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Mantis-ml: Disease-Agnostic Gene Prioritization
from High-Throughput Genomic Screens by
Stochastic Semi-supervised Learning

Dimitrios Vitsios1,* and Slavé Petrovski1,*

Access to large-scale genomics datasets has increased the utility of hypothesis-free genome-wide analyses. However, gene signals are

often insufficiently powered to reach experiment-wide significance, triggering a process of laborious triaging of genomic-association-

study results. We introduce mantis-ml, a multi-dimensional, multi-step machine-learning framework that allows objective assessment

of the biological relevance of genes to disease studies. Mantis-ml is an automated machine-learning framework that follows a multi-

model approach of stochastic semi-supervised learning to rank disease-associated genes through iterative learning sessions on random

balanced datasets across the protein-coding exome.When applied to a range of human diseases, including chronic kidney disease (CKD),

epilepsy, and amyotrophic lateral sclerosis (ALS), mantis-ml achieved an average area under curve (AUC) prediction performance of

0.81–0.89. Critically, to prove its value as a tool that can be used to interpret exome-wide association studies, we overlapped mantis-

ml predictions with data from published cohort-level association studies. We found a statistically significant enrichment of high

mantis-ml predictions among the highest-ranked genes from hypothesis-free cohort-level statistics, indicating a substantial improve-

ment over the performance of current state-of-the-art methods and pointing to the capture of true prioritization signals for disease-asso-

ciated genes. Finally, we introduce a generic mantis-ml score (GMS) trained with over 1,200 features as a generic-disease-likelihood

estimator, outperforming published gene-level scores. In addition to our tool, we provide a gene prioritization atlas that includes

mantis-ml’s predictions across ten disease areas and empowers researchers to interactively navigate through the gene-triaging frame-

work. Mantis-ml is an intuitive tool that supports the objective triaging of large-scale genomic discovery studies and enhances our un-

derstanding of complex genotype-phenotype associations.
Introduction

As a result of the vast interrogation of the protein-coding

genome, the global research community has generated

an extended amount of resources related to tissue-specific

gene expression, intolerance to genetic variation, model

organism function, and various other diverse annotation

types. Additionally, it is evident that complex phenotypes,

such as disease phenotypes, cannot be explained by the

variability of a single data type (e.g., expression in tissue

or animal models) but rather require the combination of

a multitude of data types and resources that describe mul-

tiple aspects of the phenotype at different dimensions.1–3

The underlying biology of human disease is complex,

and current knowledge provides a limited view of the full

collection of disease-associated genes. We sought to

explore this issue by leveraging the rich collection of

well-curated gene-level annotations to identify patterns

that are shared among genes associated with a disease

and leverage those patterns to predict putatively novel

genes of interest that have the most similar profiles and,

thus, might also be associated with disease.

To achieve this goal, for each gene we harvested diverse

types of information, including gene expression;4 human

disease literature;5 mouse phenotypes;6 proteomic;7 inter-

actome;8 and genic metrics of human-lineage purifying

selection9–11 (see Supplemental Methods). Next, we devel-

oped mantis-ml, a machine-learning framework that can
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be applied to any disorder, given a starting set of genes

that are associated with disease according to the Human

Phenotype Ontology (HPO).5 Mantis-ml’s gene predictions

without HPO-based annotations for the disease of interest

are characterized as ‘novel’ throughout this work. The

mantis-ml framework is based on a stochastic semi-super-

vised learning approach that solves inherent challenges

presented by the problem of the high class imbalance in

a finite space of data points (see Supplemental Methods).

Unlike other published gene-prioritization methods, we

provide validation of our method’s predictions against re-

sults from real cohort genetic studies. The cohort statistics

from these analyses refer to gene-level statistics emerging

from rare-variant genetic-association studies.12 Specifically,

we apply the predictions fromour tool, mantis-ml, to the re-

sults of published exome-wide-association statistics and

show a striking preferential enrichment of mantis-ml-pre-

dicted genes among the genes achieving the lowest p values

in the respective case-control studies of those diseases. The

three diverse disorders that we highlight as applications of

mantis-ml are amyotrophic lateral sclerosis (ALS),13 chronic

kidney disease (CKD),14 and epilepsy.15
Methods

Feature Pre-processing
Mantis-ml integratesgene-associated features fromadiversepoolof

gene-annotation sources, classified into three categories: generic
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Figure 1. Generic Overview of Mantis-ml Workflow
(A) Data resources used by mantis-ml for feature extraction. Three data-type resources are integrated: generic (i.e., non-tissue- and non-
disease-specific), filtered by disease or tissue, and filtered by disease-specific features (currently including disease-specific features for CKD

