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Abstract

An understanding of bacterial diversity and evolution in any environment requires knowledge of phenotypic diversity. In
this study, the underlying factors leading to phenotypic clustering were analyzed and interpreted using a novel approach
based on a four-tiered graph. Bacterial isolates were organized into equivalence classes based on their phenotypic profile.
Likewise, phenotypes were organized in equivalence classes based on the bacteria that manifest them. The linking of these
equivalence classes in a four-tiered graph allowed for a quick visual identification of the phenotypic measurements leading
to the clustering patterns deduced from principal component analyses. For evaluation of the method, we investigated
phenotypic variation in enzyme production and carbon assimilation of members of the genera Pseudomonas and Serratia,
isolated from the Aletsch Glacier in Switzerland. The analysis indicates that the genera isolated produce at least six common
enzymes and can exploit a wide range of carbon resources, though some specialist species within the pseudomonads were
also observed. We further found that pairwise distances between enzyme profiles strongly correlate with distances based on
carbon profiles. However, phenotypic distances weakly correlate with phylogenetic distances. The method developed in this
study facilitates a more comprehensive understanding of phenotypic clustering than what would be deduced from
principal component analysis alone.
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Introduction

For validation of phenotypic diversity and physiological

functions, cultivation and characterization of single isolates is a

necessary and complementary approach to community assays

[1,2,3]. Furthermore, phenotypic analysis could serve as an aid in

determining the focus of subsequent genetic studies. One possible

way to obtain phenotypic profiles is through characterization tests

such as Biolog PM and API ZYM. These methods have been often

used for obtaining the combined metabolic profile of microbial

communities [4,5]. Strain-by-strain analysis of a community using

such tests is much rarer. Since isolates can display different

profiles, this procedure involves the creation of high-dimensional

data, which is typically difficult to analyze. The analysis becomes

more difficult as the number of strains increases, hence limiting the

size of data sets that can be handled. In order to render the

analysis of such data possible, statistical methods that reduce the

dimensionality of the data set are often used, such as Principal

Component Analysis (PCA) [6]. PCA allows to group correlated

variables associated with a set of entities (here, bacterial isolates)

together into factors, which are thought to reflect the latent

processes from which the correlations arise. However, PCA

provides no easy way to understand what these processes are,

and effectively to understand where the grouping between isolates

originates.

Our study represents a basic investigation into phenotypic traits

and phylogenetic diversity of bacteria (members of two genera:

Pseudomonas and Serratia) isolated from meltwater and mud of the

Aletsch Glacier. There is a paucity of information concerning the

characteristics of individual strains in extreme environments, and

few studies on the phenotypic diversity of cultivable bacteria in

glacial surfaces are available [7,8].

The main objective was to explore phenotypic characteristics of

tested bacterial isolates with respect to carbon utilization and

enzyme profile, and to better interpret the physiological basis

leading to clustering patterns. We developed and verified a novel

approach based on a four-tiered graph which improves on the

multivariate statistical methods traditionally used in such context.

Materials and Methods

Sampling Sites
In September 2008, glacial meltwater, water and mud samples

were collected at two sampling sites on the Aletsch Glacier leading

to a total of 8 samples (for description and details see Text S1:

Supporting Materials and Methods and Figure A of Text S1). The

samples were harbored in 50 mL plastic sterile tubes (VWR
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International AG, Dietikon) (ca 5 g –40 g of material) and kept at

4uC in the lab prior to isolation of bacteria.

Isolation and Cultivation of Bacteria
Samples were diluted by K with 0.5% NaCl and vortexed for at

least 1 minute. An aliquot of each sample (100 mL) was decimally

diluted in 0.5% NaCl and placed on Yeast extract Tryptone (YT)

and Luria-Bertani (LB) agar plates. These plates were incubated at

20uC and the colony forming units (CFU) were counted after three

days. Additionally, colonies with visibly different morphologies

and/or color were picked and re-inoculated on YT agar plates to

check for purity. Finally each colony was grown in 150 mL YT

medium in 96-well microtiter plate at 20uC for three days. From

each sample, 96 isolates were selected (hence totaling 768 isolates

for the study) and stored at 280uC in a 20% glycerol solution.

