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Mutants of trt-1, the Caenorhabditis elegans telomerase reverse transcriptase, reproduce normally for several
generations but eventually become sterile as a consequence of telomere erosion and end-to-end chromosome fusions.
Telomere erosion and uncapping do not cause an increase in apoptosis in the germlines of trt-1 mutants. Instead, late-
generation trt-1 mutants display chromosome segregation defects that are likely to be the direct cause of sterility. trt-1
functions in the same telomere replication pathway as mrt-2, a component of the Rad9/Rad1/Hus1 (9-1-1) proliferating
cell nuclear antigen-like sliding clamp. Thus, the 9-1-1 complex may be required for telomerase to act at chromosome
ends in C. elegans. Although telomere erosion limits replicative life span in human somatic cells, neither trt-1 nor
telomere shortening affects postmitotic aging in C. elegans. These findings illustrate effects of telomere dysfunction in

C. elegans mutants lacking the catalytic subunit of telomerase, trt-1.
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Introduction

Telomeres in most organisms are composed of simple
repetitive sequences whose length is maintained by the
telomerase ribonucleoprotein, which reverse transcribes
telomere repeat sequences onto chromosome ends. Two
subunits of telomerase are sufficient for generating telomer-
ase activity in vitro: the telomerase reverse transcriptase
(TERT) and the telomerase RNA, which contains the template
sequence used by TERT for telomere repeat addition [1-3]. In
the absence of telomerase, the DNA replication machinery is
unable to completely replicate the chromosome terminus and
telomere attrition occurs [4].

Most normal human somatic cells are deficient for TERT
and therefore experience progressive telomere shortening
when proliferating [1,2,5]. Telomere erosion in human
primary cells grown in vitro typically causes replicative
senescence within 40 to 60 population doublings [6].
Telomere erosion is exacerbated in patients with Werner’s
progeria (a segmental aging syndrome), and the in vitro
premature senescence phenotype of Werner’s cells can be
overcome by expression of TERT [7]. Further, shortened life
span and decreased cellular proliferative capacity are
observed for late-generation mouse telomerase RNA mutants
[8], and mice deficient for both the telomerase RNA and the
Werner helicase display a variety of premature aging
phenotypes in only a few generations [9,10]. These results
provide compelling evidence that telomere erosion may
affect proliferative aging in humans.

The nematode Caenorhabditis elegans was selected to study
the impact of telomerase and telomere length in an
organismal context. C. elegans has telomeres composed of
simple TTAGGC repeats that are 2 to 4 kilobases in length
[11]. The first C. elegans telomere replication mutant to be
identified, mortal germline-2 (mrt-2), was recovered in a
genetic screen for mortal germline mutants that are initially
fertile but become progressively sterile if passaged for
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multiple generations [12]. mr¢-2 mutants become sterile as a
consequence of progressive telomere shortening and end-
to-end chromosome fusions. In addition, mr{-2 mutants are
hypersensitive to ionizing radiation, and mrt-2 encodes an
ortholog of a subunit of the 9-1-1 proliferating cell
nuclear antigen (PCNA)-like sliding clamp that is loaded
onto aberrant DNA structures at sites of genome damage
[12]. Further evidence that the 9-1-1 DNA damage
response complex is fully required for telomere replication
in C. elegans is provided by HUS-1, another subunit of the
9-1-1 PCNA-like heterotrimer that physically interacts with
MRT-2 [13]. Mutation of hus-I also results in telomere
erosion, end-to-end chromosome fusions, and late-onset
sterility [14]. Here we report the identification of the C.
elegans catalytic subunit of telomerase, #r¢-I, and several
consequences of telomere dysfunction in strains deficient
for tri-1.
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Synopsis

In the 1930s, the maize geneticist Barbara McClintock observed that
broken chromosome ends occasionally became stable when trans-
mitted through the germline, and she inferred that a protective cap
present at normal chromosome ends could be added to broken
chromosomes de novo. We now know that short, repetitive DNA
sequences cap chromosome ends in most eukaryotes and that such
sequences can be added de novo by the telomerase reverse
transcriptase, which uses an RNA template for telomere repeat
addition. The authors genetically define the reverse transcriptase
subunit of telomerase in the roundworm Caenorhabditis elegans.
Proteins that respond to abnormal DNA damage are required for
telomere replication in C. elegans, suggesting that chromosome
ends may be recognized as a special form of DNA damage prior to
telomere repeat addition by telomerase. The authors found that
telomerase and DNA damage response proteins appear to function
in the same telomere replication pathway. Replicative aging in
human somatic cells may be caused by telomere shortening.
However, somatic cells do not proliferate in C. elegans adults, and
telomere erosion does not affect the aging process in this context.
Finally, the authors observed that chromosome mis-segregation
may explain the progressive sterility of C. elegans telomerase
mutants.

Results

Identification of the C. elegans Telomerase Reverse
Transcriptase

Based on previous observations with mrt-2 and hus-1 [12,14],
continuous propagation of C. elegans telomere replication
mutants was expected to result in uncapping and fusion of
de-protected chromosome ends as a consequence of telomere
erosion. C. elegans end-to-end chromosome fusions produce a
dominant chromosome loss phenotype when heterozygous
[12]. A small pilot screen of 200 ethylmethane sulfonate-
mutagenized F2 lines yielded a single mortal germline mutation,
e2727, that displayed a dominant Him (high incidence of
males or X-chromosome nondisjunction) phenotype when
late-generation ¢2727 hermaphrodites were crossed with N2
wild-type males. Genetic mapping showed tight linkage of the
dominant Him phenotype to one end of the X chromosome
and to an end of an autosome in each case (Figure 1A),
indicating the presence of X-autosome end-to-end chromo-
some fusions. These chromosome fusions were viable when
homozygous, suggesting that their breakpoints were close to
chromosome termini (unpublished data). Further, micro-
scopy of late-generation ¢2727 hermaphrodites revealed
fewer than the normal complement of six bivalents in
oocytes, the only C. elegans cells that arrest in metaphase
and are therefore amenable to quantification of chromosome
number, confirming the presence of end-to-end chromosome
fusions (Figure 1B). Southern analysis of telomere length in
e2727 indicated that this mutant displayed progressive
telomere shortening (Figure S1). The Mortal Germline
phenotype of ¢2727 was used to map this mutation to a
genetic location of +3 on Chromosome I (six of nine Unc-
non-Dpy recombinants from + 2727 + | unc-13 + dpy-24 F1
heterozygotes carried ¢2727 and unpublished data). BLAST
analysis identified a nearby gene, DY3.4, with weak but
significant homology to telomerase reverse transcriptases.
Sequencing of DY3.4 in the 2727 mutant revealed a splice-
acceptor mutation for intron 5 (Figure 1C), which resulted in
mis-splicing and nonsense-mediated degradation of 90% of
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the DY3.4 message in 2727 (unpublished data), as judged by
RT-PCR analysis in a smg-2 background, which is defective for
nonsense-mediated mRNA decay [15]. However, 10% of the
DY3.4 message is still spliced correctly in smg-2,e2727 doubles,
as commonly occurs for C. elegans splice-junction mutations.

