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A robust seizure prediction methodology would enable a “closed-loop” system that
would only activate as impending seizure activity is detected. Such a system would
eliminate ongoing stimulation to the brain, thereby eliminating such side effects as
coughing, hoarseness, voice alteration, and paresthesias (Murphy et al., 1998; Ben-
Menachem, 2001), while preserving overall battery life of the system. The seizure
prediction and detection algorithm uses Phase/Amplitude Lock Values (PLV/ALV) which
calculate the difference of phase and amplitude between electroencephalogram (EEG)
electrodes local and remote to the epileptic event. PLV is used as the seizure prediction
marker and signifies the emergence of abnormal neuronal activations through local
neuron populations. PLV/ALVs are used as seizure detection markers to demarcate the
seizure event, or when the local seizure event has propagated throughout the brain
turning into a grand-mal event. We verify the performance of this methodology against
the “CHB-MIT Scalp EEG Database” which features seizure attributes for testing.
Through this testing, we can demonstrate a high degree of sensivity and precision of
our methodology between pre-ictal and ictal events.
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INTRODUCTION

Seizure prediction based on electroencephalograms (EEG)/intracranial EEG (iEEG) is complicated
by two factors. The first is that preictal and interictal EEG/iEEG patterns across patients vary
substantially. There may be no single generic algorithm that can be applied to all patients and can
achieve high sensitivity (Osorio et al., 1998; Shoeb et al., 2009). The second is that EEG/iEEG is
highly complex and varies over time, and no single measure of EEG/iEEG has yet been predictive
on its own (Mormann et al., 2005, 2007). Therefore, we hypothesize that a patient-specific
classification method based on multiple features extracted from EEG/iEEG will achieve high
sensitivity. Seizure detection analysis includes the testing of pre-ictal (pre-seizure) and seizure
occurrences. The robustness of any seizure prediction algorithm must also take into consideration
inter-ictal events in order to test false detection occurrences through instances where there are no
impending seizures.

Park et al. (2011) propose a patient-specific algorithm for seizure prediction using multiple
features of spectral power from EEG and support vector machine (SVM) classification.
Their patient-specific algorithm for seizure prediction has a sensitivity of 97.5% with total
80 seizure events. Their prediction rate demonstrates that seizures can be predicted by the
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patient-specific approach using linear features of spectral power
and nonlinear classifiers. Gamma frequency bands were the most
discriminating in eight patients, indicating that time differential
preprocessing may reveal spectral changes more indicative of
a preictal event. Time-differential processing using the Hjorth
mobility parameter (Hjorth, 1970) normalizes the power in
each band by measuring its contribution to the total power by
flattening the spectrum, making power in the high frequency
bands similar to that in low frequency bands.

Mormann et al. (2000) reported changes in phase
synchronization between different brain areas before seizure
occurrences. In two reviews of their own work, Le Van Quyen
et al. (2001, 2003) referred to a submitted study including eight
patients with neocortical epilepsy that seemed to confirm these
findings. Chavez et al. (2003) published results using phase
synchronization analysis after band-pass filtering of the EEG
and reported pre-ictal changes in synchronization to occur
predominantly in the beta band. A better performance was
reported for bi- and multi-variate measures (Iasemidis et al.,
2005; Le Van Quyen et al., 2005) whereas Mormann et al. (2005)
observed pre-ictal changes to be locally restricted to specific
channels rather than occurring as a global phenomenon. Their
pre-ictal period was between 4–221 min. According to their
review of seizure detection algorithms, Mormann et al. (2007),
state that if prediction algorithms are optimized using training
data, i.e., pre-ictal data, they should be tested on interictal data.