DNA Extraction and PCR Amplification
DNA was extracted using the heat –cold procedure in lysis

buffer [9] (for procedure details see Text S1: Supporting Materials

and Methods). The amplification of 16S rRNA gene was

performed using two universal primers 27F and 1492R [10] and

carried out using Techne TC 512 thermal cycler (Barloworld

Scientific ltd, United Kingdom). More details are given in the

supporting information. The length of the PCR product was

verified by electrophoresis in 0.8% agarose in TAE buffer.

Isolates for further analysis were selected using Restriction

fragment length polymorphism (RFLP) (for details see Text S1:

Supporting Materials and Methods) according to different RFLP

pattern. PCR products of the selected ones were sequenced both

in-house (ABI 3730 Sequencer) and an external facility (Micro-

synth, Balgach, Switzerland).

The sequences were assembled and edited manually using

FinchTV 1.4.0. and Geneious Pro 3.6.2 software.

Phylogenetic Analysis
In order to determine phylogenetic affiliation between a subset

of 118 selected isolates, 16S rRNA gene sequences were subjected

to a Blast search in the GenBank database using the National

Center for Biotechnology Information web server (http://www.

ncbi.nlm.nih.gov). To produce a dataset for phylogenetic analysis,

sequences from this study were aligned with close relatives

retrieved from GenBank. The multiple data alignment was carried

out with ClustalW [11], and phylogenetic inference was done

using the software package MEGA v4.0.2 [12]. Details on

phylogenetic tree algorithms and evolutionary distance methods

are given in supporting information.

Enzymatic Activity and Carbon Source Assessment
The enzymatic activity of 33 Gram-negative isolates, three

Gram-positive isolates and two independent representatives of the

genera Pseudomonas and Serratia was studied using API ZYM test

(Biomerieux, France) following the manufacturer’s instructions.

The carbon utilization profile of the 33 isolated Gram-negative

bacteria was assessed with Biolog Phenotype MicroarrayTM plate 1

(PM1) according to the manufacturer’s instructions. The plates

were briefly incubated at 30uC in the dark and inspected for

carbon assimilation after a 1-day incubation.

Measures of Phenotypic Distance and Statistical Analysis
The results of carbon source utilization (Biolog PM1, see

supporting information Tables S1 A, B) were both codified in

binary (growth/no growth) and continuous form (OD measure-

ments). For enzymatic activities (API ZYM), the results were

codified in binary form.

Pairwise distances between enzyme or carbon assimilation

profiles were calculated using a normalized Hamming distance.

The latter distance is defined as the number of positions at which

two binary strings differ, divided by the length of the string. In this

case, it corresponds to the number of enzymes or carbon,

respectively, for which two strains are different, divided by the

maximum possible difference. For PCA analysis of the carbon data

based on Hamming distances, continuous data were transformed

to binary form by applying a threshold representing 10% of the

maximal OD measurement determined for the whole dataset. This

threshold was chosen in order to select for unequivocal growth

signals and hence to avoid false positives. Accordingly, OD values

above 0.196 were codified as ‘‘10, whereas lower values were

represented by ‘‘00.

In order to assess the correlation between datasets (enzyme or

carbon assimilation), we used Pearson’s correlation coefficient.

Both correlation coefficient and significance tests were computed

with the software MATLAB (http://www.mathworks.com/).

For the purpose of comparison to genetic relatedness, phyloge-

netic data were handled with the software MEGA v4.0.2, which

implements the composition distance. Variation in enzyme

profiles, carbon assimilation profiles, and the significance of

genetic distances between the two chosen genera (Pseudomonas and

Serratia) was determined using a Wilcoxon test. A prior test for

normality (Kolmogorov-Smirnov test) showed that the data was

not normally distributed (p,0.05).