A second allele of DY3.4, yp1, was identified in a large-scale
screen for mortal germline mutants as a telomere replication
mutant that mapped to the center of Chromosome I (Y. Liu
and S. Ahmed, unpublished data). Two additional alleles of
DY3.4, 0k410 and tm899, were recovered by groups searching
for deletions of DY3.4 in pools of mutagenized worms.
Consistent with the ¢2727 mutant phenotypes, ypI, 0k410, and
tm899 strains initially had normal brood sizes but displayed
late-onset sterility over successive generations. A reduced
chromosome complement was observed for late-generation
strains near sterility (Figure 1B) but not for early or middle
generations (unpublished data). Further, a dominant Him
phenotype was observed for F1 derived from late-generation
ypl1, 0k410, and tm899 hermaphrodites crossed with wild-type
males (unpublished data). Genetic mapping of the dominant
Him phenotype from a number of independent 0k410 strains
revealed tight linkage to one end of the X chromosome and to
the end of an autosome in each case (M. Lowden and S.
Ahmed, unpublished data), confirming that end-to-end
chromosome fusions had been isolated. As ypI, ok410, and
tm899 appeared to have telomere replication defects caused
by mutations in or near the DY3.4 gene, complementation
tests were conducted. The 2727, yp1, and tm899 mutations all
failed to complement 0k410, but not a tightly linked mutation
in unc-29, for the late-onset sterility phenotype (unpublished
data), indicating that e2727, yp1, tm899, and 0k410 are allelic.

The DY3.4 gene was sequenced in ypI and found to contain
a G-to-A splice acceptor mutation for intron 6, which results
in retention of this intron and generation of a premature
stop codon at the intron-exon boundary. The DY3.4 deletions
0k410 and tm899 eliminate coding sequence for several
essential reverse transcriptase motifs of the DY3.4 protein
and therefore ought to be null alleles (Figure 1C). Southern
blotting of genomic DNA prepared from -1 mutants
revealed comparable rates of telomere erosion for o0k410
(125 = 17.5 base pairs [bp]lgeneration), tm899 (128.8 £ 27.5
bplgeneration), ypI (111.3 £ 18.3 bplgeneration), and ¢2727
(123.6 = 16.5 bplgeneration) (Figures 2A and S1), despite the
fact that e2727 expressed some correctly spliced DY3.4
messenger RNA. The Mortal Germline phenotypes of 2727
and 0k410 were rescued by extrachromosomal arrays carrying
the wild-type DY3.4 gene, as nonrescued siblings of two e2727
and one 0k410 strain became sterile within nine or ten
generations postinjection, whereas their rescued siblings were
still fertile after 32, 22, and 17 generations, respectively.
Rescue of 0k410 was transient, probably as a consequence of
progressive silencing of the rescuing transgene, as is
commonly observed for transgenes in the C. elegans germline.
Analysis of telomere length by Southern blotting revealed
that the telomere shortening phenotypes of ¢2727 and 0k410
were also rescued by the wild-type DY3.4 gene, which
conferred the diffuse telomeres expected from stochastic
telomere repeat addition by telomerase (Figure 2B and
unpublished data). Moreover, staining of oocyte nuclei with
4',6-diamidino-2-phenylindole (DAPI) revealed that only
about 1% of 2727 and 0k410 hermaphrodites carrying a
rescuing array for ten generations contained chromosome
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Figure 1. trt-1 Is the C. elegans Catalytic Subunit of Telomerase

(A) Three X-autosome fusions isolated from trt-1(e2727) display linkage between an end of the X chromosome and an end of an autosome. ypT3 and
ypT16 were independent chromosome fusions isolated from parallel lines grown from the same F2 founder, suggesting that the two fusiogenic
chromosome ends may correspond to short telomeres in the F2 founder, recapitulating our previous observations regarding strains inheriting a short
left end of the X chromosome in mrt-2 mutants [12] and supporting a mouse study of telomere length and genome instability in the absence of the
telomerase RNA [61].

(B) End-to-end fusions in oocytes of late-generation trt-1 mutant worms. Two DAPI-stained oocyte nuclei are shown per picture as indicated by dashed
circles.

(Q) trt-1 gene structure with mutations. Exon-intron structures and TERT protein domains are shown. Effects of mutations for all four trt-1 alleles are
shown as determined by genomic DNA and ¢cDNA sequencing. Black boxes are used to depict exons missing as a consequence of trt-1 splice-junction
mutations or sequences eliminated by trt-1 deletions. For yp1, intron 6 is retained and a cryptic intron in exon 7 becomes active. Sequences flanking
each breakpoint are shown for trt-1 deletions. A 13-bp in-frame insertion occurred at the breakpoint of trt-1(ok410). Sequencing of cDNA from trt-
1(tm899) indicated that the deletion results in a premature stop codon.