According to Snyder et al. (2008), seizure prediction
algorithms must perform better than chance. Investigators
address this challenge through a variety of approaches:
comparisons between pre-ictal and interictal states, surrogate
data sets, periodic predictors, and random or pseudo-random
processes (Andrzejak et al., 2003; Chaovalitwongse et al., 2005).
In Snyder’s article, they consider a seizure advisory algorithm
that processes EEG data and produces a binary data classification
of: 1 if preictal, 0 if interictal. Their approach follows the same
interval classification as Winterhalder et al. (2003) and Schelter
et al. (2006), where the preictal interval corresponds to the
seizure prediction horizon (SPH), but they define the seizure
occurrence period (SOP) as the sum of SPH’s as opposed to the
ictal period. The seizure prediction algorithm involves spectral
power feature extraction and patient-specific classification. Their
algorithm analyzed all available channels of cortical potentials
including electrodes placed on and surrounding the seizure
focus, as well as a reference electrode well-separated from the
focus. The EEG signal was band-pass filtered to beta band
(16–32 Hz) using a FIR filter design, with a 5 s sliding
window scheme displaced in 1 s increments. Using kNN’s for
feature classification, their seizure prediction sensivity for four
patients were between 60–100%. One of the key aspects of this
study discusses the performance between seizure and chance
prediction distributions. Their study highlights the idea how far
in advance of seizures the epileptic network becomes ‘‘proictal’’
(i.e., enters a state with a high probability of seizure onset), as
opposed to the algorithm evaluator predefining rigid preictal vs.
non-preictal time windows.

In a study by Cook et al. (2013), 11 patients were implanted
with a seizure prediction device, with a performance estimate

sensitivities ranging from 65 to 100%. Their seizure detection
algorithm was based on an unsupervised learning approach
that identifies significant outliers in features of EEGs that
are associated with seizures (Gardner et al., 2006). Only
electrographic events that were judged by a reviewer to be
associated with clinical manifestations (seizure diary or audio
recordings; i.e., clinically correlated seizures) or those that were
electrographically similar in onset, propagation, and spread to
clinically correlated seizures (i.e., clinical equivalent seizures)
were used to train the algorithm (Cook et al., 2013). False
negatives were measured as preceding seizure activity vs.
randomized activity, and pre-seizure activity had to precede a
seizure by 5 min in order for it to be deemed a true-positive. A
predicted seizure which did not occur within 5 min of a seizure
occurrence would qualify as a true-negative. Their study involves
a stringent criterion for pre-seizure activity which analyzed
seizure activity within a fixed period before the SOP.

Mathematical analysis of the spatiotemporal dynamics found
in EEG recordings of patients with medically intractable epilepsy
have discovered a preictal transition that precedes seizures for
periods on the order of minutes to hours (Niedermeyer, 1987;
Skarda and Freeman, 1987; Martinerie et al., 1998; Schachter and
Saper, 1998; Sackellares et al., 1999, 2000; Tsakalis et al., 2005;
Navarro et al., 2007). Our approach consists of locating the fast
changes of phase and amplitude of the signal, and therefore can
provide a finely tuned method that finds seizures lasting seconds
and interictal markers lasting 1–2 s as opposed to studies that
involve longer term seizure states.

