers, citrus in-
dustries and governments (Taylor et al., 2016). Recently, citrus production has endured serious economic losses due to the
occurrence of citrus HLB disease. This disease reduces fruit quality and yield, infringes on citrus health and has become one of the
biggest challenges for citrus growers all over the world (Arredondo Vald�es et al., 2016). The United States, Brazil and China, the
world's largest citrus producers, are all threatened by HLB disease. Up to now, there is still no effective method to eradicate HLB,
andonceorchardsare infectedwith thedisease, theyareoftendestroyeddue to lowyields (McCollum&Baldwin, 2017). Inviewof
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the serious impact of HLB on the agricultural economy, it is of great importance to understand HLB transmission dynamics be-
tween citrus trees andACPand to implement some effective intervention strategies to curb its transmission (Chiyaka et al., 2012).

Mathematical models have been playing a vital role in understanding HLB disease transmission dynamics and also in
decision making processes regarding intervention mechanisms for the disease control (Chowdhury et al., 2019; Jackson &
Chen-Charpentier, 2019; Jeger et al., 2018; Li et al., 2020; Meng & Li, 2010; Zhang et al., 2021; Zhang & Georgescu, 2015;
Zhao et al., 2017). However, despite their significant impact on the agricultural economy, very fewmathematical models have
investigated how HLB disease is transmitted between the insect vector and the host (Taylor et al., 2016; Chiyaka et al., 2012;
Lee et al., 2015; Vilamiu et al., 1479; Jacobsen et al., 2013; Gao et al., 2018; Khan et al., 2021). For the goal of highlighting the
importance of flush for ACP dynamics, Chiyaka and Halbert (Chiyaka et al., 2012) formulated a mathematical model to study
the spread of HLB within a tree because the infection payllid transmits among the different flush patches on the tree. To
explore the impact of seasonal fluctuations on HLB disease, Gao and Yu (Gao et al., 2018) built an impulsive switching model
for the disease with seasonal fluctuations. Jacobsen and Stupiansky (Jacobsen et al., 2013) investigated a deterministic model
for HLB transmissionwithin a single citrus garden, which included the intervention strategy of roguing. Other further studies
include Tu and Gao (Tu et al., 2019) developed a vector-borne disease model with stage structure and analyzed the effect of
the measure in controlling the spread of HLB. We review those models that have been applied to HLB here because they show
the main insights models have provided for this disease system.

Although some of the studies mentioned above took into account different mathematical models of HLB and disease
intervention strategies, they did not consider the optimality of these intervention strategies and the resistance of the vector
ACP, which may sometimes be limited by resource availability. In particular, a comparative analysis to understand the costs of
different intervention strategies is important for decisionmakers who are often facedwith the resource allocation challenges.
In view of this, the application of optimal control theory can serve as a useful tool for assessing the effectiveness of various
policies and interventions relative to the cost of implementing them (Alzahrani et al., 2021; Khan & Fatmawatic, 2021;
Okosun et al., 2013). Based on these considerations, in this paper, we formulate a compartmental model to investigate HLB
transmission dynamics with resistant ACP in a single orchard of citrus trees. Through extensive calculations, we obtain the
basic reproduction number, i.e., the HLB disease below this threshold disappears but outbreaks above this threshold. The
persistence of the system is further explored. Subsequently, optimal control theory is used to study the effectiveness and
optimality of all possible combinations of two interventions for HLB disease, i.e., removing trees with HLB symptoms and
spraying insecticides. We derive the optimal control conditions by using the Pontryagin s Maximum Principle (Pontryagin,
2018). Furthermore, we obtain through numerical experiments that the optimal control strategy outperforms the constant
intervention strategy in reducing the prevalence of the diseased citrus trees, and the cost of implementing the optimal control
is far lower than the constant intervention strategy.

The remaining of this paper is organized as follows: the deterministic mathematical model is proposed to study the HLB
transmission dynamics which incorporates ACP and citrus trees in Section 2. The basic reproduction number and local stability
of the eight-dimensional HLB system are obtained in Section 3. Furthermore, the uniformly persistent of the nonlinear system
are explored. The optimal control problem of the compartment model is conducted in Section 4. The global sensitivity and
uncertainty analysis are performed, and some suggestions for HLB intervention strategies from the proposed model are sum-
marized in Section 5. Finally, this paper ends with a brief conclusion and the potential outlook for future work in Section 6.
2. Model formulation

According to the work of (Hu et al., 2018), it was reported that trunk injection of penicillin, streptomycin and oxytetra-
cycline hydrochloride, were effective in reducing the concentration of CLas and slowing down progress of HLB disease. In this
paper, the model analyses the transmission dynamics of HLB with fraction of susceptible vaccinated citrus tress. Therefore,
the citrus tree population given as Nh(t) is divided into susceptible individuals (Sh(t)), vaccinated individuals (Vh(t)), exposed
individuals (Eh(t)), and infected individuals (Ih(t)), at any time t. Thus, Nh(t) ¼ Sh(t) þ Vh(t) þ Eh(t) þ Ih(t). The ACP population,
denoted by Nv(t), is divided into susceptible sensitive ACP (Sv1(t)), susceptible resistant ACP (Sv2(t)), infected sensitive ACP
(Iv1(t)), and infected resistant ACP (Iv2(t)), at any time t. Thus, Nv(t) ¼ Sv1(t) þ Sv2(t) þ Iv1(t) þ Iv2(t).

We assume that the recruitment to the citrus population is by replanting at a rate proportional r to the difference between
the actual number of citrus trees present Nh and maximum population size K. Resistant classes Sv2 and Iv2(t) are increased by
sensitive vectors Sv1 and Iv1(t) who develop resistance at the rates 41 and 42, respectively. Moreover, let hh the force of
infection from ACP to trees and hv the force of infection from trees to ACP. The HLB model incorporating resistance for ACP
population is represented as a system of first order nonlinear ordinary differential equations as follows:
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dSh
dt

¼ rðK � NhÞ þ uhVh � hhðtÞSh � ðvh þ mhÞSh;

dVh
dt

¼ vhSh � ð1� qÞhhðtÞVh � ðuh þ mhÞVh;

dEh
dt

¼ hhðtÞðSh þ ð1� qÞVhÞ � ðdh þ mhÞEh;

dIh
dt

¼ dhEh � ðgh þ mhÞIh;

dSv1
dt

¼ L1 � hvðtÞSv1 � ð41 þ mvÞSv1;

dSv2
dt

¼ L2 � hvðtÞSv2 þ 41Sv1 � mvSv2;

dIv1
dt

¼ hvðtÞSv1 � ð42 þ mvÞIv1;

dIv2
dt

¼ hvðtÞSv2 þ 42Iv1 � mvIv2;

(2.1)

where
hhðtÞ ¼
bvðahIv1ðtÞ þ bhIv2ðtÞÞ

NhðtÞ
; and hvðtÞ ¼

bvðavEhðtÞ þ bvIhðtÞÞ
NhðtÞ

:

A schematic diagram of the model is depicted in Fig. 1, and the state variables and the parameters are described in Table 1.
The basic qualitative properties of the model (2.1) will be explored in the subsequent section.