DOI: 10.1371/journal.pgen.0020018.g001

fusions (n = 38 and 48, respectively), whereas 67 £ 10% of
nonrescued ¢2727 and 0k410 siblings displayed chromosome
fusions (n = 30 and 40, respectively) (Figure 2C). Thus, the
telomere replication defects of ¢2727 and ok410 were caused
by mutation of the DY3.4 gene, which was therefore
designated #rt-1 (telomerase reverse transcriptase-1). Given that
microinjection of #r¢-1 mutants with linearized DNA frag-
ments yielded extrachromosomal arrays that were used for
rescue assays, formation of these transmissible genetic
clements does not require telomerase activity, suggesting
that they may be circular or that they may adopt a linear
structure with noncanonical telomeres.

Taken together, the above results indicate that 2727, yp1,
tm899, and 0k410 are alleles of trt-1, the C. elegans catalytic
subunit of telomerase. Although our genetic evidence
strongly suggests that #r¢-1 is the C. elegans catalytic subunit
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of telomerase, confirmation that #rt-1 is required for
telomerase activity in vitro will be important. However, such
biochemical assays have yet to be established for C. elegans,
despite significant efforts in this regard (L. Harrington,
personal communication).

trt-1 Encodes a Compact TERT

C. elegans trt-1 is predicted to encode only 540 amino acids
and is one of the shortest TERT proteins known [16] (Figure
3A). The trt-1 gene is tightly flanked by the neighboring genes
DY3.3 and DY3.5 (http:/lwww.wormbase.org), and RT-PCR
analysis confirmed the predicted polyadenylation site at its 3
end and that trt-1 is trans-spliced to an SL2 spliced leader at its
initiation methionine codon (unpublished data), as expected
from whole genome analysis of SL2-spliced genes [17]. The
domain structure of and a set of core amino acids in the seven
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Figure 2. Progressive Telomere Shortening in trt-1 Mutants and Rescue by the Wild-Type DY3.4 Gene

(A) The trt-1 alleles tm899 and 0k410 displayed comparable rates of telomere shortening over progressive generations. Two generations of N2 wild-type
are shown for comparison. Southern blotting was performed using a (TTAGGC), probe and genomic DNA prepared from propagated strains as

described [12].

(B and C) Expression of DY3.4 on the ypEx] extrachromosomal array (B) eliminated telomere shortening for trt-1(0k410) in comparison with a
nonrescued control and (C) repressed the formation of chromosome fusions observed in late-generation 0k4710 and e2727 mutants. Adult animals were
stained with DAPI at generation F10, where nonrescued siblings exhibited a strongly reduced brood size or sterility. For Southern blots, sizes of DNA

fragments are indicated to the left (kb).
DOI: 10.1371/journal.pgen.0020018.g002

canonical reverse transcriptase motifs found in all reverse
transcriptases were sufficient to identify TRT-1 as a TERT
protein [16] (Figure 3B). In addition, TERT proteins have a
number of unique motifs that distinguish them from other
reverse transcriptases [18-20], including motif T, which occurs
immediately N-terminal to the canonical reverse transcriptase
motifs. Conserved N-terminal TERT motifs were not recog-
nizable for C. elegans TRT-1 using BLAST analysis, indicating
significant evolutionary divergence [16]. However, compar-
ison of the predicted TRT-1 polypeptide of C. elegans with
those of the related nematodes C. briggsae and C. remanei
revealed considerable N-terminal sequence homology (Figure
S2A). When the N-termini of Caenorhabditis TRT-1 proteins
were aligned with groups of TERT proteins from vertebrates,
yeasts, or ciliates, homology with the DAT/I, GQ/I, and CP/II N-
terminal motifs was apparent [18-20] (Figure 3, Figures S2B
and S2C). In addition, an unusual motif T that lacked several
highly conserved amino acids was observed for the Caeno-
rhabditis genus, whose last common ancestor lived 100 million
years ago. The more slowly evolving filarial parasitic nematode
Brugia malayi, which diverged from C. elegans roughly 300
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million years ago, had a motif T with greater similarity to
those found in canonical TERT proteins (Figure 3B).

The last canonical reverse transcriptase motif of TERT,
motif E, is typically followed by a telomerase-specific C-
terminal domain of 150 to 200 amino acids, which harbors
motifs that are essential for catalytic activity of telomerase in
vitro and in vivo, for multimerization or processivity [21-23].
However, Caenorhabditis TRT-1 proteins had a C-terminal
domain of less than 30 amino acids, which lacked substantial
homology to any of the phylum-specific conserved C-terminal
motifs found in other TERT proteins [16] (Figure 3 and
unpublished data). Thus, Caenorhabditis TRT-1 has diverged
substantially at both its N- and C-termini.

trt-1 and the mrt-2 DNA Damage Checkpoint Gene
Function in the Same Pathway

Mutations in the Ku heterodimer result in short but stable
telomeres in Saccharomyces cerevisiae and Schizosaccharomyces
pombe [24-27]. Yeast strains that contain mutations in both Ku
and telomerase display faster telomere shortening and
senescence phenotypes than do strains harboring a single
telomerase mutation [25,27]. A synthetic phenotype between