(legend continued on next page)
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resources (disease and/or tissue agnostic), resources filtered by tis-

sue, and disease-specific features (Figure 1A and Table S1). mantis-

ml performs automatic feature pre-processing, which includes

filtering of highly correlated features on the basis of a Pearson’s r

correlation threshold (parameter ‘‘eda_parameters -> high_-

corr_thres’’ in mantis_ml/conf/.config; default value: 0.8). Addi-

tionally, features with more than a certain amount of missing

data are discarded (parameter ‘‘eda_parameters -> missing_da-

ta_thres’’ in mantis_ml/conf/.config; default value: 0.25). The re-

maining features with a missing-data ratio below the cut-off

threshold are imputed with either a zero value or the median of

the respective feature. Imputation with zero is performed either

because most of the genes represent a binary flag (‘‘non-existent’’

or 0 for missing data, e.g., ‘‘MGI_mouse_knockout_feature,’’

‘‘GOA_Kidney_Research_Priority,’’ etc.) or because these features

were extracted from computational or experimental studies that

retrieve a biologically relevant signal only from a specific set of

genes that are associated with the hypothesis under examination

(e.g., ‘‘platelets_eQTL,’’ ‘‘adipose_GWAS_locus’’ features, etc.). The

features that are imputed with a median value are all genome-

wide association study (GWAS) metrics, ExAC CNV-associated fea-

tures, the residual variation intolerance score (RVIS), the missense

tolerance ratio (MTR), andgene length. The selectionof themedian

value for imputation in that case is based on the use of different

global reference sets of genes for different studies or resources.

This difference requires extrapolation of these features to genes

with missing values because penalizing them with a zero value

wouldmost likely not be representative of the actual gene behavior

with respect to these features. Finally, features are standardized to

have mean zero value and unit variance.

Exploratory Data Analysis
Mantis-ml generates an extended set of visualizations, including

heatmaps for pairwise feature correlations (prior and post feature

filtering), missing-data ratios across features, and the distribution

of numerical and/or categorical variables across the known and

unlabeled genes from the entire gene pool (Figures S2 and S3).

Additionally, mantis-ml automatically performs dimensionality

reduction on the original feature set via principal component

analysis (PCA), t-distributed stochastic neighboring embedding16

(t-SNE), and uniform manifold approximation and projection17

(UMAP) to allow for visualization of the original high-dimensional

space in two dimensions (Figure S4).

Unlike PCA, t-SNE and UMAP are both non-linear projections of

a high-dimensional space into a lower-dimensional space. They

both compute probability distributions regarding the relation-

ships between the points in the high-dimensional space but use

different similarity kernels: Gaussian for t-SNE and non-Gaussian

for UMAP. The computed similarities are then recreated in the

lower-dimensional space (embedding space) with a Student’s t dis-

tribution for t-SNE and a kernel proximal to t distribution for

UMAP. The main practical difference between these algorithms

is that t-SNE can capture local relationships well in the embedding

space but does not preserve the global structure, whereas UMAP
and cardiovascular disease). All features are compiled automatically on
processed so they are ready to be provided as input to the supervised
(B) Illustration of the stochastic semi-supervised approach followed
tated using the HPO (static for each stochastic iteration), (2) the en
includes a random sample (default: 80%) of seed genes, (3) each ba
is performed for each combination of k � 1 folds, and prediction is
prediction probabilities are aggregated for each gene across all L 3 k
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can preserve both the local and global structure in the lower

dimensional space.

PCA is accompanied by a Scree plot summarizing the cumula-

tive variance explained by the first 20 principal components.