Four-tiered Graph
Motivation and principle. Principal Component analysis

(PCA) allows to extract from a given dataset a limited number of

uncorrelated latent variables (principal components) which opti-

mally express a large part of the data’s variance in a low- (generally

two- or three-) dimensional space. The correlation between two

variables is often expressed by the Pearson correlation coefficient

(‘‘Pearson’s r’’), which provides a standardized estimate of how two

variables covary. However, when one is interested in quantifying

distances between vectors composed of binary variables, more

straightforward metrics such as the Hamming distance can be

used. For this reason, the matrices from which we computed the

PCA in this study were based on a measure of similarity (expressed

as one minus the normalized Hamming distance) between

observations rather than the less explicit Pearson correlation

coefficient (Figure 1).

Even though canonical analysis methods such as PCA are useful

to reveal groups of similar observations that would otherwise

remain hidden in high-dimensional data, they do not tell how

these groups are constituted by the procedure. We developed a

graphical method that summarizes the information given by a

PCA on a network layout: it represents in a visually-clear form the

relation between strain isolates grouped into phenotypic clusters,

and the resources (consumed carbon sources or produced

enzymes) that make up their phenotypic profile. The result is a

four-tiered graph whose outermost layers comprise strain isolates

on one side, and the constituents of their phenotypic profile on the

other (carbon substrates/enzymes). Both strains and resources are

grouped into equivalence classes, where for example two strains

that consume the same carbons belong to the same bacterial

equivalence class, and conversely two carbon sources that are

consumed by the same strains are classified in the same resource

equivalence class. A similar classification applies to enzyme

production.

A Four-Tiered Graph for Clustering of Bacteria
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Method. In order to produce the four-tiered graph, we start

by computing the equivalence classes for strain isolates on one

hand, and carbon sources/enzymes on the other. Equivalence

classes group together strains with the same phenotypic profile on

one hand, and resources (carbon/enzyme) with the same

utilization profile on the other hand. This reduces the number

of items to display and improves the clarity of the visualization. As

our focus is on the similarity between strains, we then organize the

bacterial equivalence classes according to their coefficients in the

first principal component of a PCA on their Hamming similarity

matrix. As with any other PCA-based method, this gives a visual

representation of the phenotypic clustering between strain isolates.

When plotting the bacterial equivalence classes along a vertical

line according to their coordinate on the PC1 axis, for clarity we

introduce a small spacing between the classes that would otherwise

overlap, whilst keeping the distances between non-overlapping

classes unchanged. This allows for instant visual identification of

groups of phenotypically similar strains. We then proceed to plot

the resource equivalence classes on another vertical line neigh-

bouring the one holding the bacterial classes. The resource classes

are placed along this line at the barycenter of the bacterial classes

to which they relate. This is completed by a simple graph layout

illustrating the link between bacterial and resource classes. For

example, an equivalence class of bacteria X has a link to an

equivalence class of enzymes Y if all strains in class X produce the

enzymes in class Y. The number of outgoing or incoming

connections to each class is also shown next to it. Finally, each

class is linked to the sequence of bacterial isolates or carbon

sources/enzymes that it includes (more information in Figures 1

and 2 and their caption).

Algorithm
The algorithm is written in MATLAB code and available to

download, along with the data files (illustrated in Figures 3 and 4)

used for this article, in the Supporting information section (the

code has been commented and should be easy to follow for regular

MATLAB users; we have also provided a sample data file that can

be used to generate the graph of Fig. 4A). The procedure is the

following: first, names of strains and resources (carbon sources/

enzymes) and their binary relation are extracted from a plain text

file containing comma-separated values. In a second step, strains

and resources are grouped into equivalence classes and their

contents and profiles listed. Then, all strains, strain equivalence

classes, resource equivalence classes and resources are ordered in a

directed association matrix which is used by the layout algorithm.