February 2006 | Volume 2 | Issue 2 | e18



trt-1 Is the C. elegans TERT

pl
C. elegans E——JmmmiT] [] Hhl 10.23
C. briggsae T Jmmmi=im] | [ W11 10.04
C. remanei el jeii] [l [ Y= 10.04
H. sapiens ws{_TI i [ ] 11.74
F mbripes [ I :—:m:l]_ 9.99
S. cerevisiae T —ryy [ — ] — 9.49
T thermophila e — ] [ —— ] | j— 9.34
DAT GQ CPQFP T 12 A B'CD E
B Motif I/GQ
Motif DAT
Ce TRT-1 8 SETTPHEEIRKYDKRRHWNTIIRK 19 VRIFEKKRRQKLNY[HMSTFLASSENISNIRD- LLEINKLSQSILSS 55
Cb TRT-1 1 SSK|AHKELCDKP----WNEILTKE 6 [@RYIFKRKMKTKLT MSTFLTSSENLPKVQG- VEEVNRISKSLMSS
Cr TRT-1 18 SMARKIMHENLGEQH----WSTILRE 6 MRJIFEREM LNYJHMSAFLVESSENYLEVRN - MDEVDEKLSKSIVST
Hs TERT 84 QRMACERGARLV - - LAFGFALLD 17 [APJTVTDA| SGAWGLLLRR DVL\YHLAARCALFVLVAPSCAYSVCEPRP 222
Fr TERT 83 SVERKRKRV- - LAHGYNFQS 48 qu——mnrv sDL R| DITR!LFESCSTFvnvPPSCLF- C m 193
Sc Est2p 69 IIYLATGELYNGV--LTEGYKIAR 11 NVTL -AAWKMFHSL ﬂnuri']n IQFNG-QFFT@I
Tt TERT 24 LKQISALKYVSQL--YEFLLATEK 77 LSRQTYS - SNFEINLLNI nsnpxrr IDP TEVEQNGYL 141
Motif II/CP Motif T
Ce TRT-1 NGGYHEMEPFVYREARFTREFRASEY Ce TRT-1 25 ALM-ALRQVMIPIVIKEER-VLLWRDGHLNILTEEIEKDFEQEYIVE 1
Cb TRT-1 SEGFHHLENFVYISEAIJFARI\FRCKEVY Cb TRT-1 25 LLA-ALRQVILPLKIQNKT-AYVWRNAMLAHLEKLGMSRFKKIYAVR 1
Cr TRT-1 MEQEKLQYVPDFVFLAEAIIR FRAKQV Cr TRT-1 25 IFA-J\LRQIMIPIDVKRZK-V‘:’LN’RGGLLLRR!HKD?KBEYK?K 1
Hs TERT GNHAQCPY¥GV THEAR A TPAAG Bm TRT-1 FLRT-SFHITEAA PEN-TTRLLREFp§:34DT RIESHSFQLLSE
Fr TERT QHRRCPYSRLMOIRTEISIvGIKDAGQA  Hs TERT 123 LMSVYVVELLRSF| TTFQKNRLFFP434SVIISKLQSIGIFQHLE 8
Se Est2p RHKRLNYVSIANSTWJPLEGTVLDLS Fr TERT 99 LDGFVVGLVRAC SMGQENAIRFILIOE KLQDLAFJISHIS §
Tt TERT VQNFHNINFNYLMKEF[EK@APENYQSLKS Sc Est2p 68 FRQLIPKIIQTF{RYCHITIS-STVTIVYFUHDTUNKLITPFIVEYFE 8
Tt TERT 119 FIINKIVIPVLRY. T HEEGSQIFYPgMAPTIUKLVSKLTIVKLEE 7
Motif 1 Motif 2 Motif A
Ce TRT-1 APHFIR---PNV--ATFELSISRQK 0 LEEJLFRREKAIKKTETMQ LNSMLSWC 44 --SKIICYRARNERSFSTVN Is RLFSQ 77
Cb TRT-1 VDEARCLESSASY-ESETIVSNE 0 LiNFFRNRSEMRFEKEVME VNSILAWC --SQVFGYAMEIAUFSTVREGTVICIMERTIMDY 79
Cr TRT-1 EKPAFVLNPSPNSVVGRIEGDIVENK 0 FLREBMIRRNPIPKVEDEMH VNSMLTWC F ERLMDI 77
Hs TERT EVRQHREARPALLTERINIFIFIPDE 0 LLTEIVNMDYVVGARTFRREGRAERLTSRY SIIKP 87
Fr TERT TPDQVAALPKSTIIERIAIEIIATOC 4 MIPITRVIGAFAKTRLYQSEVRDLLDMLR NQ 91
Sc Est2p CRNHNSYTLSNFNHEKM KSN 2 FRIIMAIPCRGADEEEFTIY[{ENHKNAIQP LKD. N 68
Tt TERT EKLIPEDSFQKYPQECRMITIIANGCS 0 FiERMTFLREFKQENIKLNLNQILMDSQL 33{DSTDOMKPFLNFFNQSDLT 122
Motif B! Motif D Motif E
Ce TRT-1 TSWRITE NPARMELNNFEOKYWSNE 9 FEK P THFLTYPREFKK SQVLQ) KL 26
Cb TRT-1 TTFEVTE NiAH] KENWKNI 7 FEEMSI4S EROHELIESSREICKD KQELY,| KI 25
Cr TRT-1 TTFKITE NFAPMULNIFIIKENWRKY 11 FEQISQP 'r KRIQHEVEES Y EIdCRY DDKLI KM 23
He TERT Ks¥YvocQenidds T LACSLCYGRMIANELFAGTI 5 Jut'ru.ar PEYECVVIYLRIATVV HGLEP LLL 197
Fr TERT KTYRQCQENSIESAVEISVIACCLCYGHEMIYNVLFEDI 6 AQTF PQY RCLFP LLL 197
Sc Est2p KCYIRED[ PIVDLVYDRLLEFYSEFK 8 VINIEK LAHG FQKYNAKEAJRDIATLA DTVIQFEAMHET 159
Tt TERT  VKFRQKR[JIEIE vAcsFEFGRLEEEYTQFL 12 ALNLIVQEONCAGNNEFMFRDQIIITT QNECQEIEKST 237

Figure 3. Structure and Sequence Motifs of Caenorhabditis TERT Proteins
(A) Structure of TERT proteins from distantly related species, with isoelectric point (pl) indicated.

