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Abstract: A new kind of self-assembly model, morphogenetic (M) systems, assembles spatial units
into larger structures through local interactions of simpler components and enables discovery of new
principles for cellular membrane assembly, development, and its interface function. The model is
based on interactions among three kinds of constitutive objects such as tiles and protein-like elements
in discrete time and continuous 3D space. It was motivated by achieving a balance between three
conflicting goals: biological, physical-chemical, and computational realism. A recent example is a
unified model of morphogenesis of a single biological cell, its membrane and cytoskeleton formation,
and finally, its self-reproduction. Here, a family of dynamic M systems (Mbac) is described with similar
characteristics, modeling the process of bacterial cell formation and division that exhibits bacterial
behaviors of living cells at the macro-level (including cell growth that is self-controlled and sensitive to
the presence/absence of nutrients transported through membranes), as well as self-healing properties.
Remarkably, it consists of only 20 or so developmental rules. Furthermore, since the model exhibits
membrane formation and septic mitosis, it affords more rigorous definitions of concepts such as
injury and self-healing that enable quantitative analyses of these kinds of properties. Mbac shows that
self-assembly and interactions of living organisms with their environments and membrane interfaces
are critical for self-healing, and that these properties can be defined and quantified more rigorously
and precisely, despite their complexity.

Keywords: membrane self-assembly; protein transport channels; prokaryotic cell division; morphogenetic
system; bacterial kinetics; self-controlled growth; self-healing

1. Introduction

The emergence of the macro-world from interactions at the micro-world is a funda-
mental problem in modern biology. Self-assembly is a solution and has become a subject of
its own. A fundamental property of living organisms with complex shapes and properties
is that they are assembled from simpler inert materials and subunits through complex
morphogenetic processes. For instance, most virus species assemble one or more pro-
tein types around a nucleic acid molecule, and this assembly is governed by the nature
of their mutual interactions. This kind of assembly is arguably the simplest biological
morphogenetic process. Several levels above in complexity are bacteria. These organisms
are composite assemblies with multiple polymeric structures, each of which arises from
molecular subunits, again through specific morphogenetic processes. For instance, in its
simplest form, the bacterial envelope is a combination of lipid subunits assembling into a
membrane and glycoprotein subunits assembling into the outer envelope. Eventually, even
more complex morphogenetic processes lead to the assembly of multicellular organisms.
For these organisms, the cell is the fundamental unit. Division processes, such as mitosis,
generate more units (cells) which integrate with each other through specific interactions to
eventually generate a dynamic organism with specific shape and properties.
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These considerations point to what is perhaps the most fundamental and difficult
question in biology: how can nonliving parts come together into an organized complex structure
that could be considered alive? The goal of this paper is to address some aspects of this question
from a mathematical and computational standpoint by asking, more specifically, whether it
is possible to characterize the contribution that self-organization, such as computational
self-assembly and morphogenesis, makes to help answer this question. Special emphasis is
placed on the role of the membrane, its topology, and its transport and interface functions
controlling the assembly process.

Alan Turing, the founder of modern computer science, addressed a particular case
of this question very early in his pioneering work [1] before specific explanations of
heredity and information processing were revealed by the discovery of the structure
of DNA [2], by asking about the nature of the process that produces and maintains the
spot pattern on a leopard’s skin. Building computational models of morphogenesis has
been explored ever since in a variety of ways and directions. They range from highly
specific and arguably physically realistic models for specific morphogenetic mechanisms
or organisms [3–6], to general approaches and models of entire biological units such as
a living cell or a full organism [7,8], to broadly encompassing theoretical frameworks to
address this fundamental question [9,10].

According to a central tenet in biology, the living cell is the fundamental biological
unit. Cells can exist independently of others, as in bacteria or ciliates, or they can assemble
into organisms. New cells are produced from existing ones through cell division, a process
consisting of successive steps specific to the cell type (e.g., prokaryotes or eukaryotes,
somatic or germ cells in [11]). One of the simplest processes of cell division is the binary
fission of bacteria [12]. Binary fission begins with the replication of the DNA located inside
the cell and is followed by the segregation of the two DNAs towards opposite ends of the
cell. Subsequently, two opposite sides of the cell wall pinch inward toward each other and
form a septum when they meet. This septum divides the bacteria into two compartments
of roughly equal volume, each containing a copy of the DNA. The septum then splits down
the cell through the middle to yield two daughter cells and complete the reproductive cycle.