3. Model analysis

To better organize the analysis, we simplify some terms in the model by setting d1 ¼ r þ mh, d2 ¼ uh þ mh, d3 ¼ vh þ mh,
d4 ¼ dh þ mh, d5 ¼ gh þ mh, d6 ¼ 41 þ mv, d7 ¼ 42 þ mv, d8 ¼ r þ vh þ mh and d9 ¼ vh þ uh þ mh. We denote

Gh ¼
��

Sh;Vh; Eh; IhÞ2R4þ : Nh � rK
d1

bN0
h

�
;

Fig. 1. Schematic Diagram of the HLB model (2.1).
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Table 1
Description of The variables and their parameters for the HLB model (2.1).

Variable Description

Sh Population of susceptible citrus trees
Vh Population of vaccinated citrus trees
Eh Population of exposed citrus trees
Ih Population of infected citrus trees
Sv1 Population of susceptible sensitive ACP
Sv2 Population of susceptible resistant ACP
Iv1 Population of infected sensitive ACP
Iv2 Population of infected resistant ACP

Parameter Description

K Environmental carrying capacity of citrus trees
r Replanting rate of citrus trees
uh Vaccine waning rate
bv ACP biting rate
ah Transmission probability from Iv1 to Sh
bh Transmission probability from Iv2 to Sh
vh Vaccination rate
mh Natural mortality rate in citrus trees
q Vaccine efficacy
dh Disease progression rate of infectious of exposed citrus trees
gh Disease related death rate
L1 Sensitive ACP recruitment rate
L2 Resistant ACP recruitment rate
av Transmission probability from Eh to Sv1 and Sv2
bv Transmission probability from Ih to Sv1 and Sv2
mv Natural mortality rate of ACP
41 Mutation rate from susceptible sensitive ACP to susceptible resistant ACP
42 Mutation rate from infected sensitive ACP to infected resistant ACP

Y. Luo, F. Zhang, Y. Liu et al. Infectious Disease Modelling 6 (2021) 782e804
Gv ¼
��

Sv1; Sv2; Iv1; Iv2Þ2R4þ : Nv � L1 þL2

mv
bN0

v

�
; G ¼ Gh � Gv3R8þ:
Lemma 3.1. Denote GðtÞ ¼ ðShðtÞ;VhðtÞ; EhðtÞ; IhðtÞ; Sv1ðtÞ; Sv2ðtÞ; Iv1ðtÞ; Iv2ðtÞÞT . Let the initial data G(0) [ 0. Then the solu-
tions G(t) of the model (2.1) are non-negative for all t > 0. Furthermore

limsup
t/∞

NhðtÞ � N0
h; limt/∞

NvðtÞ ¼ N0
v :
The region G3R8þ is positively-invariant for the model (2.1) with non-negative initial conditions.

Proof. Let the initial data of the model (2.1) G(0) [ 0. It is obvious that dSh
dt ShðtÞ¼0 � uhVh � 0, so we have Sh(t) � 0, for all

t > 0. Similarly, we can get Vh(t) � 0, Eh(t) � 0, Ih(t) � 0, Sv1(t) > 0, Sv2(t) > 0, Iv1(t) � 0 and Iv2(t) � 0, for all t > 0.
Adding the first four equations of model (2.1), the total number of citrus trees Nh satisfies

dNh
dt

¼ rðK � NhÞ � mhNh � ghIh;

thus,
dNh

dt
� rðK � NhÞ � mhNh:
This implies that

limsup
t/∞

NhðtÞ � N0
h:
Adding the fifth to eighth equations of model (2.1), the total number of ACP Nv satisfies
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dNv

dt
¼ L1 þL2 � mvNv;
thus,

lim
t/∞

NvðtÞ ¼ N0
v :
Further, we know that dNh
dt � 0, if Nh � N0

h and dNv

dt � 0, if Nv � N0
v . Therefore, the region G is positively-invariant.

Clearly, the model (2.1) has a disease free equilibrium (DFE) point, E0 ¼ ðS0h;V0
h;0;0;S

0
v1;S

0
v2;0;0Þ, where

S0h ¼ d2N
0
h

d9
¼ d2rK

d9d1
;V0

h ¼ vhN
0
h

d9
¼ vhrK

d9d1
; S0v1 ¼ L1

d6
; S0v2 ¼ L141

mvd6
þL2

mv
:

Denote

k1 ¼ bvahS
0
h

N0
h

; k2 ¼ bvbhS
0
h

N0
h

; k3 ¼ ð1� qÞbvahV0
h

N0
h

; k4 ¼ ð1� qÞbvbhV0
h

N0
h

;

k5 ¼ bvavS0v1
N0
h

; k6 ¼ bvbvS
0
v1

N0
h

; k7 ¼ bvavS0v2
N0
h

; k8 ¼ bvbvS
0
v2

N0
h

:

Then the Jacobian matrix of system (2.1) with respect to E0 is

JðE0Þ ¼

0
BB@

J11 J12 0 �J14
0 J22 0 J24
0 �J32 J33 0
0 J32 0 J44

1
CCA; (3.1)

where J11 ¼
��d8 �r þ uh

vh �d2

�
, J12 ¼

��r �r
0 0

�
, J14 ¼

�
k1 k2
k3 k4

�
, J22 ¼

��d4 0
dh �d5

�
,

J24 ¼
�
k1 þ k3 k2 þ k4

0 0

�
, J32 ¼

�
k5 k6
k7 k8

�
, J33 ¼

��d6 0
41 �mv

�
, J44 ¼

��d7 0
42 �mv

�
.