(B) TERT sequence motifs include seven canonical reverse transcriptase m

otifs (1, 2, A, B, C, D, and E) and several TERT-specific N-terminal motifs (I/DAT/

GQ, II/CP, and T) [18-20] for TERT proteins from three Caenorhabditis species; C. elegans (Ce), C. briggsae (Cb), and C. remanei (Cr); from the vertebrates H.

sapiens (Hs) and Fugu rubripes (Fr); and from Saccharomyces cerevisiae (S

¢) and Tetrahymena thermophila (Tt). An additional motif T is included for the

nematode Brugia malayi (Bm), as this sequence was critical for precisely defining the Caenorhabditis motif T. Only portions of motif I/GQ and motif DAT
with homology to the Caenorhabditis TERT proteins are shown. Motif DAT is a specialized protein domain within motif I/GQ that is known to be required
for telomerase activity in vivo [42]. A clearly defined III/QFP N-terminal motif was not identified for the Caenorhabditis TERTs. The Brugia malayi T motif is

based on a short expressed sequence tag, and further N-terminal motifs
org). Sequence alignments were performed using Pole Biolnformatique
DOI: 10.1371/journal.pgen.0020018.g003

Ku and telomerase has also been reported for Arabidopsis [28].
Therefore, Ku is thought to affect telomere integrity via a
telomerase-independent mechanism, perhaps by protecting
telomeres from exonucleolytic attack [29]. In contrast, S.
cerevisiae Mrel1/Rad50/Xrs2 nuclease complex mutants have
short but stable telomeres, but in this case double mutants
defective for Mrell/Radb0/Xrs2 and the telomerase reverse
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could not be discerned from the current genome sequence (http://www.tigr.
Lyonnais ClustalW 1.8 (http://pbil.ibcp.fr/htm/index.php).

transcriptase display the same telomere erosion and sen-
escence phenotypes as telomerase mutants, arguing that these
genes may function in the same telomere replication pathway
[25,30].

Null mutations in two subunits of the heterotrimeric 9-1-1
DNA damage response complex, mri-2 and hus-1, result in
telomere erosion and late-onset end-to-end chromosome
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Figure 4. trt-1 and mrt-2 Function in the Same Pathway

(A) Progressive telomere shortening of mrt-2 single, trt-1(tm899) single,
and trt-1(tm899);mrt-2 double mutant strains.

(B) Comparison of late onset of sterility in mrt-2 single, trt-1(tm899) single
and trt-1(tm899);mrt-2 double mutant strains. Two independent strains, a
and b, are shown for each genotype. Plates were seeded with six L1
animals, and the brood size was scored after 7 days of growth as wild-
type (W), medium (M), few (F), and sterile (S) [12]. Note that initial
telomere lengths observed for these strains reflect random telomere
segregation during a cross. Therefore, the rate of telomere erosion is a
more significant measure of additivity than are differences in initial
telomere length or the time to sterility. Sizes of DNA fragments are
indicated to the right (kb).

DOI: 10.1371/journal.pgen.0020018.g004
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fusions in C. elegans [12,14], as observed for #ri-I mutants
(Figures 1 and 2). To determine if the 9-1-1 complex and #rt-1
act in the same pathway to facilitate telomere replication,
rates of telomere erosion were measured for strains of -
1(tm899);mrt-2 double mutants and for trt-1(tm899) and mrt-2
single mutants, all of which were derived from F2 siblings of
the same F1 parent, thereby ensuring that their initial
telomere lengths would be as similar as possible. Rates of
telomere shortening in these strains were 135 = 28 bp/
generation for trt-1(tm899), 133.4 * 34.7 bplgeneration for
mrt-2, and 119.4 * 31.5 bplgeneration for trt-1(tm899);mrt-2
(Figure 4A; n = 2 independent strains each), which did not
significantly differ from each other or from the rates
observed for other #r¢-1 alleles (Figures 2A and S1). In
addition, the number of generations to sterility for both #rt-
1(tm899) and mrt-2 single mutants and for ¢ri-1(tm899);mrt-2
double mutants was similar (Figure 4B). Identical results were
observed with double mutant strains harboring mutations in
mrt-2 and either tri-1(0k410) or tri-1(e2727) (n=2 for each trt-1
allele, unpublished data). Thus, additivity was not observed
for the rate of telomere erosion in tri-1;mrt-2 double mutants,
indicating that telomerase and the 9-1-1 checkpoint complex
that responds to DNA double-strand breaks may act in the
same telomere replication pathway. This conclusion is based
on the premise that a rate of telomere shortening of greater
than ~125 bp per generation is possible.

Although the 9-1-1 complex may be required for ¢r¢-1
activity at chromosome termini, trt-1 displays p53-mediated,
ionizing radiation-induced apoptosis (B. Meier and S. Ahmed,
unpublished data), whereas this response is abrogated in the
mrt-2 DNA damage response mutant [31]. Therefore, trt-1 is not
required for the 9-1-1 complex to respond to damage caused
by ionizing radiation, such as DNA double-strand breaks.

trt-1 Mutants Become Sterile as a Consequence of Mitotic
Failure

S. cerevisiae ever shorter telomeres mutants that are defective
for telomere replication display a senescence phenotype in
which the vast majority of cells die but “survivors” typically
emerge that maintain their telomeres using homologous
recombination [32]. Mammalian cells that lack telomerase can
also survive telomere erosion by using a recombination-
dependent process of telomere maintenance [33]. However,
we have never observed survivors to arise for C. elegans trt-1
mutants, despite having grown hundreds of #r¢-1 strains to
sterility (unpublished data). Thus, telomerase-independent
recombination-based telomere maintenance may be incom-
patible with meiosis in C. elegans, a notion supported by the
lack of any reported survivors in mouse strains deficient for
telomerase [34].

Levels of apoptosis increase dramatically in the germlines
of late-generation mouse telomerase RNA mutants [34],
presumably as a consequence of telomere uncapping, end-
to-end chromosome fusions, and/or subsequent breakage-
fusion-bridge cycles. Telomere uncapping has also been
shown to elicit either apoptosis or senescence in mammalian
cells [35]. The C. elegans germline normally incurs a low
background level of physiological apoptosis, and increased
rates of apoptosis occur in response to either ionizing
radiation or inactivation of rad-51 [31,36], treatments that
result in DNA double-strand breaks. However, levels of
apoptosis were unaltered for all four C. elegans trt-1 alleles
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Table 1. Basal Germline Apoptosis Is Normal in trt-1 Mutants at
Early (F7) and Late (F15) Generations

Strain Apoptotic Corpses

Early (F7) Late (F15)
Wild-type 45 + 077 3.5 + 043
trt-1(e2727) 3.9 = 0.95 45 = 0.13
trt-1(ok410) 45 * 0.13 49 * 022
trt-1(tm899) 47 =09 42 =08
trt-1(yp1) 3.5 + 034 44 * 029

L4 hermaphrodites were picked from wild-type and from early and late generations of €2727, yp1, tm899,
and ok410 mutants, and 1-d-old adults were stained for apoptosis using acridine orange [38]. Each strain
was tested three times and, minimally, 16 gonad arms were scored per experiment. trt-1 mutants display
an increasing number of animals with short germlines in late generations. Animals with visibly short
gonad arms were excluded from the analysis, as some had low levels of apoptosis that were probably a
consequence of underproliferation. In very late generations where many animals were sterile, one in 30 to
40 germlines had an increased rate of apoptosis, but this did not significantly affect the overall levels of
apoptosis. Data are shown as mean =+ SD.