Finally, the coordinates of all strains/classes/resources, or nodes of

the graph, are calculated as per the method described above and

the output is written to the open source GraphML file format

(http://graphml.graphdrawing.org/) for maximum compatibility.

The result can be visualized and manipulated using a number of

tools supporting the GraphML format, including the free editor

yEd (http://www.yworks.com/en/products_yed_about.html),

Figure 1. Enzyme profile analysis. (A) Principal component analysis based on Hamming distance of enzymatic profiles determined using API ZYM
strips. The first two principal components explain 87% of the variance of the data. (B) Four-tiered graph linking bacteria and enzyme profiles. Links are
to be followed from left to right. Bacteria showing similar enzymatic profiles (E1, E2, E3 E4, E5 and E6) group together. The number of enzymes
produced by each equivalence class of bacteria and the number of bacteria classes that produce a certain enzyme are indicated at the right of the
corresponding bacterial equivalence class and at the left of the corresponding enzyme equivalence class, respectively. The vertical positions of the
bacterial classes correspond to their coefficient in the first principal component of Figure 1A, though vertically-overlapping classes are separated
from each other by a small distance to allow for an easy reading of the graph. Distances between the non-overlapping classes are preserved.
doi:10.1371/journal.pone.0065059.g001

A Four-Tiered Graph for Clustering of Bacteria
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which we used to produce the figures of the present article.

Whereas the figures presented here are static, the relations

between strains, classes and resources can be visualized from the

GraphML file in a dynamic fashion, allowing for example to

highlight the relation to and from an equivalence class of strains or

resources by clicking on it.

Nucleotide Sequence Accession Numbers
The 36 nucleotide sequences of partial 16S rRNA genes of

strains tested phenotypically in this study have been deposited in

GenBank with accession numbers GU939679 to GU939714.

Results

From a total of 768 single isolates selected - from different

environmental subsites (96 isolates per subsite, Figure Ac of Text

S1), 118 isolates were chosen according to different RFLP profiles

for sequencing. Most (85%) of the sequenced isolates belong to

genera Pseudomonas and Serratia (Figure Ac of Text S1) and between

the two genera, higher phenotypic variation was observed in

Pseudomonas than in Serratia (supporting Figure B of Text S1). The

phylogenetic relationship of the 33 Gram-negative isolates used to

test our method can be seen in supporting Figure C of Text S1.

Enzyme Activity and Carbon Assimilation
Enzyme activity data of several samples, in our case different

isolates, are generally analyzed by PCA. The first and second

principal components of a PCA analysis of the relationship

between bacteria and their ability to produce active enzymes

explained together 87% of the variance (80% and 7%, respec-

tively) in the data (Figure 1A). From this analysis, researchers gain

exclusively information on the clustering pattern. In this respect

we observed that Pseudomonas spp. and Serratia spp. occupy distinct,

though sometimes overlapping, ecological niches or ecotypes

(Figure 1A). More information can be gained out of these kinds of

datasets, for example why bacteria group together and/or which

variable is present/absent in different classes.

In order to understand the underlying phenotypic profiles that

lead to the clusters produced by PCA, bacterial and enzymatic

equivalence classes were therefore linked together in a four-tiered

graph. This new approach allow for a clearer overview of the

differences and similarities between enzyme profiles of different

bacterial groups (Figures 1B and 3). Additionally, functional classes

can be derived from this analysis. In group E1, there are two

bacterial equivalence classes belonging to the genus Pseudomonas. In

group E2, there are two bacterial classes with Pseudomonas and one

class with Serratia and Bacillus. In group E3, there are seven classes

composed of a mix of two Pseudomonas spp., two Yersinia spp., one

Figure 2. Carbon assimilation profile analysis. (A) Principal component analysis based on Hamming distance of carbon assimilation profiles
measured with Biolog PM1. The first two principal components explain 84% of the variance of the data. (B) Four-tiered graph linking bacteria and
carbon assimilation profiles. Bacteria showing similar carbon assimilation profiles group together (C1, C2, C3, C4, C5 and C6). This graph is
constructed the same way as in Figure 1B. Here no two bacteria show identical profiles, hence they form single-member equivalence classes (each
strain is linked to a unique node in the isolate equivalence class layer, second from the left). The vertical positions of the bacteria correspond to their
coefficient in the first principal component of Figure 2A, though vertically-overlapping bacteria are separated from each other by a small distance.
Distances between the non-overlapping classes are preserved.
doi:10.1371/journal.pone.0065059.g002