Seizure activity is characterized by recurrent, short-term
electrical discharges of the cerebral cortex that result in
intermittent disturbances of brain function. The state between
seizures, known as interictal behavior, appears to have minor
spiking activity. In seizures of focal onset (e.g., focal seizures
and partial seizures), the anatomical distribution of the interictal
spikes varies, but spikes tend to occur most commonly in the
epileptogenic zone and its connections. During the seizure,
organized, semi-periodic electrical discharges develop in the
epileptogenic zone and spread, within seconds, over widespread
areas of cerebral cortex. Seizure discharges typically last seconds
to minutes and are followed by the normal non-linear, chaotic
neuron firing behavior that is captured through an EEG.
Through mathematical analysis of the spatiotemporal dynamics
found in EEG recordings of patients with medically intractable
epilepsy, researchers have discovered a preictal transition that
precedes seizures for periods on the order of minutes to hours
(Le Van Quyen et al., 2005). This preictal dynamical transition
is characterized by a progressive convergence (entrainment)
of dynamical measures at specific anatomical areas in the
neocortex and hippocampus. Here, we have focused on
looking for quantifiable spatial and temporal shifts in preictal
synchronization far in advance of seizure onset detectable on
the EEG. Because normal EEG is enormously varied, manifesting
qualitative changes depending on behavioral state, it is important
to clearly distinguish preictal changes from all the other interictal
states. We have confirmed that there are prediction markers
found within the interictal state that presage the eventual seizure
state.
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In the presence of random chance that two or more neural
populations would synchronize, there are two fundamental
conditions for these phenomena to occur. There must be
some degree of coupling between the neural populations, and
there must exist at the very least some semi-periodic neural
behavior within one of the coupled neural populations. Therefore
the measurement of phase locking due to pre-seizure and
ongoing seizure behavior must involve an EEG time series
from an epilepsy patient for the prediction and detection
algorithm to be relevant. The following sections demonstrate
the underlying mechanisms of neural synchronization which
separates random synchronization to entrained synchronized
neurological populations.

Network of Coupled Neural Oscillators
Phase synchronization or ‘‘locking’’ between neural populations
does not occur by random chance. Phase synchronization occurs
in the presence of the entrainment of neural populations. In order
to better understand this phenomena, theoretical studies of
phase synchronization of chaotic oscillators (Rosenblum et al.,
1996), can be applied in neuroscience where synchronization
processes are of crucial importance, e.g., for neuro-pathologies
such as epilepsy. Synchronization of two periodic non-identical
oscillators is understood as adjustment of their rhythms, or
appearance of phase locking, due to interaction. Phase locking
is equivalent to the concept of frequency locking, �1–�2, where
�1,2 =<ϕ1,2>, and brackets mean time averaging.ϕ1,2 are phases
of two oscillators, and ϕn,m is the phase difference, where ϕn,m(t)
= ϕ1(t) ϕ2(t). All phases are divided by 2π for normalization,
and ϕn,m are not defined on the circle [0, 1] but on the whole
real line (Tass et al., 1998). The phase component of the signal
is calculated via the arctan(imaginary/real) part of the signal via
Hilbert transformations (Freeman, 1986).

Phase synchronizations are governed by the amount of noise
within the oscillators, and the coupling strength between the
oscillators. With noise and a relatively small coupling strength,
the oscillators approach unlocked orbits over a time series.
As coupling between the chaotic oscillators increase, phase
synchronizations form rapidly and de-synchronize over time.
If stronger noise is added, phase slips occur more frequently,
and synchronization happens less often over the same length of
time. Therefore, neural population’s exhibit a degree of noise
that maintains independent basal activity, yet neural population
synchronization can occur if a dominant waveform form emerges
from a local neural area (Kozma and Freeman, 2003; Kozma
et al., 2007; Myers and Kozma, 2007). If there exists a strong
coupling between neural populations, phase synchronization will
propagate throughout the network, as seen in focal seizures that
emerge into grand-mal seizures.

MATERIALS AND METHODS

Measuring the Degree of Synchrony
Between Channels: Seizure Prediction
In order to avoid spurious detection of locking due to noise
and small oscillation coupling, we initially band pass filter the

time series in order to focus on the frequency areas that produce
pre-ictal and ictal behavior. Seizure prediction analysis begins
with the decomposition of EEG via Hilbert transformation.
The signal is split into two parts, the analytic amplitude (AA)
and the analytic phase (AP). The AA and AP are utilized in
equations 1 and 2 in order to measure the level of phase
and amplitude synchrony between EEG signals from paired
electrodes using a sliding window of n = 1000, 2500, or 5000
data points (Niedermeyer, 1987). The sliding window acts as a
filtering method to sum a larger group of points to calculate
Phase Lock Value (PLV). These synchrony levels are termed
PLV and Amplitude Lock Value (ALV) and are determined
using electrodes in the areas of the scalp where seizure behavior
(working electrode) and ‘‘normal’’ EEG behavior (reference
electrode) is found, see Figure 1. The PLV is calculated in the
following manner:

PLV =

∥∥∥∥∥ 1n
n∑
1

ei[ϕ1(t) − ϕ2(t)]

∥∥∥∥∥
where ϕ is the analytic phase (AP). The value ‘‘n’’ refers to the
window size to sum PLV values, and ‘‘t’’ refers to the phase at
time ‘‘t’’ within the time series. PLV varies between independent
signals and constant phase-lag between the two signals, i.e., EEG
signals will either synchronize or operate independently (Le Van
Quyen et al., 2005). The analytic amplitude (A) is used tomeasure
the synchrony between two channel’s amplitudes or the ALV:

ALV =

∥∥∥∥∥ 1n
n∑
1

ei[A1(t)−A2(t)]

∥∥∥∥∥
The ALV measurement is used in conjunction with the PLV
to identify the seizure state. The degree of amplitude locking
between two channels determines the similarity between the two
amplitudes.

The seizure prediction and detection methodology is as
follows. PLV and ALV are calculated between the working and
reference electrodes. A threshold value of the PLV and ALV
is used as a detection marker to indicate seizure occurrence.
The threshold value of the PLV alone is used as a prediction
marker. The optimal PLV and ALV thresholds are determined
retrospectively for each patient. For an accurate prediction, the
prediction marker must be set within an appropriate time before
a seizure occurrence. Initially, a time interval after the prediction
marker occurs is set, which is called the SPH (Spencer et al.,
1992). The end of the time interval of the SPH is the SOP. Our
algorithm constitutes a SPH + SOP prediction horizon. During
interictal periods, (i.e., periods far away from any seizure), all
alarms should lead to false predictions. Figure 2 demonstrates
that the PLV values between 0.6 and 0.85, which corresponds to
the calculated PLV values. These higher PLV values correspond
to channel synchronization (0.83–0.85). Figures 3, 4 correspond
to PLV and ALV values, respectively, over interictal behavior.
These values do not reach the patient specific threshold level
of ‘‘0.83’’, which demarcates non-seizure behavior from seizure
behavior. Figures 5, 6 demonstrate the calculated PLV/ALV
values over a time series featuring seizure activity. The calculated
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FIGURE 1 | A seizure event where working electrode (red) entrains with reference electrode (blue).

FIGURE 2 | Threshold selection is based on finding the lowest number of Phase Lock Value (PLV) values just before the amount of values rise
dramatically. The PLV begins to rise at the synchrony level “0.83” (highlighted by the black cross) which establishes the threshold marker on the PLV display. This
figure demonstrates that the smallest number of PLV values at a synchrony level range, i.e., between 0.6 and 0.9 correspond to those values that are higher than the
rest of the PLV values that correspond to non-synchronous channel pairs. These higher PLV values correspond to pair-wise channel synchronization. The threshold
value “0.83” is selected in order to separate “normal” chaotic neural activity from highly synchronized neural activity found in the seizure state. As the slope of the
number of PLV occurrences vs. synchrony level rises sharply from “0.83” and “0.75”, we can determine the threshold value between normal and seizure activity for
this patient’s EEG activity.

PLV for this data set shows a pre-ictal marker that rises above
a selected threshold in Figure 5, which is denoted as ‘‘P’’ for
the prediction marker. Figure 5 also illustrates the PLV rising
above a threshold value that corresponds to a seizure event,
denoted by the marker ‘‘S’’. Figure 6 displays the ALV as it
signifies the seizure event and demarcates the inter-ictal time
period.