DOI: 10.1371/journal.pgen.0020018.t001

in later generations, as compared to early generations or to
wild-type controls (Table 1).

Given that late-generation #¢-1 mutants did not experience
increased levels of apoptosis, sterile #r¢&-I mutants were
examined to assess the cause of their germline proliferation
defects. C. elegans rad-51 mutants display relatively normal
levels of germ cell proliferation but lay hundreds of embryos
that die as a consequence of aneuploidy and genome
instability [37,38]. In contrast, few if any embryos were laid
by #rt-1 hermaphrodites as they approached sterility, indicat-
ing that these mutants experience progressive impairment of
germline proliferation (unpublished data). Several develop-
mental defects were detectable in late-generation trt-1 adults,
such as a Protruding Vulva, a weak Uncoordinated phenotype,
small worms with Body Morphology Defects, small sickly
males, and occasional Slow Growth (unpublished data). A
large percentage of frt-1 mutant animals had short germline
arms that ranged from medium size to an empty gonad (Figure
5A-5D). Gonad arm size often differed within a single animal,
suggesting a stochastic germline proliferation defect, as might
be expected for telomere replication mutants. High-resolu-
tion microscopy of sterile #rt-1 germlines revealed a variety of
other defects, including masculinization of the germline,
abnormal oocyte formation, endomitotic oocytes, and lack of
sperm (Figure 5E-5I). In addition, chromatin bridges were
observed between intestinal and embryonic nuclei of #r¢-1
mutants but not between nuclei of wild-type controls (Figure
5] and 5K and unpublished data). Similar phenotypes have
been reported previously for knockdown of C. elegans
kinetochore components by mutation or RNA interference
(http:/lwww.wormbase.org) [39]. To confirm this possibility, we
examined hermaphrodites defective for the him-10 kineto-
chore gene [40], which incur high rates of mitotic chromo-
some nondisjunction. A spectrum of phenotypes similar to
that found in sterile trt-1 mutants was observed (Figure 5L),
suggesting that #r¢-1 mutants may become sterile as a
consequence of chromosome segregation defects.

Neither trt-1 nor Telomere Length Affects C. elegans Life
Span

Many normal human somatic cells repress TERT expres-
sion and lack significant levels of telomerase activity [1,2],
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properties that result in telomere erosion and may contribute
to aspects of the aging process. As mutation of #¢-1 ought to
mimic the telomerase deficiency observed in human somatic
cells, we sought to determine if either #¢-1 or telomere
erosion might affect the aging process in C. elegans. Initial
experiments were conducted with trt-1(e2727) or trt-1(ok410)
strains, where early- and middle-generation strains were
starved for several weeks prior to conducting life span
analysis of early-, middle-, and late-generation strains in
parallel. These studies suggested that neither tr¢-1 nor
telomere erosion affects life span in C. elegans (unpublished
data). In order to control for any effects that extended
starvation might have had on the early- and middle-
generation samples described above, outcrossed strains
homozygous for the trt-1 deletion 0k410 were passaged, frozen
at early-, middle-, and late-generations, and then thawed for
life span analysis together. No change in life span was
observed between wild-type (19.9 = 0.6 days) and early- (20.6
* 0.6 days), mid- (20.4 = 0.6 days), or late- (20.0 = 0.6 days)
generations of a trt-1(ok410) strain (P = 0.18, 0.22, and 0.46,
respectively), where telomeres of mid- and late-generation
strains were about 1 and about 1.5 kilobases shorter than
those of early-generation strains, respectively (Figure 6).
Experiments with an additional allele of #r¢-1 confirmed that
life spans of N2 wild-type (19.1 = 0.4 days) and early- (19.3 =
0.5 days) or late- (18.3 = 0.5 days) generations of a trt-1(tm899)
strain were not significantly different (P = 0.96 and 0.23,
respectively) (Figure 6). Similar results were obtained with
independently derived 0k410 and tm899 strains (Figure S3).
The late-generation #r¢-1 strains used for the above life span
experiments displayed significant drops in brood size as a
consequence of critically shortened telomeres being fused
end-to-end (unpublished data). Thus, our results suggest that
neither {rt-1 nor telomere erosion in the absence of trt-1 nor
chromosome uncapping and end-to-end fusion affects C.
elegans life span.

Discussion

Here we genetically define the C. elegans catalytic subunit of
telomerase, trt-1, and study the effects of telomere erosion in
trt-1 mutants. TRT-1 is one of the smallest TERT proteins
known as a consequence of truncated N- and C-terminal
TERT-specific domains [16] (Figure 3). Functions known to be
conferred by N- and C-termini of TERT include recruitment
of telomerase to chromosome ends, nucleolar localization,
and TERT multimerization [21-23]. Further, N-terminal
domains of Tetrahymena, S. cerevisiae, and human TERT,
including motif T, have been shown to mediate physical
interactions with the telomerase RNA [18,41-43], so the
divergent Caenorhabditis TERT N-terminus might reflect a
telomerase RNA with unusual structural qualities. Consistent
with this possibility, the C. elegans telomerase RNA has yet to be
discovered in searches for noncoding RNAs with a telomeric
template and secondary structures similar to those found in
vertebrate telomerase RNAs [44], despite the availability of
two fully sequenced Caenorhabditis genomes and extensive C.
elegans cDNA sequencing [45,46]. Thus, TRT-1 has an unusual
primary structure that may suggest functional divergence.