A Four-Tiered Graph for Clustering of Bacteria
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Viridibacillus sp. and five Serratia spp. In the fourth PCA group (E4),

there are five homogenous classes with Pseudomonas sp. and one

with Aeromonas sp. In the fifth (E5) and sixth (E6) group, there is

one representative of Exiguobacterium sp. and one of Pseudomonas sp.,

respectively. It can be observed that this approach allows us to

discover the causes of the grouping. For example, the E4 group

(Figure 1B) composed of Pseudomonas sp. isolates exhibited a lower

number of enzymes, and in comparison with the other groups, did

not produce b-glucuronidase, a-glucosidase, b-glucosidase, N-

acetyl-b-glucosaminidase, trypsin, and b-galactosidase (with one

exception for the latter: GRPAg9). Groups E1, E2 and E3 are the

groups that on average produced more enzymes than the other

groups. Additionally, five enzymes were produced by all strains:

alkaline phosphatase, esterase (C4), esterase lipase (C8), acid

phosphatase, and naphthol-AS-BI-phosphohydrolase. Further-

more, leucine arylamidase was produced by 35 out of 36 strains.

The enzyme activity of alpha-chymotrypsin, alpha-galactosidase,

alpha-mannosidase and alpha-fucosidase could not be detected for

any strain. 25 isolates (69% of strains) produced more than eight

enzymes, whereas the remaining 11 bacteria (31%) produced eight

or less enzymes.

The method presented here can also be applied to datasets with

more variables. Here, we report the example of carbon

assimilation profiles done with BIOLOG plates, where 95

variables were present. Similarly to the enzymes, the PCA analyses

of the carbon utilization profiles indicated that the first two

principal components could explain 84% of variance in the data

(74% PC1 and 8% PC2). Additionally, six functional groups could

be distinguished (Figure 2A). Group C1 was composed by

Pseudomonas spp. and almost all Serratia spp. isolates. The other

groups (C2, C3, C4, C5 and C6) were mainly composed of

Pseudomonas spp. For this dataset too, bacteria and carbon

assimilation profiles were linked in a four-tiered graph in order

to understand the underlying phenotypic profiles that led to the

PCA clusters (Figure 2B). Differently to the enzymes, all bacterial

equivalence classes had only one member, indicating that all

profiles differed by at least one carbon source. An increase in the

number of variables studied will create this outcome in most cases:

as no two strains present then the same profile, the graph includes

many line crossings and becomes hard to read. This is an

argument in favor of limiting the number of variables used to

characterize strain isolates with a four-tiered graph. However,

opening the graph with adequate software (e.g. yEd) makes the

interpretation easier since each profile can be highlighted

separately, which improves the readability of the figure when

compared to a static layout (such as those presented in this article).

Additionally, Figure 2 shows that (i) four substrates were not

used by any of the bacteria: glucuronamide, D-psicose, glyoxylic

acid and glycolic acid. (ii) For a subset of 13 of the 95 carbon

sources, all isolates were capable of metabolizing them after 24 h.