Denote

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk5d5 þ k6dhÞðmvðk1 þ k3Þ þ 42ðk2 þ k4ÞÞ þ ðk7d5 þ k8dhÞðk2 þ k4Þd7

mvd4d5d7

s
: (3.2)
To better organize the analysis, we denote p0 ¼ mvd4d5d7, p1 ¼ k5d5mv(k1 þ k3), p2 ¼ k5d542(k2 þ k4), p3 ¼ k6dhmv(k1 þ k3),
p4 ¼ k6dh42(k2 þ k4), p5 ¼ k7d5(k2 þ k4)d7, p6 ¼ k8dh(k2 þ k4)d7, and
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A ¼ mv þ d4 þ d5 þ d7 >0;

B ¼ ðmv þ d7Þd4
�
1� R20

�
þ p1 þ p2 þ p3 þ p4 þ p6

d5d7
þ p2 þ p3 þ p4 þ p5 þ p6

mvd5
þ mvðd5 þ d7Þ þ d5ðd4 þ d7Þ;

C ¼
�
p0
mv

þ p0
d7

þ p0
d5

��
1� R20

�
þ p0
d4

þ p2 þ p4 þ p5 þ p6
mv

þ p3 þ p4 þ p6
d5

þ p1 þ p2 þ p3 þ p4
d7

;

D ¼ mvd4d5d7
�
1� R20

�
¼ p0

�
1� R20

�
;

Q1 ¼ p2 þ p4 þ p5 þ p6
mv

þ p3 þ p4 þ p6
d5

þ p1 þ p2 þ p3 þ p4
d7

>0;

Q2 ¼ ðmv þ d4Þ
p1 þ p2 þ p3 þ p4 þ p6

d5d7
þ ðd4 þ d7Þ

p2 þ p3 þ p4 þ p5 þ p6
mvd5

>0;

Q3 ¼ ðmv þ d4Þmvd4 þ ðd4 þ d7Þd4d7 >0;

Q4 ¼ mvd4ðd5 þ d7Þ þ d4d5d7 þ mvðd5 þ d7ÞAþ d4d5ðd4 þ d5 þ d7Þ>0;

Q5 ¼ m3v d4ðd5 þ d7Þ2 þ m2v d4
�
d35 þ 2d4d

2
5 þ 2d25d7 þ 3d4d5d7 þ 2d5d27 þ 2d4d

2
7 þ d37

�

þ mvd4d5
�
d37 þ 3d4d

2
7 þ 3d4d5d7 þ d24d5 þ d4d

2
5

�
þ d24d

2
5d7ðd4 þ d5 þ 2d7Þ>0;

Q6 ¼ Q3Q1 þ Q2

�
p0
mv

þ p0
d7

þ p0
d5

�
þ Q5 >0;
Lemma 3.2. All eigenvalues of the matrix J(E0) (3.1) have negative real parts if and only if R0 < 1.

Proof. The characteristic equation of J11 is the following polynomial equation

l2 þ ðd2 þ d8Þlþ d1d9 ¼ 0: (3.3)
According to Vieta theorem, the two roots of equation (3.3) are negative. It is easy to see that two eigenvalue of J33 are� mv
and � d6, which are negative. Denote

M ¼
�
J22 J24
J32 J44

�
(3.4)
We can see that all eigenvalues of the matrix M are the roots of the following quartic polynomial equation

l4 þ Al3 þ Bl2 þ Clþ D ¼ 0:
Obviously, if R0< 1, then B> 0, C> 0 andD> 0. The Hertz determinants of the first to fourth order polynomial are as follows
787
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D1 ¼ A>0;

D2 ¼ AB� C

¼ Q3

�
1� R20

�
þ Q2 þ Q4;

D3 ¼ ðAB� CÞC � A2D

¼ Q3

�
p0
mv

þ p0
d7

þ p0
d5

��
1� R20

�2 þ Q6

�
1� R20

�
þ ðQ2 þ Q4Þ

�
p0
d4

þ Q1

�
;

D4 ¼ DD3:
It is obvious that D2 > 0, D3 > 0 and D4 > 0 if R0 < 1.By the criterion of Routh-Hurwitz, we obtain that all eigenvalues of M
have negative real parts if and only if R0 < 1. Therefore all eigenvalues of J(E0) have negative real parts if R0 < 1.

Lemma 3.2 implies the following result holds.

Theorem 3.1. For system (2.1), the disease-free equilibrium E0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

In order to analyze the permanence of system (2.1), we first give the following lemma.

Lemma 3.3. (See (Zhao, 2003)) Assume that

(I) f(X0) 3 X0 and f has a global attractor U.
(II) The maximal compact invariant set Uv ¼ U ∩ Mv off in vX0, possibly empty, has an acyclic covering ~M ¼ fM1;…;Mkg

with the following properties:

(a) Mi is isolated in ~X.
(b) Ws(Mi) ∩ X0 ¼ F for each 1 � i � k.
Then f is uniformly persistent with respect to (X0, vX0), i.e., there is h > 0 such that for any compact internally chain
transitive set L with L⊄{Mi, for all 1 � i � k}, inf

x2L
dðx;vX0Þ> h.

Theorem 3.2. If R0 > 1, then system (2.1) is uniformly persistent.

Proof. We define X ¼ {(Sh, Vh, Eh, Ih, Sv1, Sv2, Iv1, Iv2) 2 R8: Sh � 0, Vh � 0, Eh � 0, Ih � 0, Sv1 � 0, Sv2 � 0, Iv1 � 0, Iv2 � 0},
X0 ¼ {(Sh, Vh, Eh, Ih, Sv1, Sv2, Iv1, Iv2) 2 X: Eh > 0, Ih > 0, Iv1 > 0, Iv2 > 0}, and vX0 ¼ XyX0.

In order to show that system (2.1) is uniformly persistent, we only need to prove that vX0 repels uniformly the solutions of
X0. Obviously, both X and X0 are positively invariant and vX0 is relatively closed in X and (2.1) is point dissipative. Let

Mv ¼ fðShð0Þ;Vhð0Þ; Ehð0Þ; Ihð0Þ; Sv1ð0Þ; Sv2ð0Þ; Iv1ð0Þ; Iv2ð0ÞÞ2vX0 :
ðShðtÞ;VhðtÞ; EhðtÞ; IhðtÞ; Sv1ðtÞ; Sv2ðtÞ; Iv1ðtÞ; Iv2ðtÞÞ2vX0;ct � 0 g
We now show that

Mv ¼ fðShðtÞ;VhðtÞ;0; 0; Sv1ðtÞ; Sv2ðtÞ;0;0Þ2X :
ShðtÞ � 0;VhðtÞ � 0; Sv1ðtÞ � 0; Sv2ðtÞ � 0g (3.5)
Assume (Sh(0), Vh(0), Eh(0), Ih(0), Sv1(0), Sv2(0), Iv1(0), Iv2(0))2 Mv. It suffices to show that Eh(t) ¼ 0, Ih(t) ¼ 0, Iv1(t) ¼ 0 and
Iv2(t) ¼ 0 for all t � 0. Suppose not. Then there exists a t0 � 0 such that Eh(t0), Ih(t0), Iv1(t0), Iv2(t0) at least one is greater than 0.
Without loss of generality, we only discuss the case Eh(t0) > 0, Sh(t0)¼ 0, Vh(t0)¼ 0, Ih(t0) ¼ 0, Sv1(t0)¼ 0, Sv2(t0) ¼ 0, Iv1(t0)¼ 0
and Iv2(t0) ¼ 0. Since

dIh
dt

jt¼t0 ¼ dhEhðt0Þ>0;
dSv1
dt

jt¼t0 ¼ L1 >0;
dSv2
dt

jt¼t0 ¼ L2 >0;
dEh
dt

jt¼t0 > � d4Eh;
788
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it follows that there is an e0 > 0 small enough such that Sv1(t) > 0, Sv2(t) > 0, Eh(t) > 0 and Ih(t) > 0 for all t0 < t < t0 þ e0.
Furthermore, let t1 ¼ t0 þ e0