Because PCA can only capture linear relationships between the

original vectors, the variance explained by the top principal com-

ponents provides an insight into the prevalence of linear versus

non-linear relationships between features in the original space.

t-SNE is calculated with a default perplexity value of 30, whereas

UMAP is run with the following default parameter values:

‘‘n_neighbors’’ ¼ 5, ‘‘min_dist’’ ¼ 0.3, ‘‘metric’’ ¼ ‘‘correlation’’.

Finally, all two-dimensional projected feature visualizations are

provided both as static files (PDF format) and interactive visualiza-

tions (HTML format).

These visualizations aim to highlight any evident and/or trivial

segregation of the known disease-associated genes from the unla-

beled genes on the basis of either pairwise relationships between

the features or any linear and/or non-linear relationships

captured by the top projected vectors of the respective transfor-

mation spaces. However, the complexity underlying each of

the studied diseases imposes the exploration of high-dimen-

sional interactions between all features to elucidate the complex

mechanisms that primarily drive pathogenicity in each case. We

thus resort to machine-learning techniques to tackle this

problem.

Stochastic Positive-Unlabeled Prediction with Standard

Classifier and Benchmarking
Mantis-ml seeks to uncover any feature patterns among a collec-

tion of known positive-labeled disease-associated genes to then

prioritize novel genes that share a highly similar feature profile

with the known disease-associated genes. This problem falls into

the broader machine-learning area of positive-unlabeled learning,

a semi-supervised learning technique where the only labeled data

points available are positive.

This is important in this context because we often have insuffi-

cient information about which genes among the remainder of the

genome are definitively not associated with that disease (i.e., true

negatives). There are several approaches aiming to solve positive-

unlabeled problems, the most popular of which are (a) to treat

unlabeled data as negative and perform learning with a standard

classifier,18 (b) to use bootstrap and bagging to iteratively train

on random samples of positive and unlabeled data and make pre-

dictions on the basis of out-of-bag unlabeled data,19 and (c) to use

two-step approaches in which the first step tries to identify a confi-

dent set of negative points among the unlabeled set and then con-

tinues learning with a standard classifier.20

Here, we developed a gene-prioritization framework that is

based on a variation of two of the positive-unlabeled approaches

suggested above (a and b): a stochastic semi-supervised learning

technique that is performed across multiple random balanced

datasets from the entire gene set (L iterations over random parti-

tionings of the entire gene space) and makes iterative predictions

on out-of-bag data.
the basis of user-provided disease-associated query terms and pre-
/un-supervised learning tasks. of mantis-ml.
by mantis-ml over L iterations: (1) positive (seed) genes are anno-
tire gene pool is split into random balanced sets, each of which
lanced dataset is split into a stratified k number of folds, training
subsequently based on the kth out-of-bag fold each time, and (4)
3 M iterations.
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The input data for mantis-ml are all coding genes, labeled on the

basis of known or unknown annotation for a disease and accom-

panied by a large set of gene-level features extracted from public

databases. We tested seven different classifiers to be used during

positive-unlabeled learning for each balanced dataset of positive

and unlabeled data points. These seven classifiers were random

forest, extra trees (extremely randomized trees—a variation of

random forest), gradient boosting, extreme gradient boosting

(XGBoost), support vector classifier (SVC), deep neural networks

(DNN), and a stacking (ensemble) classifier with four base classi-

fiers (random forest, extra trees, gradient boosting, and SVC) fol-

lowed by a DNN in the second layer.

We first fine-tuned each classifier separately by using two

random balanced datasets from the CKD disease example with

10-fold cross-validation and performing grid search over a finite

parameter space. We then benchmarked all classifiers by assessing

their ‘‘area under curve’’ (AUC) performance on the same set of ten

random balanced datasets with 10-fold cross-validation. All classi-

fiers performed comparably (average AUC: 0.831–0.850), and

random forest and extreme gradient boosting ranked as the top

two classifiers, with mean AUCs equal to 0.850 5 0.021 and

0.848 5 0.021, respectively (Figures 2 and S5). Given the compa-

rable performance across classifiers, we do not pick a single classi-

fier that outperforms the rest in the problem of gene prioritization

with positive-unlabeled learning. Thus, we apply all classifiers to

each disease example examined in this work and then select the

best performing classifier in each disease example on the basis of

the average AUC scores achieved.