These compounds (supporting Table A of Text S1) were

predominantly amino acids (38.5%) and carboxylic acids

(38.5%). Seven substrates (supporting Table B of Text S1), which

were mostly comprised of carboxylic acids, were used by less than

10% of the bacteria selected. (iii) The total number of substrates

used range from a minimum of 25 (26% of total number of

substrates) metabolized by pseudomonad (GCDAg5), to a

maximum of 78 substrates (82% of the total number of substrates)

by the Serratia sp. GSMc1 isolate. (iv) According to the number of

C-resources metabolized, the isolated bacteria can be divided into

mainly six groups: one group (C1) with 22 bacteria using between

60 and 78 substrates, the second group (C2) with one bacterium

using 65 substrates, the third group (C3) with six bacteria using on

average 50 substrates, the forth group (C4) with two bacteria using

on average 42 substrates, the fifth group (C5) with four bacteria

using 39 substrates on average, and the sixth group (C6) with only

one member (GCDAg5) metabolizing 25 substrates. (v) Among the

Serratia spp., the average number of resources metabolized was 72,

a value higher than the average of 52 for Pseudomonas spp. This

latter group exhibits a broader range of values (25–77).

Correlation between Enzyme Activity, Carbon Source
Usage and Phylogeny

An evaluation of a linear relationship between variables was

made using Pearson’s correlation coefficient. Enzyme distance

strongly correlated with the carbon distance (corr. coef. r= 0.75,

p,0.001; supporting Figure Da of Text S1) and both in turn

weakly correlated to the phylogenetic distance (corr. coef. r

Figure 3. Overview of enzymatic profiles for all strains. Profile of
the strains presented in Figure 1 (four-tiered graph), listing the activity
of the different enzymes (API ZYM strip) in each isolate or equivalent
class of bacterial isolates. The ordering of the strains and the enzymes in
the table was modified to match the graph in Figure 1.
doi:10.1371/journal.pone.0065059.g003

A Four-Tiered Graph for Clustering of Bacteria
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ranging from 0.30 to 0.35, p,0.001; supporting Figure Db and c

of Text S1).

Discussion

In this study, we investigated phenotypic diversification of two

genera obtained from the same environment by means of a novel

graphical tool, a four-tiered graph of interactions between

bacterial isolates and phenotypic characteristics (variables). The

method is proposed as a complementary tool to classical PCA

analysis, as it complements traditional methods by adding

information as to ‘‘why’’ isolates cluster together. As the method

is based on concepts from graph theory, it is intuitive, easy to use,

and can scale up to handle large datasets if necessary. Beside the

static output file (typically a PDF document), a dynamical

visualization with dedicated software (e.g. yEd) helps in the

interpretation of data, especially if a large data set is analyzed. A

node corresponding to an equivalence class (for example of

isolates) can be graphically highlighted, making it possible to follow

its phenotypic profile and understand the clustering observed. In

comparison to results given by tables, the outcome of the four-

tiered graph is clearer and offers a bilateral reading giving

complementary information. In our case, looking at the left-hand

side (strain isolates), information on group composition can be

obtained, indicating for example if isolates from the same genera

are clustered together or mixed with other genera (possible

explanation: convergent evolution or/and gene exchange). A look

at the resource side (right-hand side) indicates which variables (in

our case carbons or enzymes) are commonly used, which ones are

not and which ones are responsible for the clustering.

Depending on the research question, it might be helpful to select

only for relevant variables with respect to the studied environ-

ments. Not only will this reduce the complexity of the graph, but it

also will improve the outcome of the method by getting rid of

irrelevant variables acting as a noise source on the clustering

patterns, thus allowing for a better interpretation of the results.

Finally, the source code from our implementation of the method is

available to download, giving other researchers the possibility to

use and adapt it according to their needs and expectations.

It should be noted that use can be made of the four-tiered graph

in any context where generic entities are characterized by a binary

profile. Applications of the technique thus reach well beyond

microbiology, as one could think of using it to visually interpret

transformations of sequencing data (where organisms are charac-

terized by the presence or absence of specific genes), or even in a

social network context, where clusters of similarly-minded

individuals can be compared by their common preference for a

given network feature (e.g., Facebook friends and page likes). The

introduction of our method in this paper is a step toward the

generalization of graph visualization techniques in the exploration

of complex data sets.