Mutation of yeast DNA damage checkpoint proteins
typically results in shortened telomeres, whereas double
mutants that lack both of the functionally redundant damage
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Mog

Mog

L Somatic Germline
Strain Pvl  Vul Egl Ooc  Emo Mog Glp
wildtype (n=25) 0% 0% 0% 0% 0% 0% 0%
20°C tr-1(ok410) (n=50) 8% 10% 10% 9% 9% 21%  17%
trt-1(tm899)  (n=50) 14% 4% 6% 9.3% 15.5% 16.5% 22.7%
25°C him-10 (n=24) 0% 42% 12.5% | 104% 63% 63% 16.7%

Figure 5. trt-1 Mutants Display Mitotic Defects at Sterility

(A) Wild-type germlines displayed two symmetric, highly proliferative arms of the germline when stained with DAPI.

(B-K) In contrast, trt-1 mutants at sterility displayed medium and small germline arms (B), small and empty germline arms (C), and only empty germline
arms (D). Some trt-1 mutants had a Masculinization of the Germline (Mog) phenotype and only produced sperm (E and F), many displayed endomitotic
oocytes that endoreduplicate in the absence of sperm (G), some germlines displayed an abnormal Germline Proliferation (Glp) phenotype where the
few germ cells that were produced were mitotic (H and I), and anaphase bridges were observed between intestinal nuclei in sterile trt-7 adults (J and K)

but not in wild-type controls.

(L) Quantification of somatic and germline phenotypes in wild-type, in trt-1 mutants, and in the kinetochore protein mutant him-10 grown at the
restrictive temperature of 25 °C [40]. Phenotypes scored were Protruding Vulva (Pvl), Vulvaless (Vul), Egg-Laying Defective (Egl), Intestinal Nuclear Bridge
(Ibr), Abnormal Oocyte Formation (Ooc), Endomitotic Oocyte (Emo), Mog, and Glp. Although the Pvl phenotype was not observed in him-10 animals, it
is commonly observed for depletion of other kinetochore components by RNA interference (http://www.wormbase.org).

DOI: 10.1371/journal.pgen.0020018.g005

signaling proteins Mec1p/ATR and Tellp/ATM have an Ever
Shorter Telomeres phenotype that is similar to that observed
for yeast telomerase mutants [47,48]. Thus, redundant DNA
damage signaling is required for telomere replication in
yeast. Since disruption of telomere structure by several means
allows telomerase to act at telomeres in the absence of both
Meclp and Tellp, the telomere-specific role of damage
checkpoint signaling in yeast may be one of mediating
telomerase access [49]. Two C. elegans orthologs of subunits of
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the 9-1-1 DNA damage response complex, mrt-2 and hus-1,
are required for telomere replication in C. elegans [12,14],
whereas mutation in their S. cerevisiae or S. pombe orthologs
results in short but stable telomeres [50,51]. We show here
that mrt-2 and #rt-1 may act in the same pathway (Figure 4), a
possibility that may be difficult to assess in mammals, where
the 9-1-1 complex is essential [52]. Given that the 9-1-1
complex can be loaded onto aberrant DNA structures at
double-strand breaks and stalled replication forks [53], it may
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Figure 6. trt-1 Mutants Have a Normal Life Span Independent of
Telomere Length and Telomere Uncapping

(A) Life spans of N2 wild-type and early, middle, and late generations of a
trt-1(ok410) strain. Mutants were analyzed at generations with slightly
shortened telomeres (F7), short telomeres (F15), and very short
telomeres with chromosome fusions (F19).

(B) Life spans of N2 wild-type and early and late generations of a trt-
1(tm899) strain.

DOI: 10.1371/journal.pgen.0020018.9006

respond to replicating telomeres during S phase and assist
with checkpoint-mediated modification or turnover of core
telomere protein components. Thus, the redundant Meclp/
ATR and Tellp/ATM checkpoint signaling pathways that
function in yeast telomere replication may have been
replaced by a single pathway in C. elegans. Alternatively,
redundant checkpoint signaling may be required for medi-
ating telomerase access in C. elegans, but the 9-1-1 complex
may have an additional, essential role in facilitating telomer-
ase activity.

In contrast to late-generation mouse telomerase RNA
mutants [34], late-generation #r¢-1 mutants failed to display
an overall increase in apoptosis (Table 1), despite being
proficient for p53-mediated, DNA damage-induced apoptosis
(B. Meier and S. Ahmed, unpublished data). One explanation
for this discrepancy might be that end-to-end chromosome
fusions that result from telomere attrition in monocentric
organisms such as mice and humans break frequently, which
may elicit an apoptotic response. In contrast, C. elegans has
holocentric chromosomes that can be propagated stably when
fused, perhaps affording protection from break-induced
apoptosis [64]. Although massive telomere uncapping can
elicit an apoptotic response in mammalian cells [35], it is
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unclear how many DNA double-strand breaks are required to
induce apoptosis in the C. elegans germline. Given that
individual telomeres of a trt-1 strain are likely to have
different initial telomere lengths, only a small proportion of
the 24 telomeres of a C. elegans trt-1 mutant are likely to be
uncapped at any point in time, even in later generations. Our
data indicate that if uncapped telomeres are sensed as double-
strand breaks in C. elegans, then the resulting DNA damage
signaling is not sufficient to trigger apoptosis in trt-1 mutants.

Levels of apoptosis were not enhanced in C. elegans trt-1
mutants near sterility, but several phenotypes indicative of
mitotic failure were observed (Figure 5). Given that ¢r¢-1
mutants have typically incurred two or three end-to-end
chromosome fusions by this time, subsequent fusion events
may involve chromosome circularization. C. elegans has
holocentric chromosomes that may interfere with mitotic
segregation of circular chromosomes. Accordingly, the
anaphase bridges observed between intestinal nuclei in late-
generation {¢ri-1 mutants may reflect the presence of
circularized chromosomes, which have never been recovered
in C. elegans. Although circular chromosomes are mitotically
stable in the monocentric yeast S. pombe, meiosis fails in the
presence of such chromosomes [47]. Thus, chromosome
circularization may result in mitotic as well as meiotic failure
in late-generation (rt-1 mutants.