2 , then we have Sv1(t1) > 0, Sv2(t1) > 0, Eh(t1) > 0 and Ih(t1) > 0. If Iv1(t1) > 0, then

dIv1
dt

jt¼t1 > � ð42 þmvÞIv1;

this implies that Iv1(t) > 0 for all t � t1. If Iv1(t1) ¼ 0, we get
dIv1
dt

jt¼t1 ¼ hvðtÞðt1ÞSv1ðt1Þ>0;
It then follows that there is an e1 (0< e1 <
e0
2) such that Iv1(t) > 0 for all t1 < t < t1þ e1. Similarly, we can show that there exists

an e2 (0< e2 <
e1
2) such that Iv2(t) > 0 for all t2ðt1 þ e1

2 ; t1 þ e1
2 þ e2Þ, respectively. Thus, for all t1 þ e1

2 < t < t1 þ e1
2 þ e2 we have

Eh(t) > 0, Ih(t) > 0, Iv1(t) > 0 and Iv2(t) > 0. This contradicts the assumption that (Sh(0), Vh(0), Eh(0), Ih(0), Sv1(0), Sv2(0), Iv1(0),
Iv2(0));Mv. Thus (3.5) holds.

It is obvious that E0 ¼ ðS0h;V0
h;0;0; S

0
v1; S

0
v2;0;0Þ is the unique equilibrium in Mv. We now demonstrate that E0 repels the

solutions in X0.
By the proof of Lemma 3.2, we know that det(M) < 0 provided that R0 > 1, here M is defined in (3.4). Therefore, if R0 > 1,

then there exist z1 > 0 and z2 > 0 small enough such that

ðk
̄

5d5 þ k
̄

6dhÞðmvðk
̄

1 þ k
̄

3Þþ42ðk
̄

2 þ k
̄

4ÞÞ þ ðk
̄

7d5 þ k
̄

8dhÞðk
̄

2 þ k
̄

4Þd7 >mvd4d5d7; (3.6) 
̄ ̄

!

detð ~MÞ ¼ det J22 J24

J32J44 <0; (3.7)

and
~S
0
h^

d2rK þ ð1� qÞ ~hhrK � 2d2rz2 � 2rð1� qÞ ~hhz2
d1d9 þ ð1� qÞ ~hhd8 þ d2 ~hh þ ð1� qÞ ~hh2

> S0h � z1;

~v0h^
vhrK � 2rvhz2

d1d9 þ ð1� qÞ ~hhd8 þ d2 ~hh þ ð1� qÞ ~hh2
>V0

h � z1;

~S
0
v1^

L1
~hv þ 41 þ mv

> S0v1 � z1;

~S
0
v2^

L2 þ 41
~S
0
v1

~hv þ mv
> S0v2 � z1;

(3.8)

̄ ̄
b b

̄ ð1�qÞb a
̄ ð1�qÞb b

̄ ̄

hold, where k1 ¼ bvah

N0
h
ðS0h � z1Þ, k2 ¼ v h

N0
h
ðS0h � z1Þ, k3 ¼ v h

N0
h

ðV0
h � z1Þ, k4 ¼ v h

N0
h

ðV0
h � z1Þ, k5 ¼ bvav

N0
h
ðS0v1 � z1Þ, k6 ¼

bvbv

N0
h
ðS0v1 � z1Þ, k

̄

7 ¼ bvav

N0
h
ðS0v2 � z1Þ, k

̄

8 ¼ bvbv

N0
h
ðS0v2 � z1Þ, ~Nh ¼ rK�ghz2

d1
, ~hh ¼ bvðahz2þbhz2Þ

~Nh
, ~hv ¼ bvðavz2þbvz2Þ

~Nh
, and

J
̄

24 ¼
�
k
̄

1
þ k

̄

3k
̄

2 þ k
̄

400
�
; J
̄

32 ¼
 
k
̄

5
k
̄

6k
̄

7k
̄

8

!

Suppose (Sh(t), Vh(t), Eh(t), Ih(t), Sv1(t), Sv2(t), Iv1(t), Iv2(t)) is a solution of system (2.1) with initial value (Sh(0), Vh(0), Eh(0),
Ih(0), Sv1(0), Sv2(0), Iv1(0), Iv2(0)) 2 X0. We now claim that

limsup
t/∞

maxfEhðtÞ; IhðtÞ; Iv1ðtÞ; Iv2ðtÞg> z2: (3.9)
Suppose that the claim is not valid. Then there is a T0 > 0 such that
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EhðtÞ � z2; IhðtÞ � z2; Iv1ðtÞ � z2; Iv2ðtÞ � z2; for all t � T0: (3.10)
It follows from system (2.1) and (3.10) that

dNh

dt
� rðK �NhÞ � mhNh � ghz2:
Thus, there exists a T1 > T0 such that

Nh >
rK � ghz2

d1
¼ ~Nh for all t � T1: (3.11)
From the first and second equations of the model (2.1) and (3.11), we have

8>><
>>:

dSh
dt

� rðK � Sh � Vh � 2z2Þ þ uhVh � ~hhSh � d3Sh;

dVh
dt

� vhSh � ð1� qÞ ~hhVh � d2Vh;

for t � T1. Consider the following comparison system
8>>><
>>>:

d~Sh
dt

¼ rðK � ~Sh � ~Vh � 2z2Þ þ uh
~Vh � ~hh

~Sh � d3~Sh;

d~Vh

dt
¼ vh

~Sh � ð1� qÞ ~hh ~Vh � d2 ~Vh:

(3.12)
We can restrict z2 to be small enough such that system (3.12) admits a unique positive equilibrium ð~S0h; ~V
0
hÞ, which is

globally asymptotically stable (the proof is stated in Appendix A). By the comparison principle in differential equations and
(3.8), there is a T2 > 0 such that