In the next paragraphs we will discuss the results of the Aletsch

isolates data set used to validate the four-tiered graph method.

This provides an example of discussion points that researchers can

address using the new tool. The genera cultivated and identified

from the Aletsch sampling sites are known to be widely spread in

cold environments, though their presence and abundance varies

according to the sampling sites and the detection methods used.

Gram-negative bacteria such as Pseudomonas, Serratia, Yersinia and/

or Janthinobacterium are found to be broadly predominant in

glaciers in the European Alps [13,14], in Asia [15,16,17] and in

some Antarctic or Arctic glaciers [18,19,20]. Concerning other

studies, high variation in microbial biomass and community

structure have been revealed by comparison of geographically

distinct glaciers worldwide [15,18,19,21,22,23,24,25]. This varia-

tion is highly influenced by climatic and environmental factors,

including geographic location [26,27], wind direction and speed,

light intensity, precipitation (snow and rain), and availability of

nutrients and liquid water [21,28,29]. Changes in bacterial

assemblages were also investigated between and within different

habitats (snow, slush, and lake water) [30]. Additionally, surveys

concerning microbial communities on a broad geographical scale

indicate that microbes may be divided into ubiquitous and

endemic groups; the former are able to establish under a broad

Figure 4. Overview of carbon assimilation profiles for all strains. Profile of the strains presented in Figure 2 (four-tiered graph), listing the
carbon substrates (BIOLOG 1) used by each isolate or equivalent class of bacterial isolates. The ordering of strains and the carbon substrates in the
table was modified to match the graph in Figure 2.
doi:10.1371/journal.pone.0065059.g004

A Four-Tiered Graph for Clustering of Bacteria
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range of environmental conditions, the latter are more specifically

adapted to the unique characteristics of the site [22].

Several interesting observations arose from our study. Bacteria

isolated from the Aletsch glacier could be classified into several

categories, whether using enzymatic activity (API ZYM strip) or

carbon assimilation (Biolog PM1) tests. With some exceptions, the

different clusters identified in both API ZYM and Biolog tests are

composed of mostly the same members. Accordingly, a significant

positive correlation for distances between enzyme profiles and

carbon assimilation profiles (supporting Figure Da of Text S1,

corr. coef. r= 0.75, p,0.001) indicated that clustering based on

enzymes or carbon sources will be quite similar.

An examination of the clusters observed in the phenotypic

analyses indicates that there are groups within which members of

different genera have similar phenotypic profiles such as E2 and

E3 for the enzyme profiles (Figure 1), and group C1 for the carbon

source profiles (Figure 2). A possible explanation could be

convergent evolution of separate lineages. Gene exchange between

the two groups is also a possibility. Nonetheless it is noteworthy

that we did not find a case where Pseudomonas and Serratia were in

the same equivalence class. A comparison between genomes from

representative clusters could potentially resolve some of the

questions with regard to the origin of these convergent profiles.

The enzymes (alkaline phosphatase, esterase (C4), esterase lipase

(C8), acid phosphatase, naphthol-AS-BI-phosphohydrolase and

leucine arylamidase) produced by all Pseudomonas and Serratia are

responsible for the hydrolysis of molecules that can subsequently

be transported into the cell. Additionally, the presence of these

enzymes was reported in several other studies such as a microbial

community on a Glacier [31], in cryoconites in Antarctica [32], in

marine beach sediments [33], and at the air-water interface of an

estuarine lake [34]. This overall presence suggests that these

enzymes are potentially core enzymes and essential for the survival

of the organisms.

The C-assimilation results demonstrated that the isolates were

capable of exploiting several different types of carbohydrates,

amino acids, and carboxylic acids, suggesting the presence of

metabolically diverse heterotrophic bacteria on the Aletsch glacier.