Much is known about the specific molecular events leading to bacterial cell
division [13,14]. Computational modeling based on empirical data about these events
has moved the field toward a comprehensive understanding of the regulatory networks at
play during the bacterial cell cycle [15]. Although a bacterium is the simplest biological
system with a metabolism, they are already highly complex assemblies consisting of a
myriad of molecular components. Bacterial fission also poses a challenging problem for
synthetic biology [16]. Thus, there is still a long road ahead to produce a synthetic system
that would emulate bacterial fission realistically.

Motivated by these considerations, [17,18] recently proposed a dynamic computational
model, M systems, based in part on the techniques of membrane computing [19]. M systems
arose as an evolution of so-called membrane systems (or P systems, [19]), which generally
consist of a structure of (possibly nested) delimiting regions in 2D or 3D space enclosed by
membranes, as illustrated below, and as a mathematical abstraction of common biological
structures. In addition, the system contains objects from a certain set O, placed inside
membranes or in their surrounding environment, which abstractly represent physical
elementary objects such as molecules or antibiotics or nutrients, but which do not bear
any information about their location or shape within the membranes. Multiple copies of
the same object can be present in a region, so they work with multisets of objects because
multiplicity carries weight biologically. P-systems may also include other objects inspired
by biological proteins, which are primary carriers of biological function by self-folding into
characteristic shapes. Protein abstractions have been explicitly used in P systems [20,21].
They interact through a number of production rules in the chemical/computational sense,
i.e., they operate on certain reagents/objects within a membrane to produce other objects,
perhaps in an adjacent membrane. These rules can be thus construed as abstractions of
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ordinary chemical reactions among elementary objects that catalyze the production of other
products necessary for a cell to function biologically.

These systems capture the principles of biological morphogenetic processes, yet can
be understood in terms of a few abstract but simple local rules of interaction that cause
them to unfold into membrane structures exhibiting complex emerging properties, as
explained in Section 2. Later, [22] presented a simulation framework for M systems called
Cytos, and used it to build an M system that emulates bacterial cell formation, growth, and
division by fission. The goal of this work is to introduce and further explore emerging
properties of an M system, generalizing it for the formation of more complex biological
assemblies, such as bacterial cells. We describe a family of M systems of a bacterial cell
population that exhibit growth kinetics as emergent properties that follow very closely
their biologically counterparts. Section 3 shows M system models of three representative
species of bacteria. Section 4 discusses an abstract and principled definition of self-healing
and robustness properties of M. Finally, Section 5 discuss the significance of our results and
outlines questions of interest for further research.

2. Materials and Methods

This Section describes M systems in detail and the biological data used to assess
the models.

M systems combine and extend P-systems and self-assembly systems [23] along three
different directions. First, they do not presuppose any specific membrane structure or even
membranes (as is the case in P-systems), but rather provide certain production rules that
will enable their assembly, including the structure and layout of the membranes themselves.
Second, they explicitly assume that objects in the system possess geometric features as
well, such as shape and position, in addition to their self-assembly capabilities, based
on simpler component objects. This is in recognition of the important role that shape
and physical location play in ordinary biology, usually not explicitly factored in most
kinds of biological models. To avoid misunderstanding by biologists and biochemists,
a new term “protion” has been introduced to denote such abstract objects in M systems
in (Sosik et al., 2018). Third, the primary goal in studying M systems, as given by sets of
elementary objects with their rules of interaction in a host geometric space (e.g., ordinary
2D or 3D space), is to examine and characterize the behavior of larger and more complex
objects and systems emerging as a result of the interaction of component objects according
to a given set of reaction/production rules and environmental conditions they are placed
in, including nutrients.

2.1. Computational Methdology and Simulation

A 3D M system is embedded in a 3D Euclidean (ordinary) space and is defined by
specifying three types of parameters as objects present in the system:

• Floating objects are small shapeless atomic objects of positive volume floating freely
within the environment and occupying a specific position in space at every moment
(akin to a center of gravity or centroid). They can be carried through tiles via protion
channels and participate in mutual reactions with other types of objects, as specified
by the production rules.

• Tiles are obstructive (like solid) objects of dimension 1 or 2. Each tile has its own
pre-defined shape and size. Unlike other models of self-assembly systems, such as the
aTAM model [23,24], tiles are not present implicitly in arbitrarily many copies, but can
only be created via reactions involving floating objects. Selected points or segments
on tiles called connectors are covered with certain types of glues. Another tile can stick
to a connector by its own connector with a matching glue, where a match is defined by
a glue relation pre-specified in the model. In this way, larger interconnected structures
of tiles can gradually self-assemble into more complex objects.