ShðtÞ � S0h � z1; VhðtÞ � V0
h � z1; for t > T2: (3.13)
From the fifth equation of system (2.1) and (3.11), we get

dSv1
dt

� L1 � ~hvSv1 � ð41 þmvÞSv1;

for t � T1. According to the comparison principle and (3.8), there exists a T3 > T2, such that
Sv1ðtÞ> S0v1 � z1; for t � T3: (3.14)
It follows from the sixth equation of system (2.1), (3.11) and (3.14) that

dSv2
dt

� L2 � ~hvSv2 þ 41
~S
0
v1 � mvSv2;

for t � T3. Then, there exists a T4 > T3, such that
Sv2ðtÞ> S0v2 � z1; for t � T4: (3.15)
Consequently, from system (2.1) and (3.13)e(3.15), we obtain that for t > T4,
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8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

dEh
dt

� bvðahIv1 þ bhIv2Þ
N0
h

ððS0h � z1Þ þ ð1� qÞðV0
h � z1ÞÞ � d4Eh;

dIh
dt

� dhEh � d5Ih;

dIv1
dt

� bvðavEh þ bvIhÞ
N0
h

ðS0v1 � z1Þ � ð42 þ mvÞIv1;

dIv2
dt

� bvðavEh þ bvIhÞ
N0
h

ðS0v2 � z1Þ þ 42Iv1 � mvIv2:
Consider the following auxiliary system:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

dEh
dt

¼
by

�
ahIy1 þ bhIy2

�
N0
h

��
S0h � z1

�
þ ð1� qÞ

�
V0
h � z1

��
� d4Eh;

dIh
dt

¼ dhEh � d5Ih;

dIy1
dt

¼
by

�
ayEh þ byIh

�
N0
h

�
S0y1 � z1

�
� ðf2 þ myÞIy1;

dIy2
dt

¼
by

�
ayEh þ byIh

�
N0
h

�
S0y2 � z1

�
þ f2 þ Iy1 � myIy2:

(3.16)
Obviously, system (3.16) has zero equilibrium point. By simple calculation, we obtain that the Jacobian matrix of system
(3.16) at zero equilibrium point is ~M (defined in (3.7)). Since ~M admits positive off-diagonal elements, by Perron-Frobenius
Theorem, we can see that there exists a positive eigenvector v ~M for the maximin eigenvalue l ~M of ~M. Extensive calcula-

tions yield that lM > 0 since (3.6) and (3.7) hold. Consequently, we can get lim
t/∞

E
̄

hðtÞ ¼ ∞, lim
t/∞

I
̄

hðtÞ ¼ ∞, lim
t/∞

I
̄

v1ðtÞ ¼ ∞,

lim
t/∞

I
̄

v2ðtÞ ¼∞. Furthermore, by the comparison principle, we obtain lim
t/∞

EhðtÞ ¼∞, lim
t/∞

IhðtÞ ¼∞, lim
t/∞

Iv1ðtÞ ¼∞, lim
t/∞

Iv2ðtÞ ¼
∞. This contradicts Eh(t) � z2, Ih(t) � z2, Iv1(t) � z2, Iv2(t) � z2, for all t � T0. Hence, (3.9) holds and the claim is proved. This
indicatesWs(E0) ∩ X0 ¼ F. Obviously, every forward orbit inMv converges to E0. It follows from Lemma 3.3 that system (2.1) is
uniformly persistent with respect to (X0, vX0). This completes the proof.

4. Optimal control

Insecticide applications and removing infected trees are two tactics being employed for the control of HLB (Bov�e, 2006;
Gottwald, 2010). There is an urgent need to explore an optimal control strategy in terms of possible combination of strategies
to prevent the spread of citrus HLB while minimizing the implementation cost. In this paper, we introduce into the trans-
mission model (2.1) a time dependent control variable uh(t), representing removing effort of infected citrus trees, and also
consider a time dependent control variable uv(t), representing killing effort of sensitive ACP and resistant ACP. Thus, model
(2.1) with the time dependent control variables uh(t) and uv(t) becomes:
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dSh
dt

¼ rðK � NhÞ þ uhVh � hhðtÞSh � d3Sh;

dVh
dt

¼ vhSh � ð1� qÞhhðtÞVh � d2Vh;

dEh
dt

¼ hhðtÞðSh þ ð1� qÞVhÞ � d4Eh;

dIh
dt

¼ dhEh � ðr1uhðtÞ þ d5ÞIh;

dSv1
dt

¼ L1 � hvðtÞSv1 � ðmv þ r2uvðtÞÞSv1 � 41Sv1;

dSv2
dt

¼ L2 � hvðtÞSv2 � ðmv þ r3uvðtÞÞSv2 þ 41Sv1;

dIv1
dt

¼ hvðtÞSv1 � ðmv þ r2uvðtÞÞIv1 � 42Iv1;

dIv2
dt

¼ hvðtÞSv2 � ðmv þ r3uvðtÞÞIv2 þ 42Iv1;

(4.1)

where r1, r2, r3 is the control intensity coefficient. Our goal is to minimize the cost function defined as
JðuÞ ¼
Ztf
0

fA1EhðtÞþA2IhðtÞþA3NvðtÞþA4u
2
hðtÞþA5u

2
v ðtÞgdt (4.2)

subject to system (4.1), where tf is the control period. This performance specification involves minimizing the numbers of

exposed and infected citrus tree, alongwith the cost of applying the controls u(t)¼ (uh(t), uv(t)). The quadratic costs have been
frequently used (Agusto, 2013; Pei et al., 2016; Zhang et al., 2020). The coefficients, Ai, i¼ 1,…, 5 represent the desired weights
on the benefit and cost the controls u(t) ¼ (uh(t), uv(t)) is a bounded Lebesgue integrable functions (Agusto & Lenhart, 2013;
Pei et al., 2016). And we need to find an optimal control u* ¼ ðu*h;u*v Þ, such that

Jðu*Þ ¼ min
U

JðuÞ;

where the control set,
U ¼ fuðtÞ : ½0; tf �/½0;1� � ½0; 1�g ; (4.3)

where u(t) is Lebesgue measurable. The necessary conditions that an optimal control quintuple must satisfy derive from the

Pontryagin's Minimum Principle (Pontryagin, 2018). This principle converts (4.1) and (4.2) into a problem of minimizing
pointwise a Hamiltonian H, with respect to the controls uh(t) and uv(t). In order to obtain the optimality conditions, we first
formulate the following Hamilton functional from the objective functional (4.2) and the governing dynamics (4.1):

H ¼ A1EhðtÞ þ A2IhðtÞ þ A3NvðtÞ þ A4u
2
hðtÞ þ A5u

2
v ðtÞ

þ lSh ½rðK � NhÞ þ uhVh � hhðtÞSh � d3Sh�
þ lVh

½vhSh � ð1� qÞhhðtÞVh � d2Vh�
þ lEh ½hhðtÞðSh þ ð1� qÞVhÞ � d4Eh�
þ lIh ½dhEh � ðr1uhðtÞ þ mhÞIh�
þ lSv1 ½L1 � hvðtÞSv1 � ðmv þ r2uvðtÞÞSv1 � 41Sv1�
þ lSv2 ½L2 � hvðtÞSv2 � ðmv þ r3uvðtÞÞSv2 þ 41Sv1�
þ lIv1 ½hvðtÞSv1 � ðmv þ r2uvðtÞÞIv1 � 42Iv1�
þ lIv2 ½hvðtÞSv2 � ðmv þ r3uvðtÞÞIv2 þ 42Iv1�:

(4.4)

where lSh , lVh
, lEh , lIh , lSv1 , lSv2 , lIv1 , lIv2 are the associated adjoints for the states Sh, Vh, Eh, Ih, Sv1, Sv2, Iv1, Iv2. The system of adjoint
equations is found by taking the appropriate partial derivatives of the Hamiltonian (4.4) with respect to the associated state
and control variables.
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Theorem 4.1. Given an optimal control variables ðu*h;u*v Þ, and solutions S*h, V
*
h, E

*
h, I

*
h, S

*
v1, S

*
v2, I

*
v1, I

*
v2 of the corresponding state

system (4.1) that minimizes Jðu*h;u*vÞ over U . Then there exists adjoint variables lSh , lVh
, lEh , lIh , lSv1 , lSv2 , lIv1 , lIv2 satisfying

�dli
dt

¼ vH
vi

: (4.5)
and with transversality conditions

liðtf Þ ¼ 0;where i ¼ Sh;Vh; Eh; Ih; Sv1; Sv2; Iv1; Iv2: (4.6)
The optimality conditions is given as

vH
vuj

¼ 0; j ¼ h; v:
Furthermore, the time dependent control variables ðu*h;u*vÞ are given as

8>>><
>>>:

u*h ¼ max
�
0;min

�
lIhr1I

*
h

2A4
;1
��

;

u*v ¼ max
�
0;min

�
lSv1r2S

*
v1 þ lSv2r3S

*
v2 þ lIv1r2I

*
v1 þ lIv2r3I

*
v2

2A5
; 1
�� (4.7)
Proof. According to the result in (Fleming & Rishel, 2012), we can easily obtain the existence of an optimal control.
Consequently, the differential equations governing the adjoint variables are obtained by the differentiation of the Hamilto-
nian function, evaluated at the optimal controls. Then the adjoint system yields:

�dlSh
dt

¼ vH
vSh

; lSh

�
tf
�
¼ 0;

�dlVh

dt
¼ vH

vVh
; lVh

�
tf
�
¼ 0;

�dlEh
dt

¼ vH
vEh

; lEh

�
tf
�
¼ 0;

�dlIh
dt

¼ vH
vIh

; lIh

�
tf
�
¼ 0;

�dlSv1
dt

¼ vH
vSv1

; lSv1

�
tf
�
¼ 0;

�dlSv2
dt

¼ vH
vSv2

; lSv2

�
tf
�
¼ 0;

�dlIv1
dt

¼ vH
vIv1

; lIv1

�
tf
�
¼ 0;

�dlIv2
dt

¼ vH
vIv2

; lIv2

�
tf
�
¼ 0:
Evaluated at the optimal controls and corresponding state variables, results in the stated adjoint system (4.4) and (4.5)
given by
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dlSh
dt

¼ lSh ðr þ d3Þ � lVh
vh þ hhðtÞ*

N*
h � S*h
N*
h

	
lSh � lEh


� hhðtÞ*
ð1� qÞV*

h

N*
h

	
lVh

� lEh



� hvðtÞ*
S*v1
N*
h

	
lSv1 � lIv1


� hvðtÞ*
S*v2
N*
h

	
lSv2 � lIv2



;

dlVh

dt
¼ lSh ðr � uhÞ þ lVh

d2 � hhðtÞ*
S*h
N*
h

	
lSh � lEh


þ ð1� qÞhhðtÞ*
N*
h � V*

h

N*
h

	
lVh

� lEh



� hvðtÞ*
S*v1
N*
h

	
lSv1 � lIv1


� hvðtÞ*
S*v2
N*
h

	
lSv2 � lIv2



;

dlEh
dt

¼ �A1 þ lSh r þ lEhd4 � lIhdh � hhðtÞ*
S*h
N*
h

	
lSh � lEh


� ð1� qÞhhðtÞ*
V*
h

N*
h

	
lVh

� lEh



� ðhvðtÞ* � bvavÞ S
*
v1

N*
h

	
lSv1 � lIv1


� ðhvðtÞ* � bvavÞ S
*
v2

N*
h

	
lSv2 � lIv2



;

dlIh
dt

¼ �A2 þ lSh r þ lIhðr1uh þ mhÞ � hhðtÞ*
S*h
N*
h

	
lSh � lEh


� ð1� qÞhhðtÞ*
V*
h

N*
h

	
lVh

� lEh



� ðhvðtÞ* � bvbvÞ
S*v1
N*
h

	
lSv1 � lIv1


� ðhvðtÞ* � bvbvÞ
S*v2
N*
h

	
lSv2 � lIv2



;

dlSv1
dt

¼ �A3 þ lSv1 ðr2uv þ mvÞ þ 41
	
lSv1 � lSv2


þ hvðtÞ*
	
lSv1 � lIv1



;

dlSv2
dt

¼ �A3 þ lSv2 ðr3uv þ mvÞ þ hvðtÞ*
	
lSv2 � lIv2



;

dlIv1
dt

¼ �A3 þ lIv1 ðr2uv þ mvÞ þ 42
	
lIv1 � lIv2


þ bvahS
*
h

N*
h

	
lSh � lEh


þ ð1� qÞbvahV*
h

N*
h

	
lVh

� lEh


;

dlIv2
dt

¼ �A3 þ lIv2 ðr3uv þ mvÞ þ
bvbhS

*
h

N*
h

	
lSh � lEh


þ ð1� qÞbvbhV*
h

N*
h

	
lVh

� lEh


;

In addition, differentiating the Hamiltonian functional with respect to the control variables in the interior of the control set
U, and then solving for controls ðu*h;u*vÞ result in the optimality conditions given as follows:

vH
vuh

¼ 2A4uh � lIhr1I
*
h;

vH
vuv

¼ 2A5uv � lSv1r2S
*
v1 � lSv2r3S

*
v2 � lIv1r2I

*
v1 � lIv2r3I

*
v2:

(4.8)
By simple calculation, we have

8>>><
>>>:

u*h ¼ lIhr1I
*
h

2A4
;

u*v ¼ lSv1r2S
*
v1 þ lSv2r3S

*
v2 þ lIv1r2I

*
v1 þ lIv2r3I

*
v2

2A5
:

(4.9)
Taking into account the property of control set in (4.3), the characterization (4.6) can be obtained. This completes the
proof.

In the next part, we will simulate numerically the solutions of the optimality system and the corresponding optimal
control, and then give the interpretations from various cases.
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5. Numerical simulation

In this section, we mainly present some numerical simulation results to verify or extend our results, which explore the
impact of insecticides resistance on HLB transmission between citrus tree population and ACP population, and assess the
effects of different control strategies against HLB. By using the Latin Hypercube Sampling (LHS) method (Blower &
Dowlatabadi, 1994) and the forward-backward sweep method (Lenhart & Workman, 2007). Table 2 contains the value of
the parameters that will be used in numerical simulations.