EEG Data Set
Data sets were gathered online from the ‘‘CHB-MIT Scalp EEG
Database’’, which consists of EEG recordings from pediatric
subjects with intractable seizures from the Children’s Hospital

Boston1, (Goldberger et al., 2000). All signals were sampled at
256 samples per second with 16-bit resolution, and collected
using the International 10–20 system of EEG electrode positions.
Pre-processing of EEG data consisted of finding the standard
deviation (SD) of all channels against each channel, and sorting
the results in descending order. In this manner, we can locate
the area of the highest seizure occurrences or working channel.
The channel with the highest SD is selected as the working
channel. We take the channel with lowest SD as our comparison
or reference channel. These two channels will be used as

1http://physionet.org/pn6/chbmit/
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FIGURE 3 | Calculated PLV over an interictal time series. Calculated PLV
values remain below the patient-specific threshold calculated from Figure 2.

FIGURE 4 | Amplitude Lock Values (ALV) over an interictal time series.
Calculated ALV values remain below the patient-specific threshold calculated
from Figure 2.

input to our algorithm. Those EEG channels that contained
artifacts (electrode movement instead of seizure behavior) were
discarded.

Phase Locking Thresholds
In order to separate basal neurological activity from pre-ictal
and ictal behavior, a threshold is set to classify instances of
phase locking behavior associated to seizure activity. After
calculating the phase component of the signal and calculating
the phase locking value for a segment of the time series, we
derive significance levels based on the calculated phases of the
compared neural neighborhoods. A synchronization index [0–1]
is applied in order to determine the level of synchronization

between oscillating groups, where PLV values approaching one
demonstrate a high degree of phase synchronization. The 95th
percentile of the distribution of the synchronization indices
serves as significance level. A demarcation between lower and
higher synchronization indices determines seizure activity found
in the EEG time series.

Phase locking threshold tuning is accomplished on testing
one out of three datasets per patient and validation on the last
two datasets. Most pre-ictal and ictal behavior of the signal have
distinct PLV/ALV values that approach ‘‘1’’ (Figures 5, 6) vs.
inter-ictal or non-seizure behavior (Figures 3, 4). A threshold
is placed between these two states in order to demarcate
between these states through analysis of PLV/ALV values on the
testing dataset and validated through continuous data processing
on the next two datasets per patient. Each patient dataset
will have its own respective seizure vs. non-seizure threshold
demarcation. The number of data points used for optimal
PLV/ALV calculations, i.e., the value ‘‘n’’ which refers to the
window size to sum PLV/ALV values is tested as well and
validated throughout the datasets. In order to compensate for
cross-patient differences in signal phases and amplitudes, we
measured the standard deviation (SD) of a period of non-
seizure EEG data for each subject, i.e., SAAj and SAPj for SD of
the AA and AP respectively, and used that value to scale the
thresholds for each patient. Amplitude threshold (SAthreshold) and
phase threshold (SPthreshold) values were chosen experimentally
by analyzing and comparing the patterns of changes for different
occurrences of seizures and artifacts and selecting the most
appropriate value where:

SAAj < SAthreshold

SAPj < SPthreshold

RESULTS AND DISCUSSION

EEG recordings were collected from ten patients during pre-
surgical recording. EEG filtering was accomplished using
a Remez filter in brain frequency ranges delta-theta-alpha
(1–12 Hz), alpha (6−12 Hz), beta (13−30 Hz), gamma
(30−40 Hz), and upper-gamma (40–50 Hz). SPHs ranged from
2 to 62 min, depending on band-pass filtering and patient, where
patient ‘‘chb06’’ has the highest SPH among all the rest of the
patients. The average SPH + SOP time period for n = 1000, 2500,
and 5000 points is 20 min, across all band-pass ranges, as seen in
Figure 7.

In order to determine the performance of our methodology,
true positives are defined as those prediction markers that
precede a seizure occurrence within 1 h, where false negatives
are seizures that did not have bookmarked prediction. False
positives are then defined as an SPH without the subsequent SOP
event or an SOP event that existed outside the 1 h window. We
have tested our patient-specific seizure prediction and detection
algorithm for seizure prediction on 10 patients with 30 seizure
events and 31 h of interictal recordings in the MIT-CHB EEG
database. To evaluate the algorithm we have measured sensitivity
(TP/(TP + FN)), precision (TP/(TP + FP)), the false alarm rate
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FIGURE 5 | Calculated PLV over pre-ictal time series. Prediction marker (P) and seizure event (S) are signified by arrows. Prediction markers and seizure events
are found by the rise of PLV values above a patient-based threshold.