• Protions are regulators or catalysts that (i) allow for certain reactions and (ii) transport
floating objects through a tile (which may be part of a wall of a self-assembled closed



Membranes 2022, 12, 678 4 of 16

compartment, akin to an ion channel in a biological membrane). They have a certain
unchangeable position on a tile. Protions follow the notion in P systems as abstrac-
tions of proteins on membranes [20]. The connected tiles can be also disconnected
and/or destroyed by rules under certain conditions requiring the presence of specific
floating objects.

• Reaction rules can only be of four types: metabolic, creation, destruction, and division
rules, as defined by the kind of result they may produce when applied to objects in
the system.

• Brownian motion moves objects by a certain distance (as specified by a parameter in
the system, the interaction radius) at every iteration, before applying any rules. It
ensures that further interaction is eventually possible, even if no rule was applied at a
given time.

A full formal definition of an M system can be found, e.g., in [22], available online
at http://sosik.zam.slu.cz/msystem/CMC20.pdf (accessed on 20 May 2022). The most
important component of an M system is the set of reaction rules R that specify (in abstract)
the interaction between the elementary objects in the model. They play the role of physical
or chemical laws that determine interactions between objects. A typical reaction rule has the
form u→ v, where u (reactants) and v (products) are multisets which may contain floating
objects, protions, and/or tiles. A more detailed, but also more technical, description of M
systems can be found in [17,18].

A nontrivial example of such an M system is described in [17]. This system produces a
model M0 of a living cell self-assembled from basic pentagonal tiles and undergoing a sort
of morphogenetic process to generate a cytoskeleton in its interior, eventually producing
a copy of itself, akin to a mitotic division. The salient properties of M0 are that the specific
shape of the self-assembled cell, its cytoskeleton, and the ability to self-replicate are not explicitly
defined by the rules, nor is the ability to form a cytoskeleton, let alone self-replicate. These
structures and properties are emergent properties of the system that are, in principle, hard
to surmise just from the original basic objects, protions, and rules of interaction specified
in the system, as can be seen in an animation [25]. This and other examples will be
described in a bit more detail in the next Section. The M system M0 is illustrated below
and its technical description can be found in detail online at the M systems web page,
http://sosik.zam.slu.cz/msystem/Cytos-PS10-Appendix.pdf (accessed on 20 May 2022).

2.2. Comparison to Other Approaches to Cell Growth Modeling

Classical quantitative mathematical models of cell population dynamics were based
on Ordinary Differential Equations (ODEs), as in [26], without explicit relations to spatial
constrains, and therefore, they were limited to rather simple cases of matching qualitatively
the phenomenon of interest (e.g., exponential growth profile), coarsely at best. Later, the
importance of spatial and temporal constraints and control for the growth and formation
of complex cell colonies has been recognized and models based on cellular automata-
like approaches emerged [27,28]. Individual-based modeling (IbM) became an important
tool for quantitative modeling in biology, based on actions of individual agents and in-
teractions among them and with their environment, including explicit spatio-temporal
dynamics [29,30].

In contrast with most IbM applications in microbiology focused on population dynam-
ics, treating individual cells as atomic units with certain parameters, the M systems model
starts with a single cell model and generates other objects in the system through dynamic
interactions between individual components. Macro-phenomena such as cell division
and mitoses emerge as a result of their interactions, rather than being posited to occur at
hypothetical times. The result is a dynamic of populations of objects mostly self-controlled
and influenced by external factors such as nutrient concentration and/or antibiotics. Com-
putational models of a single cell of E. coli growth were described in, e.g., [31,32]. These
models are based, however, on complex qualitative descriptions of cells aimed at realistic
biochemistry, while our approach stresses the regulatory role of morphogenesis within an
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individual cell. Other modeling techniques incorporating spatial heterogeneity in a cell
population in a 2D lattice resulted in the simulation package BacSim [33], the agent-based
simulator BSim [34], and the 3D simulator Simbiotics [35]. An interesting study of tumor
growth modeling [36] combines cell migration and genetic evolution. These models treat
an individual cell as an atomic agent described by a set of (mostly numerical) parameters,
A similar but highly specialized approach was applied in [37], but just to simulate the
formation of bacterial cell walls. On the other hand, our M systems start the growth from
inside the cell and enable understanding of how changes in intra-cellular processes and
cell morphogenesis influence the dynamics of the population and overall morphogenesis
in an “object-oriented” fashion.