To examine the sensitivity of model results to the uncertainty of parameters, we do sensitivity and uncertainty analysis.
Based on the parameters of model (2.1), we perform a global sensitivity analysis on the basic reproduction number R0. By
using the Latin Hypercube Sampling (LHS) method (Blower & Dowlatabadi, 1994), we compute the Partial Rank Correlation
Coefficients (PRCCs) of R0. The sensitivity and uncertainty analysis are presented in Fig. 2. It shows how uncertainty in model
parameters may influence R0. We can observe from Fig. 2(a) that R0 is very sensitive to environmental carrying capacity of
citrus trees K, ACP biting rate bv, Vaccination rate vh, transmission probability from ACP to citrus trees ah and bh, vaccine
efficacy q, disease related death rate gh, ACP recruitment rate L1 and L2, transmission probability from Ih to ACP bv, natural
mortality rate of ACP mv, but not sensitive to replanting rate of citrus trees r, natural mortality rate in citrus trees mh, disease
progression rate of infectious of exposed citrus trees dh, transmission probability from Eh to ACP av, mutation rate from
sensitive ACP to infected resistant ACP 41 and 42. For both transmission probabilities, bv has a greater impact on R0. Thus,
decreasing bv is very effective in reducing R0, that is to say, decreasing the transmission probability from Ih to ACP plays a key
role in the control of HLB. Fig. 2(b) (uncertainty analysis), we can see that about 88.7% of the distribution of R0 is greater than 1.
Table 2
Numerical values of the parameters for HLB model (2.1).

Parameter Baseline value Unit Reference

K 1000 e Zhang et al. (2020)
r 0.6 year�1 Zhang et al. (2020)
uh 0.05 year�1 Assumed
bv 600 year�1 Assumed
ah 4.8830 � 10�4 e Taylor et al. (2016)
bh 0.8 � 4.8830 � 10�4 e Assumed
vh 0.7 year�1 Assumed
mh 0.04 year�1 Mingxue (2009)
q 0.8 e Assumed
dh 12.97 year�1 Chiyaka et al. (2012)
gh 0.1 year�1 Assumed
L1 3.3253 � 105 year�1 Taylor et al. (2016)
L2 0.8 � 3.3253 � 105 year�1 Assumed
av 0.9 � 3.9064 � 10�4 e Assumed
bv 3.9064 � 10�4 e Taylor et al. (2016)
mv 5.9441 year�1 Taylor et al. (2016)
41 0.3 year�1 Assumed
42 0.24 year�1 Assumed

Fig. 2. Sensitivity analysis and uncertainty analysis of the basic reproduction number R0. (a) shows the sensitivity indices of R0, and (b) shows histogram obtained
from LHS using a sample size of 1000 for R0.
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This indicates that persistent HLB bacterial infection is likely to occur. Furthermore, by numerical calculation, we obtain the
mean and standard deviation of R0 are 1.5611 and 0.4973, respectively.

We consider the influence of two model parameter gh and mv on the basic reproduction number R0 in Fig. 3. We can
observe from Fig. 3 that R0 is very sensitive to gh and mv, it is seen that as gh and mv increase, the basic reproduction number R0
decreases quickly.

The dynamics of the basic reproduction number of our model as a function of insecticide resistance intensities 41 and 42 is
depicted in Fig. 4. It is seen that as the resistance coefficients 41 and 42 increase, the basic reproduction number R0 decreases
slowly. This indicates that the intensity of insecticide resistance present in ACP population may slightly reduce the effec-
tiveness of control measures, which is in agreement with results of sensitivity analysis (see Fig. 2(a)).

In order to reduce the number of trees infected by HLB disease, two possible control measures have been considered in this
paper, including removal of diseased trees and application of insecticides. The objective of this paper is to analyze the effect of
three controls on the transmission of HLB, and explore the optimal solution of the optimality system (4.1) and the corre-
sponding optimal control by using the forward-backward sweep method. The initial numbers of susceptible citrus trees and
ACP are assumed that Sh(0) ¼ 500, Vh(0) ¼ 492, Sv1(0) ¼ 30000, Sv2(0) ¼ 20000. Then we assume that the initial numbers of
Fig. 3. The basic reproduction number of model (2.1) as a function of disease related death rate gh and natural mortality rate of ACP mv. The red curve indicates
that the basic regeneration number R0 is equal to one.

Fig. 4. The basic reproduction number of model (2.1) as a function of resistance intensities 41 and 42.
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infectious citrus trees and ACP are Eh(0) ¼ 3, Ih(0) ¼ 5, Iv1(0) ¼ 20, Iv2(0) ¼ 10, respectively. In addition, the control intensity
coefficients r1 ¼ 10mh, r2 ¼ 20mv and r1 ¼ 5mv. In the simulations, the values of other parameters are taken from Table 2.

In (Yan & Zou, 2008), the authors point out fixing the right weights in practical problems is a very difficult task which
requires an amount of work on data analysis and fitting. For theweight factors in the objective function, we choose A1¼1000,
A2¼ 1000, A3¼ 0.01, A4¼100 and A5¼100. Then theweights in the simulations here are only of theoretical sense to illustrate
the control strategies proposed.

The following algorithm is used to compute the optimal controls and state values using a Runge-Kutta method of the
fourth order. As illustrated in (Agusto & Khan, 2018), we should first give an initial estimate for the control quintuple, then
solve the state variables forward in time by using the dynamics (4.1). The results obtained for the state variables are
substituted into the adjoint equation (4.6). These adjoint equations with given final conditions (4.8) are then solved backward
in time. Both the state and adjoint values are then used to update the control, and the process is repeated until the current
state, adjoint, and controls values converge sufficiently.

The numbers of infectious citrus trees and infectious ACP under different control levels are depicted in Fig. 5. In view of
reducing the total number of the diseased citrus trees (or the diseased ACP), we can observe that the optimal control strategy
is consistent with the upper bound control strategy and is superior to the constant control. The enhancement of the level of
Table 3
The costs of the objective function under different weights and control measures.

[1 pt] (A1, A2, A3, A4, A5) J(0, 0) J(0.2, 0.2) J(0.4, 0.4) Jmax(1, 1) Joptðu*h;u*v Þ
(1000,1000,0.01,100,100) 10524 8064 7502 6716 6703
(800,1000,0.01,1000,1000) 10424 8077 7739 8484 7517
(1000,10000,0.01,10000,1000) 9191 7521 7203 7297 6955
(500,1000,0.01,500,600) 10248 7951 7512 7498 7076
(1000,2000,0.01,1000,2000) 19567 15589 14930 15694 14052

Fig. 5. Number of infectious citrus trees and infectious ACP under different control levels, (a) exposed citrus trees, (b) infected citrus trees, (c) infected sensitive
ACP, (d) infected resistant ACP.
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control can achieve significant effects on both the number of hosts and vectors. Moreover, it follows from Table 3 that the cost
of the optimal control is less than that of the upper bound control. Wemay conclude that the optimal control strategy appears
to offer a promising measure for HLB control.
Fig. 6. Optimal control law of uh and uv.