FIGURE 6 | Amplitude Lock Values (ALV) over pre-ictal time series. Seizure events are found by the rise of ALV values above a patient-based threshold, which
also correspond to the rise of PLV values.

FIGURE 7 | Seizure prediction horizon (SPH; in minutes) of seizures predicted. Box plot with whiskers display the distribution and median (red bar) of seizure
activity for each patient.
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per hour, and the percentage of interictal recordings incorrectly
classified as FPs. The false alarm rate per hour and the percentage
of interictal data that is incorrectly classified as FPs demonstrate
how many false alarms the proposed algorithm would
generate.

Results for all the patients and all the four preprocessing
methods are shown in Table 1. Each patient number has the
associated MIT-CHB patient number. The gamma band-pass
filter produced the highest prediction sensitivity and precision
as well as the lowest FP occurrences, with total sensitivity of
77% (classifies 24 preictal events correctly out of 31), a total
precision of 88% and 0.17 false positives per hour (three false
alarm events in 31 h of interictal recordings). Due to the low
occurrences of FPs, the precision rate produced higher results
than the sensitivity rate.

In order to test whether our algorithm is different from
chance, we implemented a randomizing chance predictor using a
Poisson process, whereby the probability of generating a preictal
classification is uniformly distributed. According to Snyder et al.
(2008), a period τw0 is provided to accommodate uncertainty
regarding the precise moment of seizure onset, and to distinguish
seizure detection from seizure prediction. This parameter, τw0,
is referred to as the detection interval, while τw corresponds to
the sum of SPH and the SOP of the earlier work. The proportion
of time that the chance predictor spends in warning is ρw. The
calculation for the Poisson rate for the chance predictor is:

λw =
1
τw

ln(1− ρw)

Snyder states that the probability of raising a preictal flag
in a short interval of duration ∆t is approximately equal to
λw∆t, independent of t, where λw is referred to as the Poisson
rate parameter. We can calculate the sensitivity of the chance
predictor:

Snc = 1− exp
(
−λwτw + (1− e−λwτw0)

)
To assess the significance of an improvement over chance, a
candidate algorithm identifies n of N seizures (i.e., observed
sensitivity Sn = n/N) for an individual patient. The two-sided
p-value is the probability of observing a difference |n/N − Snc|
or greater if the algorithm under evaluation is not different from
chance. This is shown to be equal to

p =

{
[1− FB(n− 1;N, Snc)]+ FB(kf ;N, Snc), for n

N ≥ Snc
[1− FB(kc − 1;N, Snc)]+ FB(n;N, Snc), for n

N < Snc

where kf = b2NSnc − nc and kc = d2NSnc − ne. When
algorithms are designed and applied prospectively to a
population of patients, the values of ρw will vary from patient to
patient. In this case, the overall significance involves the statistics
of, e.g., the median sensitivity improvement, with corresponding
hypotheses

H0: median ((Sn − Snc) for algorithm) = 0
H1: median ((Sn − Snc) for algorithm) 6= 0

Prediction rates using band-pass filtering in the gamma
range are significantly better than chance in 8/10 patients at a
significance cutoff of a = 0.05 (Daniel, 2009; see Table 1).

TABLE 1 | Results from seizure prediction analysis by the proposed
algorithm.