Other models of cell and population growth dynamics approach the subject from
an explicit morphogenetic standpoint. A collection of theoretical studies was published
in the volume [38], while computational modeling frameworks including 3D ones are
presented, e.g., in [39]. Our model of M systems aims at unifying these two approaches,
integrating both abstracted biochemical processes and morphogenesis with explicit spatial
and geometrical constraints into a single framework, with mutual feedbacks between these
two crucial mechanisms, as pointed out in [38].

Finally, recent computational methods modeling yet more specialized aspects of intra-
cellular processes lead to whole cell modeling, typically combining a large number of
different methods into one complex algorithmic framework, requiring tuning hundreds
or thousands of individual parameters [10,34,38], with high computational demands and
the consequent computational infeasibility. By contrast, here a model is shown where
the interplay between biochemical and morphogenetical control of growth processes can
result in a much simpler model with just a few parameters, while still providing fairly
realistic macroscopic observables consistent with the modeled biological phenomenon,
both qualitatively and quantitatively as well.

2.3. Implementation of Bacterial Growth Simulation

In order to model the formation and growth of prokaryotic cells, a simple M system is
described here that uses a septum-like mechanism for cell division. The requirement is that
the model should dynamically unfold as follows. First, cell-like walls are gradually self-
assembled from input 2D tiles connected with glues. Division starts when the cell reaches
a certain “mature” size, not specifically preset in the model, but arising as an emerging
property from certain conditions that develop during the self-assembly process. Once
the septum is formed, it separates the cell into two subregions, which will develop into
the equivalent of daughter cells, as shown in Figure 1. This division re-creates the initial
conditions so the cycle can recursively start all over again and develop by the same rules.
Actual bacterial cell growth and division consume nutrient resources, here represented
by certain objects floating in the environment, such as small molecules or protions. An
actual bacterial cell population continues to grow at an exponential rate as long as resources
are available in the surrounding environment, as illustrated in [40,41]. The M system
simulation is simplified from the biological reality in that there is no primary and secondary
septum, but a single (final) septum is formed instead.

The precise definition of the assembly model Mbac consists of the following key
components, in accordance with the definition of an M system in the previous section:

• four types of 2D tiles that build cell walls and septum components; for the sake
of simplicity, these tiles are given polygonal shapes, and hence the resulting cells
membranes are shaped as dodecahedra with octagonal sides, as illustrated in Figure 2
(other tiles can be used to produce assemblies with more complex shapes, if desirable);

• three types of small auxiliary rod-shaped tiles controlling cell division;
• two types of floating objects: the first one (denoted by a) contained in the environ-

ment with a pre-defined concentration and serving as a nutrient, and the second one
(denoted by s) serving as a signal molecule controlling the cell division process;
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• one type of protion located in the tiles of the simulated cells controls the flow of
nutrients from the environment into the interior of a simulated cell;

• Nine rules: one metabolic rule enables the transport of nutrients into cell interiors; six
creation rules build tiles and consume nutrients; one destruction rule annihilates small
auxiliary rods; and one division rule concludes the process of cell division when the
septum formation is complete.
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its growth in (b).

The full technical description of an M system model is available online at the M systems
web page, http://sosik.zam.slu.cz/msystem/Appendix.pdf (accessed on 20 May 2022).

Once these definitions are in place, the model can be easily implemented within an M
system simulator, Cytos [18]. This software package Cytos is now freely available in open
source (see the Supplementary Materials section) and can be used to experiment with M
systems, such as Mbac.
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In a series of experiments on Cytos, an M system was seeded with a single tile in
appropriate environmental conditions to analyze the growth of the three selected bacterial
species in Table 1. Models for the three species differed in that they were trained by
changing the constant for the rate of diffusion of the a- and s-objects to produce results
consistent with the experimental data in Table 1. Each simulation was run 100 times,
starting with a single cell and with a limited amount of nutrients (a-type floating objects)
available. Both doubling times, real and simulated, were observed under limited nutrient
amounts, which cause the growth to stop after a certain time without external intervention.

Table 1. Doubling time of a sample of three species of living bacteria [42].

Bacterium Medium Doubling Time (Mins)

Escherichia coli Glucose-salts 17

Streptococcus lactis Milk 26

Lactobacillus acidophilus Milk 66–87

3. Results

To validate this M system, models for three species of bacteria in Table 1 were built and
assessed using the doubling time and growth profile required by the model to that of the
corresponding actual bacteria, as shown in Figure 3. This Section shows how certain macro-
properties of the resulting cell and membrane assemblies exhibit a number of properties
akin to those exhibited by actual living bacterial colonies. Two important properties are
illustrated. First, the resulting dynamic profile of growth of a population of cells. Second,
the effect of injuries inflicted on the model as a result of (unexpected) interaction with the
environment or agents (in this case, antibiotics) within this environment.