According to the classification by Liu et al [8], where bacteria

isolated from Mount Everest were classified as versatile in

utilization of carbon substrates, the isolated bacteria in our study

tend to be generalists rather than specialists relying on very few

substrates (with the exception of Pseudomonas GCDAg5, which

could only use 25 of the carbon sources). This is different to the

results of Foreman et al. [32], who observed that microbes within

cryoconites were capable of metabolizing a maximum of 17

substrates, supporting the idea of specialized bacteria. Given that

no two carbon assimilation profiles were identical, results

suggested that each isolate could in principle occupy a unique

niche and therefore not necessarily always compete with others for

the same critical resource. This diversification in terms of

assimilation could be the result of the principle of competitive

exclusion as suggested by Gause [35]. Nonetheless, it should be

noted that our results are based on a predetermined sampling of

metabolites. However, the assay may not necessarily reflect the

real spectrum and diversity of resources the bacteria are exposed

to in the environment. Moreover, our isolates may not represent

active bacteria or could be just dormant in situ. Additionally, as we

already mentioned in the introduction, there is a paucity of

information concerning the characteristics of individual strains in

extreme environments, and only few studies on the phenotypic

diversity of cultivable bacteria in glacial surfaces are available

[7,8]; the tested cryophilic genera tested in these studies were

different to ours. Therefore, expressing our results in the context of

previously reported studies of glacial microbiology may be more

speculative than sound. Concerning the Swiss Alps, previously

unexplored niches for microbial life have been discovered beneath

glaciers [36]. Knowledge of this environment is also derived from

studies on bacterial succession in glacial forefield soil [37,38,39].

However not much information on cultivable bacteria inhabiting

meltwater derived from Swiss Glaciers are available. The

aforementioned studies have been able to recover viable and

diverse cultivable bacteria having different survival strategies. Up

to now, not much is known about physiological functions such as

utilization of carbon sources and enzymatic production of glacial

bacteria, which could represent a key to their survival and growth

ability in cold environments such as glaciers, snow and ice.

Weak positive correlations between phenotypic signals (enzy-

matic activity and carbon assimilation) and phylogeny based on

16S rRNA gene sequences were observed. This weak correlation

can be explained by the fact that Serratia spp. isolates have several

phenotypic similarities to Pseudomonas and hence overlap in their

profile (possibly due to convergent evolution). Moreover, Pseudo-

monas spp. isolates are very variable in terms of their phenotypic

profiles; in our analysis we can distinguish between two main

groups which are far from each other. Additionally, phylogenet-

ically similar Serratia isolates (based on the 16S rRNA gene) can still

exhibit some variation in enzyme activity and carbon assimilation

profiles (e.g., BLa11, MGDc11 and GDe2). Likewise, a pattern of

phenotypic diversification was also observed in a set of phyloge-

netically similar Pseudomonas strains (e.g., GCDAc9, GCDBb1,

GCDBb4, GRPAg9 and MGDh5). These results could indicate

phenotypic plasticity and/or higher genetic diversity in loci other

than the 16S rRNA gene. Furthermore, isolates with the same

enzymatic profile can have different carbon profiles and belong to

different species (e.g., GCDBb4, GCDBh1 and GDb1). The

higher variation in carbon profile than in enzymes is primarily due

to the higher number of carbon sources tested (95 C-substrates) in

comparison to the enzymes (19 enzymes).

Using members of two genera isolated from the Aletsch Glacier

as a case study, we tested a method we developed for

interpretation of phenotypic clustering patterns. The analysis

provides a heuristic tool for understanding the similarities and

differences between the phenotypic profiles of different isolates. An

investigation of the relation between phenotype and phylogenetic

signals in this study suggests that bacteria that are phylogenetically

distant can exhibit similar phenotypic profiles when isolated from

the same environment. Hence physiological characterization does

not necessarily help distinguish between different genera of

bacteria isolated from the same environment. Likewise, it also

means that species diversity in an environment does not

necessarily imply phenotypic diversification (see also [2]). These

are important considerations for bacterial identification schemes

based solely on phenotypic profiles. The same considerations also

apply to ecological and evolutionary studies based solely on

sequence-based species diversity profiles.
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