Linear end-to-end chromosome fusions consisting of two
chromosomes typically display stable mitotic and meiotic
transmission in C. elegans [12] (Figure 1A). In contrast, the only
triple end-to-end fusion that has been constructed appears to
break or mis-segregate frequently [55], and instability
associated with multiply fused chromosomes may account
for some of the phenotypes observed in late-generation ¢rt¢-1
mutants. For example, mitotic loss of a significant portion of
the X chromosome during development of the germline
could result in a Masculinization Of the Germline phenotype,
which was displayed by sterile trt-1 mutants and by mutants
defective for chromosome segregation [39] (Figure 5). Other
developmental phenotypes that occurred in sterile tr¢-1
mutants, such as a Protruding Vulva, Uncoordinated neuro-
muscular defects, and occasional Slow Growth, have also been
observed in C. elegans strains with chromosome segregation
defects [39] (http://lwww.wormbase.org) (Figure 5). In sum-
mary, sterile #r&-1 mutants displayed a variety of phenotypes
indicative of chromosome mis-segregation and/or mitotic
failure, which may be the ultimate cause of sterility.

Some aspects of mammalian proliferative aging appear to
be regulated by telomere erosion [6-10], but it is unclear if
telomere length also affects postmitotic aging or whether the
downregulation of TERT itself in human somatic cells might
affect either proliferative or postmitotic aging by a mecha-
nism that is independent of telomere length [56]. No
difference in life span was observed between wild-type C.
elegans strains and #¢-I mutants with either long or short
telomeres, even when critically shortened telomeres were
present (Figures 6 and S3). These results suggest that neither
telomere length nor TERT affects postmitotic aging of the
soma in C. elegans, although proliferative immortality of the
germline is clearly compromised. Thus, C. elegans TERT plays
a role in proliferative rather than postmitotic aging. The
presence of end-to-end fusions did not affect ¢rt-1 life span,
but significant amounts of subtelomeric DNA are lost at the
fusion breakpoints of some C. elegans end-to-end fusions (M.
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Lowden and S. Ahmed, unpublished data). Such sequence loss
might occasionally compromise life span for some late-
generation fri-1 strains, although we failed to observe effects
on life span in trt-1 strains with multiple end-to-end fusions
(Figures 6 and S3). A recent report suggests that modest
increases in telomere length might extend postmitotic life
span in C. elegans [57]. In this instance, it is possible that
clongated telomeres correlated with extended life span but
were not causal and that the observed effects on life span
could have been due to another experimental variable.
Indeed, a recent study of various wild strains of C. elegans
failed to observe a correlation between significantly elon-
gated telomeres and life span [58]. While this complements
our observations that telomere shortening has no effect on
life span for ¢r¢-1 mutants, the relationship between elongated
telomeres and life span in C. elegans will remain equivocal
until strains with normal and significantly elongated telo-
meres are studied in isogenic backgrounds. We conclude that
although telomere erosion in C. elegans trt-1 mutants
effectively mimics telomere dysfunction experienced by most
human somatic cells, life span is not altered in these mutants.
trt-I mutants may instead be useful for studying other
properties of telomerase, such as its role in the development
of cancer [59].

Materials and Methods

Strains and plasmids. Strains were cultured at 20 °C as described
[60], unless stated otherwise. The following mutant strains were used:
trt-1(e2727), tri-1(ypl), trt-1(tm899), trt-1(ok410), mrt-2(e2663), him-
10(e1511), unc-13(e51)dpy-24(s71), and unc-29(e193). trt-1;mrt-2 double
mutants were generated by crossing unc-29;mrt-2 hermaphrodites with
trt-1 +1+ unc-29 males. mrt-2 F2 homozygotes were identified based on
radiation hypersensitivity, whereas trt-1 homozygotes were identified
based on linkage with unc-29. The plasmid pSA1, which comprises the
tri-1 open reading frame as well as upstream and downstream
sequences, was generated by digestion of cosmid HI14N5 (Alan
Coulson, personal communication) with Eael and ligation into the
Notl site of pBS—KSIl—ﬁ

RNA preparation and RT-PCR. RNA was prepared with TriZOL
(GIBCO-BRL, San Diego, California, United States). cDNA was
generated from the RNA using SuperRT (HT Biotechnology Ltd,
Cambridge, England) and an oligo(dT) linker [SKT: GCTCTAGAAC
TAGTGGATCCC(T)9o]. To analyze trt-1 transcription, PCR with
primers DY15 (GCACCAACGATTAAGAGTTCAC) and DY16
(TTATTGCAACTTTATCAAAAATTGAC) was performed using
cDNA obtained from N2 and mutant strains as a template. The spliced
leader of ¢rt-1 mRNA was determined by PCR of N2 cDNA using either
an SL1 (GGTTTAATTACCCAAGTTTGAG) or SL2 (GGTTTTAACC
CAGTTACTCAAG) oligo as a forward primer and DY16.

Rescue and complementation. N2 genomic DNA, pCes1943 (gift
from Diana Janke), and pSA1 (carrying the #rt-1 locus) were digested
with Pvull, Nrul, and Scal, respectively. Mixtures of 100 ng of N2
genomic DNA, 2 ng of pCes1943, and 1 ng of pSA1 were injected into
trt-1(e2727) and trt-1(ok410). Rol and non-Rol siblings were propagated
in parallel and scored for sterility. For noncomplementation analysis,
e2727, yp1, or tm899 was placed in trans to unc-29 or tri-1(ok410),unc-29,
and trans-heterozygotes were propagated by singling six non-Unc L4s
each generation and selecting for the segregation of unc-29.

Analysis of mutant phenotypes at sterility. Fifty L4 larvae of each
genotype were singled on NGM plates and scored for progeny after
48 h. Worms that produced progeny were passaged using one L4 per
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