Table 2. Experimental average doubling times for bacterial cell growth over 100 runs of Mbac with a
limited amount of nutrients available. Doubling times have been normalized to E. coli times (columns
2 and 4) or estimated from the figures in Table 1 (column 3).

Doubling Times
Bacteria

Actually
Observed (Mins)

Simulation
(Iterations/Time Mins)

Simulation Time
(Normalized to E. coli)

Escherichia Coli 1.00 100/16.10 1.00
Steptococcus lactis 1.53 150/24.01 1.49

Lactobaccilus acidophilus 3.88–5.12 400/62.58 3.89
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Figure 3. Growth profile of simulated bacterial cells in Mbac (left). The x-axis is the number of
iterations simulations (with stds). From the results in Table 2, one iteration corresponds to 1 min
in real time. The right figure shows the results fitted on L. Plantarum data with the Gompertz and
logistic models, considered the best prototypes according to [41].



Membranes 2022, 12, 678 8 of 16

3.1. Bacterial Growth Profiles

Table 2 shows the census of the bacteria grown over time corresponding to the species
in Table 1, as well as the corresponding statistics averaging the number of bacteria at the
end of a run.

Since experimental observations have demonstrated that the generation time of actual
bacteria is on the order of one minute [42], one iteration in the simulation corresponds to
1 min in real time. Since growth is exponential, the number of bacterial cells Bt at time t
is about

Bt = B0eKt

where B0 is number of bacteria at time t = 0. The doubling time calculated as t (the
time which elapsed between B0 and Bn) divided by the number of generations n, is
G = t/n = t log 2/(log Bn − log B0). In the simulations, B0 = 1 and n = 100, 150, 400 iterations,
so the final average population sizes are Bn = 74, 76, 85, respectively, for the species in
Table 1, so that the growth rate is K = log2(Bn)/t, and the doubling time is t/log2(Bn), as
shown in Table 2. Similar results can be obtained for the other two species in the sample.
Thus, there is a very good agreement between the generation time obtained with the simulation
values and those observed for the three actual bacterial species, as shown in Figure 3, left. Thus,
the simulation generation time also agrees with the observed generation time in the order
of one minute, i.e., Mbac is fairly realistic populationwise, biologically speaking.

From a more principled standpoint, the model produced behavior that is in very good
agreement with that of models that have been deemed statistically (using a t- and an F-test)
the best prototype models for bacterial growth: the traditional differential equation-based
Gompertz models and a logistic model shown in Figure 3, right (as concluded by [41] after
a comparative study of a number of them on several species as well).

3.2. Robustness Properties of M Systems

As mentioned in the introduction, self-healing and/or resilience of a membrane after
certain damage is a characteristic property of living organisms that has not been sufficiently
addressed in mathematical or computational models of biological growth. This property
can also be defined as the robustness of an organism subjected to environmental or other
damage. An important exception is the research in algorithmic tile self-assembly with
several studies devoted to this topic, summarized for instance in [24,43].

The conceptual framework of M systems can contribute both theoretical and experi-
mental insights into this topic as well. It is noted that wound healing has a very specific
meaning in biology, namely it is the process that repairs a loss or damage to a piece of
tissue or organ [44]. Nonetheless, the same term will be used in a more generic sense of
repairing any component of a cell, and in particular, will apply it to models of bacterial
growth, although bacteria themselves have no distinguishable tissue or organs other than
the building tiles. Here we simulate the effect of several types of antibiotics targeting
bacterial membranes, and compare the results with E. coli population decay under the effect
of increasing concentration of antibiotics in [45].

The authors of [18] initiated a rigorous study of robustness in M systems using the
concept of an injury to the system and demonstrated that the system M0 is capable of
self-healing of degree 10, as defined below. For example, an injury to the system M0
mentioned above could be knocking off one or several tiles that have just attached, or
it could be damaging some protions. Other types of injuries included breaking bonds
between attached tiles without destroying them, actually deleting a previously added tile
(thus creating a hole in a membrane), or sudden appearance of floating objects inside a
membrane. The self-assembling nature of the system will simply cause it either to revert
to a previous configuration, or to detach a piece of the system altogether. In most cases,
the missing part can be re-assembled as it did before, even if the sequence of steps may be
different (due to the nondeterministic nature of M0), and the new mature individual will
bear only small differences compared to the individual before the injury, while keeping
the original characteristics of the (uninjured) original M0. This property was verified
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quantitatively in [18], where results of a number of simulations on Cytos with injuries to the
system M0 were described. Interestingly, a certain number of injuries to the cytoskeleton
elements led to a small increase of the survival ratio, but the system eventually collapsed
when the number of injuries exceeded a critical threshold.