Fig. 7. Number of infectious citrus treess and infectious ACP under different optimal control measures, i.e. (I) uh and uv; (II) uh, (uv ¼ 0); (III)uv, (uh ¼ 0).
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Fig. 6 gives the optimal control profile for uh and uv. It shows that, the control variable uh starts at the upper bound 1 for
about 90% time and then gradually decreases to the lower bound 0 at the end of the simulation period. While the control
variables uv start at the upper bound for a shorter time and slowly decrease to the lower bound at the end of the simulation
period.
Fig. 8. Optimal control law of: (I) uh, (uv ¼ 0); (II) uv, (uh ¼ 0).

Fig. 9. Comparison of the number of exposed citrus treess Eh(t) with different weights.
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Fig. 10. Comparison of the number of infectious citrus treess Ih(t) with different weights.

Fig. 11. Comparison of the number of infected sensitive ACP Iv1(t) with different weights.
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Fig. 12. Comparison of the number of infected resistant ACP Iv2(t) with different weights.
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Fig. 7 presents the number of infectious citrus trees and infectious ACP under different control strategies. These control
strategies are: (I) uh and uv; (II) uh, (uv ¼ 0); (III) uv, (uh ¼ 0). From Fig. 7, we can observe that: (1) the cost of implementing
strategy (II) is lower than that of implementing strategy (III); (2) the number of infectious citrus trees is the smallest when
implementing strategy (I), while the number of infectious citrus trees is the largest when implementing strategy (II); (3) in
addition to strategy (I), the final number of diseased ACP is the least when applying strategy (III), and the final number of
diseased ACP is the most when applying strategy (II). These results imply that multiple control strategies should be adopted
simultaneously to control the spread of HLB.

The optimal control trajectories under different control measures are presented in Fig. 8. It can be seen that in the early
phase of HLB outbreak, the upper bound control strategies should be adopted in most cases to suppress the transmission of
the disease.

Figs. 9e13 show the trajectories of the infectious citrus trees, the infectious ACP, and the optimal controls with different
weights in objective function, respectively. Based on the simulation results, we can see that the weights have a great impact
on the control cost (see Table 3), but have little or no effect on the spread of HLB. Consequently, the weights in the objective
function have little impact on the optimal control strategy (Fig. 13).
6. Conclusion

In this paper, a deterministic mathematical model was first used to formulate the transmission dynamics of HLB between
the ACP and the citrus tress, which incorporated the insecticide resistance of ACP. The stability of equilibria of the model was
analyzed using the basic reproduction number R0, derived by the next generation matrix. Theoretical results have shown that
the disease free equilibrium is locally asymptotically stable if R0 < 1, whereas the HLB system (2.1) is persistent if R0 > 1.

Furthermore, we used the optimization theory and the three time-dependent control variables to establish an optimal
control strategy for exclusion of HLB infection by minimizing the number of exposed and infected trees. The necessary
conditions for the existence of optimal solution of control problem are obtained by using Pontryagin's Maximum Principle.
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Fig. 13. Optimal control law of uh and uv with different weights.
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Finally, we verified the analytical results by numerical simulations. Based on analytical and the numerical simulation results,
the main conclusions of this paper can be summarized as follows:

(1) The intensity of insecticide resistance present in ACP population may slightly reduce the effectiveness of control
measures.

(2) The optimal control strategy is superior to the constant control strategy in decreasing the prevalence of the infected
citrus trees, and the cost of implementing optimal control is much lower than that of the constant control strategy.

(3) In the early phase of the transmission of HLB, spraying insecticides to kill ACP is more effective than other control
strategies in reducing the number of the infected ACP.

(4) The weights in the objective function have little impact on the optimal control strategy.
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Appendix A. The proof of global asymptotical stability of positive equilibrium ð~S0h; ~V
0
hÞ

Denote ~Nh ¼ ~Sh þ ~Vh, then system (3.7) is equivalent to the following system

8>>><
>>>:

d~Nh

dt
¼ rðK � 2z2Þ � ðr þ mh þ ~hhÞ~Nh þ q ~hh

~Vh;

d~Vh

dt
¼ vh

~Nh � vh
~Vh � ð1� qÞ ~hh ~Vh � d2 ~Vh:

(6.1)
Denote x ¼ ~Nh, y ¼ ~Vh, c0 ¼ r(K � 2z2), c1 ¼ rþ mh þ ~hh, c2 ¼ q ~hh, c3 ¼ vh and c4 ¼ vh þ ð1 � qÞ ~hh þ d2. By calculating,
c1c4 � c2c3 ¼ ðr þ mhÞðvh þ ð1 � qÞ ~hh þ d2Þþ ~hhðð1 � qÞ ~hh þ d2Þþ ð1 � qÞ ~hhvh >0. So system (6.1) is given by

8>><
>>:

dx
dt

¼ c0 � c1xþ c2y;

dy
dt

¼ c3x� c4y:

(6.2)
It is easy to obtain, the model (6.2) has a unique positive equilibrium point (x*, y*), where

x* ¼ c0c4
c1c4 � c2c3

;

y* ¼ c0c3
c1c4 � c2c3

:

Thus system (6.2) can be rewritten as

8>><
>>:

dx
dt

¼ �c1ðx� x*Þ þ c2ðy� y*Þ;

dy
dt

¼ c3ðx� x*Þ � c4ðy� y*Þ:
(6.3)
We define a Lyapunov function

Lðx; yÞ ¼ ðx� x*Þ2
2

þ c2
c3

ðy� y*Þ2
2

:

Then the derivative of function L(x, y) along solutions of system (6.3) is given by

dL
dt

¼ ðx� x*Þ½ � c1ðx� x*Þ þ c2ðy� y*Þ� þ c2
c3

ðy� y*Þ½c3ðx� x*Þ � c4ðy� y*Þ�

¼ �c1ðx� x*Þ2 þ 2c2ðx� x*Þðy� y*Þ � c2c4
c3

ðy� y*Þ2

¼ �c1

�
ðx� x*Þ � c2

c1
ðy� y*Þ

�2
� c2
c1c3

ðc1c4 � c2c3Þðy� y*Þ2:

0 0

Thus, we have dL

dt � 0 and the equality holds if and only if x ¼ x* and y ¼ y*, that is, ~Sh ¼ ~Sh and ~Vh ¼ ~Vh. It follows that the

unique positive equilibrium point ð~S0h; ~V
0
hÞ of (3.12) is globally asymptotically stable.
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