Pat. No. No. of Interictal Sensitivity Precision FP/h FP % p-value
Sz hours (%) (%)

1 (1) 3 3 67 100 0.00 0.00 0.002
2 (2) 3 3 33 33 1.11 66.67 0.031
3 (3) 3 3 100 100 0.00 0.00 0.000
4 (5) 3 3 67 100 0.00 0.00 0.000
5 (6) 3 4 67 100 0.00 0.00 0.000
6 (11) 3 3 67 100 0.00 0.00 0.092
7 (18) 3 3 100 100 0.00 0.00 0.000
8 (20) 3 3 67 50 0.56 33.33 0.211
9 (22) 3 3 100 100 0.00 0.00 0.000
10 (24) 3 3 100 100 0.00 0.00 0.000

Two of our proposed preprocessing methods significantly
enhanced the prediction rate: window size and band-pass
filtering. Window sizes between n = 1000, 2500 and 5000
points had a discernable impact on the total sensitivity and
precision of the prediction methodology, yet a window size of
n = 2500 reduced the sensivity to 64% (classifies 20 preictal events
correctly out of 31), a total precision of 86%, demonstrating the
significance of window size selection. The effects of band-pass
filtering on prediction rates were more salient where sensivity
and precision ranged from 54% (classifies 17 preictal events
correctly out of 31) and 64% in the alpha range, 54–62% in the
beta range and 64–79% in the low gamma range.

Band-pass filtering and window size selection for the
algorithm led to a significant improvement in the false positive,
such as the decrease in false alarm events to 3 from 10 in 31
interictal hours. If we reduce the SPH from 1 h to 30 min,
since the average SPH is 20 min across all the patients, the total
sensitivity would remain 77%, but total precision would reduce
to 78% with 0.28 false positives per hour due to patient 5’s
prediction values being classified as FP from TP.

Previous implementations utilizing the CHB MIT data
base, utilized machine learning based classification of bivariate
patterns method achieved 52.2% sensitivity (Chiang et al., 2011).
Shoeb and Guttag (2010) utilized a SVM to construct patient-
specific classifiers that use scalp EEG signals to detect the onset
of epileptic seizures with a sensivity of 96%, but their approach
detected seizures <10 s before their occurrence. The ‘‘dynamical
similarity index’’ introduced by Le Van Quyen et al. (1999)
compares the dynamic of the EEG data in a sliding window with
the data in a fixed reference window of an interictal period. For
SOPs up to 30 min, and a small SPH of 5 s, its sensitivity ranges
from 21 to 42% (Winterhalder et al., 2003).

The results from Table 1 demonstrate that PLV/ALV analysis
has a higher rate of detection of seizure vs. random chance
detection. PLV/ALV detection can decipher random occurrences
of phase locking events thereby detecting true neurological
attributes found in seizures events.

The experimental findings illustrate that there may be a
triggering mechanism through the PLV method that may enable
better control of an implanted seizure control system through
seizure prediction. In this manner, a pulse generator could be
programmed to deliver electrical stimulation during the SPH
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time interval to the brain if the PLV value rises above a threshold
range.

CONCLUSION

The seizure prediction and detection methodology was tested
on interictal and ictal events against a commonly available large
data set, exhibiting a high degree of sensitivity and precision.
It was observed through human EEG testing that the signal
captured through high-density electrodes exhibited the following
traits: (1) pre-ictal PLV values reach a threshold several minutes
before the seizure event. This state may represent the initial
imbalance of the electrical activity of the brain through seizure
neuron firing. The phase of signal emanated from these neurons
will be much longer than normal neuron firings. The SPH is
defined as the SPH + SOP where the SPH initiates the seizure
activity, followed by; (2) a reconstitution state where the brain
attempts to restore the electrical activity in the presence of

initial abnormal neuron firings. This effect is shown as PLV
and ALV values return to below threshold values; and (3) the
PLV/ALV values once again rise to the threshold value, signaling
the seizure event and the last part of the SPH + SOP period.
In this manner, the electrical activity of the brain is overcome
by the abnormal neuron signals, and will eventually fall into
an imbalanced state. This event is represented by the SOP
part of the seizure activity. Through early seizure detection,
this methodology can be implemented into a seizure control
system that can aid in the management of recurrent seizure
activity.
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