Analogous results were obtained for the Mbac system. To better understand these
results, a general framework of self-healing in M systems can be defined here to keep this
paper self-contained and because it appears to be characteristic of M systems in general.
The framework uses the mathematical concept of a directed graph (or just digraph) as a
set of vertices (or nodes) together with a set of arcs (directed edges) connecting them and
indicating certain kind of relationships between them, as illustrated next. The vertices
and edges can represent completely arbitrary objects. Nodes below a vertex represents
the overall state of the M system at a given point in time, and the arcs describe possible
transitions of the system to other states induced by rules of interaction.

3.2.1. What Is Self-Healing?

In this section we briefly recall the concept of self-healing introduced in [18] and further
elaborated in [46]. A configuration (or state) of a given M system is a full description or
listing of all the objects present in the system at a given time, including their location in the
container space (3D space) and their attachments to one another to form substructures (such
as membranes or cytoskeletons). The application of a rule changes the current configuration
of M, if objects within are close enough to one another to trigger it, or just as a result of
Brownian motion. Two configurations are regarded as equivalent if they contain exactly the
same objects and substructures, and exactly the same rules will apply to either one at the
next time step. The computation graph of M is a directed graph (digraph) M* whose nodes
are all the possible distinct configurations (i.e., equivalent configurations are represented
by a unique node) obtained in any (randomly chosen) computation of the M system from
the initial configuration as the root. The arcs (x, y) of M* are all the possible one-step
transitions x => y of the M system among these configurations as a result of application
of the successive interaction rules (x/y are then called immediate predecessors/successors,
respectively). Furthermore, M* also includes all other possible configurations (and their
interconnecting arcs) having a valid sequence of transitions to some node of M, even if
these configurations may not be reachable from the root. The resulting graph is also called
the configuration space M* of the M system. (Mathematically, M* is obtained as an inverse
transitive closure of M in the general digraph consisting of all possible configurations and
single transitions by reversing the arrows in the digraph). For example, Figure 4a shows a
configuration space where nodes C7 and C8 are unreachable from the root, but when caused
to enter (by damage to the system), lead the M system back to some “normal” configuration.

A homeostatic component (or simply h-component) is, intuitively, a segment of the
configuration space M* (a subdigraph) that, once entered, cannot be exited by following
arcs of the successor relation, and which may allow for a cyclic behavior of the M system.
The union of all such h-components of M* forms the homeostatic phase MH of M. Each
h-component forms a class in the equivalence relation on the set of nodes of M* defined
inductively as follows:

• the transitive closure Cˆ of each directed cycle C belongs to an h-component, i.e., it
consists of all nodes that are reachable from a node in the cycle following arcs in C
using the successor relationship. For example, the closure of C3-C4 is itself in Figure 4a,
while it is the entire graph in Figure 4c.

• each leaf node (one not containing any successors, such as C5, C6, C7 in Figure 4c) in
M* belongs to an h-component;

• each node x whose transitive closure xˆ intersects with a single h-component belongs
to this h-component.
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It is clear that when two such components C1ˆ and C2ˆ overlap, then they must both
be part of a single h-component due to the transitivity of equivalence. To complete the
decomposition of M*, the nodes not belonging to any h-component form an additional
equivalence class, called the morphogenetic phase MM of M. Figure 4 shows examples of
h- and m-components in simple configuration spaces.

Based on the concept of h-components, two biological concepts, adulthood and injury,
can now be defined precisely. An adult individual in M is one that has reached the homeo-
static component MH. An injury to a morphogenetic system M is a transition of the system
given by an ordered pair of configurations (x, y) such that y cannot be obtained from x by
a valid application of any one rule of the system M, i.e., caused by unprescribed events
outside the system. The degree (or severity) of the injury is the undirected graph-theoretic
distance between x and y in M*, i.e., the minimum number of arcs along immediate suc-
cessors necessary to reach y from x. It is observed that an injury may not always mean the
destruction of a part of the system by an external agent, but it may be also an “irregular”
attachment or addition to it that could not be added by a single rule application. An
injury could even force a transition of the system to a state outside its configuration space.
However, the definition implies that no such injury is sustainable, as the system can then
never return to the same h-component.

An injury (x, y) is sustainable if both x and y belong to the same h-component, i.e., the
system would have reached that configuration from a similar development from the injured
state anyway. The system is self-healing (of degree m, respectively) if and only if it can
sustain a random injury (of degree at most m, respectively) to any homeostatic node with
probability of at least 0.5.

These definitions are not only intuitively meaningful, but also can be used to deduce
logically necessary properties of self-healing that are inescapable and much more precisely
quantifiable, as shown next.

3.2.2. Self-Healing Properties of Mbac

These general definitions enable inquiries about self-healing properties of an M system.
For example, the system M0 in [18] is not completely self-healing (of any degree), even if
restricting its computation to a single cycle of a process analogous to mitosis. Although
the growth of its tiles and cell formation is deterministic, the mitosis process is not, as it
is controlled by randomly distributed floating objects, and hence it can produce different
results in different runs. Therefore, each mitosis creates two or more h-components of
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a comparable size, plus there are nodes of the morphogenetic phase MM preceding h-
components in the computation graph. Nevertheless, M0 is still self-healing to degree 10.

On the other hand, general properties of self-healing for arbitrary M systems can be
established, as illustrated by the following proposition strengthening a result in [18].

Proposition 1. Every M system with a dominating h-component that occupies at least 71% of all
the nodes in its configuration space is self-healing of any degree.

This statement can be verified as follows. Any randomly chosen homeostatic node
belongs to the dominating component with a probability of at least 0.71 (because of the
ratio of nodes in the component to all nodes in the graph). Any injury to that node will
lead the system to the same component with the same probability. Hence the probability
of conjunction of these two independent events, i.e., a random injury of any degree to a
homeostatic node resulting in the same h-component, is larger than 0.712 > 0.5. Hence
the system is self-healing of any degree (actually, the necessary condition could be further
elaborated, depending on the number and size of h-components of the M system). This
argument also illustrates that, as defined, self-healing is a structural property of the system,
not really depending on a specific configuration, but rather on the global dynamics (the
computation graph) driving the overall behavior of the model.

It is clear that most M systems, as it happens with most living systems, are vulnerable
to certain critical injuries that they cannot heal, while they may be quite robust to other
kinds of injuries. It may be typical that each such system can sustain, with a reasonable
probability of survival, certain injuries, as illustrated in [24] for the M system M0 simulating
division of eukaryotic cells controlled by the growth of a cytoskeleton. Here we extend
this study to the case of the self-healing M system Mbac described next, which simulates
septum-controlled growth of prokaryotic cells.

In a set of experiments, adult individuals generated by Mbac were subjected to a
random number of injuries, including deletion of one or more tiles of several different
types from a cell, deletion of a tile in a membrane, and/or consequent deletion of protions
placed on it, which caused intracellular communication to slow down. The injuries were
inflicted at random times to randomly chosen parts, prior to division with a septum. Each
experiment was run 100 times with the amount of nutrient supplied unlimited in all cases.
Figure 5 shows the probability that the cell will sustain those injuries, i.e., still reach a
homeostatic stage. The probability drops below 0.50 past 40 or so injuries. To relate these
results to laboratory data, it is worth pointing out that the bactericidal mechanism of
many antibiotics is based on attacking selected sites on bacterial membranes. This effect
is modeled here by “injuries” to membrane tiles. For instance, the results and graphs of
an E. coli population decay under the effect of increasing concentration of several types
of antibiotics (as reported in [45], Figure 1), show remarkable similarity to the results in
Figure 5.

In a second set of experiments on robustness, an adult individual model of an E. coli
cell generated by Mbac was subjected to a number of simultaneous one-time injuries to
randomly chosen parts of the cell, all inflicted at the same time and just before cell division.
The experiment was repeated 100 times with the amount of nutrient supplied unlimited
in all cases. In the cases when the injuries were sustained, i.e., the cell recovered, the
generation time can be compared to the time it would have taken the same individual to
continue to grow without injuries. The results are shown in Figure 6. It turns out that at
about 23 injuries, the number of successful recoveries out of 100 experiments was already
quite small, which resulted in fluctuating values for about x = 24 injuries. For values x ≥ 27,
the cell never recovered. Likewise, Figure 7 shows the probability of recovery with the
number of simultaneous random injuries (of any kind) to any of 34 components in an adult
E. coli individual cell model.
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Figure 7. Relative time to recovery of Mbac grown individuals. The x-axis shows the number of
injuries (of any kind) and the y-axis shows the ratio of the recovery generation time relative to the
normal generation time without injuries in order to reach adulthood. The y-values are averages over
100 runs in the experiment.

Finally, similar results were obtained (but not presented here) in experiments per-
formed for variations of the Mbac model simulating bacteria with doubling time for the
other two species of bacteria shown in Table 1, as described above.

4. Discussion

This work presents a family of M system models Mbac capable of assembling certain
membrane structures from a small number of geometric elements, including tiles, protions,
and small objects by interacting through rules prescribed a priori. Each of these elements
has specific properties stipulating how it interacts with the different elements of the system
in close proximity, including itself. These dynamical structures are capable of replicating
through the formation of a septum-like wall, despite the fact that none of that was explicitly
“programmed” in the interactions. Remarkably, their growth profile closely resembles
that observed in different kinds of live bacteria, obtained by adjusting some parameters
in the model. Furthermore, the behavior of the resulting population of structures at the
macro-level, such as the doubling time of the simulated bacteria, matches very precisely
those of three different species of bacteria.

More generally, M systems are a fusion of well-known membrane/P-systems [19] and
self-assembly models [23,24]. They are enhanced also by taking into account physically rel-
evant features such as geometric shape and location of their components, hitherto ignored
in most mathematical and computational models, but implicit and important for actual
biological organisms. M systems make use of objects that abstract certain biological and
chemical objects and their properties, such as ions, proteins, and traffic across membranes
channels (such as Ca2+ channels). These features enable self-assembly of simulated mem-
branes capable of trafficking objects between the environment and the regions of the space
on each side of the membrane. The function and dynamics of these objects and membranes
are solely based on physically plausible rules of local interaction akin to catalytic reactions
and protein trafficking, but more abstract in nature. Therefore, these structures exhibit some
degree of physical and biological realism, including nondeterministic operation, while
being computationally realistic, i.e., amenable to implementation by simulation in silico
within reasonable times.

The Mbac model can also exhibit emergent properties of bacteria to the point that it
allows estimation of the actual behavior of the corresponding living organism’s cells at the
macro-level, despite the fact that these properties are nowhere explicitly specified or enforced in
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the specification of the model or its components. These properties include self-controlled
growth, division of individual structures, and the generation of a population with a growth
kinetics close to that of live bacterial populations. Another property of these structures is
that the same model also exhibits self-healing properties when subjected to unexpected
interactions with external agents (e.g., akin to antibiotics) in the environment. As such, the
models are unique in the sense that a single model exhibits all of these properties that can
only be obtained one at a time with different models.

Furthermore, Mbac consists of only 20 or so rules of interaction among three kinds
of constitutive objects such as tiles and protein-like (protion) elements. Also of interest is
the fact that the information necessary for the assembly and division of Mbac simulated
bacterial membranes is not specified by the information content of a specialized element,
such as DNA in actual bacteria, but that it emerges dynamically from the properties of the
Mbac building blocks and of their rules of interaction.

5. Conclusions

At a higher level, these results demonstrate that M systems provide a framework to
simulate in a more abstract and precise fashion some of the properties of living systems and
to explore and quantify their logical relationships, such as the life cycle and their resilience
in response to injuries inflicted by their environment. For example, they show that self-
assembly and interactions of living organisms with their environments are important for
self-healing and that these properties can be defined and quantified more precisely. Mbac
also revealed that self-healing of the simulated bacteria exhibited an unexpected degree of
complexity and unpredictability that deserves further exploration.

Although biology is still essentially a science of observation and experimentation, the
historical development of other sciences, such as physics and chemistry, shows that they
have benefited from a more theoretical and analytic treatment of their subject matter. The
results in this paper show that M systems have the potential to be useful for identifying
fundamental and general principles and properties governing the morphogenesis of living
organisms from simpler building blocks. Thus, this kind of system might inspire the design
of molecules or proteins with properties similar to those described here for the Mbac system,
and afford a closer examination of their capacity to self-assemble, i.e., the design of some
kind of artificial life in silico or in vitro.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
youtube.com/watch?v=mvBLeUHCfW8. Video: M system model of self-reproduction of eukaryotic
cells. https://www.youtube.com/watch?v=Mu4nY5yzzhQ. Video: Dynamics of M systems for
bacterial growth. https://github.com/mmaverikk/Cytos. Software: The Cytos simulation package
for experiments with M systems.
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