Eventually, we have scaled up the positive-unlabeled learning

task to the entire gene space, which is covered by a random parti-

tioning of the unlabeled genes in combinationwith a random sub-

set of the positive (seed) genes each time. We extract the final

ranking by averaging the prediction probabilities assigned to

each gene from all the generated out-of-bag sets. This approach al-

lows genes to compete with each other in a stochastic semi-super-

vised manner and self-sort because their respective features can

capture enough of the variance of truly disease-informative

characteristics.
Selection of Optimal Classifier Parameters via Grid-

Search Cross-Validation
Fine-tuning for all ‘‘scikit-learn’’-based classifiers (random forest,

extra trees, gradient boosting, and SVC) and for XGBoost was per-

formed over a pre-defined finite parameter grid space with

GridSearchCV from ‘‘scikit-learn’s’’ ‘‘model_selection’’ module

and tested on two random balanced datasets from the CKD disease

example (Table 1). The available kernel options that were tested

with SVC were ‘‘linear,’’ ‘‘poly,’’ ‘‘rbf,’’ and ‘‘sigmoid’’.

With regards to keras-based DNNs (comprised of feed-forward

fully connected layers), we developed a module that performs

grid search with cross-validation (dnn_grid_search_cv.py), including

tuning of parameters such as size and number of hidden layers.

This module currently supports simultaneous fine-tuning of up

to two features but can otherwise fine-tune any DNN-related pa-

rameters in a single run with sequential steps of optimization

that progressively select near-optimal features in a heuristic

manner. ‘‘ReLU’’ has been used as the activation function across

all hidden nodes, while ‘‘softmax’’ was used in the output layer.

Additionally, seven different optimizers where tested as part of

the grid search: ‘‘SGD,’’ ‘‘RMSprop,’’ ‘‘Adagrad,’’ ‘‘Adadelta,’’

‘‘Adam,’’ ‘‘Adamax,’’ and ‘‘Nadam.’’ The optimal parameters re-
662 The American Journal of Human Genetics 106, 659–678, May 7,
turned by grid search with cross-validation for each classifier are

available in Table 1.

Selection of the Optimal Number of Stochastic

Iterations in Positive-Unlabeled Learning
We examined the number of known and novel genes predicted for

different numbers of stochastic iterations of positive-unlabeled

learning by using an ‘‘extra trees’’ classifier on a disease-specific

example (Figure S19). We observed that the number of predicted

known genes is practically insensitive to the number of stochastic

iterations. However, the number of novel genes requires a certain

number of iterations until it reaches a stable state, which is around

1,000 genes. Specifically, the novel-gene count enters an oscilla-

tion zone around the stable state after L ¼ 10 iterations, which

is then further stabilized after L ¼ 100 iterations.

Inmore rigorous testing, we assessed the correlation of mantis-ml

average prediction probabilities when run for different number of

stochastic iterations. Ideally, a robust algorithm should capture the

same average profile for each gene irrespective of the number of iter-

ationsmantis-mlhas been trained on. Specifically, we ranmantis-ml

for the following numbers of stochastic iterations: 1, 10, 30, 50, 70,

100, 150, and 200. Pearson’s r correlation of the average mantis-ml

prediction probabilities extracted from just one iteration compared

to all other numbers of iterations is always >0.984 (p < 2.2 3

10�308). For any other pair of stochastic iterations with L > 1, Pear-

son’s correlations are in the range of 0.9976–0.999 (p < 2.2 3

10�308). These predictions demonstrate the robustness of mantis-

ml predictions irrespective of the number of stochastic iterations

used. Thus, we suggest using L ¼ 10 iterations by default for a run

on a disease-specific case. The user can further adjust this through

the ‘‘-i’’ parameter when running the mantis-ml tool.

Application of Mantis-ml on Disease Examples
We applied all seven classifiers used during benchmarking across

L ¼ 10 stochastic iterations for each disease-specific positive-unla-

beled learning task. No selection of positive-labeled genes, tissue,

and disease-relevant features requires human curation beyond

provision of the user-defined disease-associated inclusion and

exclusion terms in the input config file. The total number of

training-test tasks performed across an equivalent number of

random balanced gene samples with cross-validation was

25,000, 17,000, and 79,500 for CKD, epilepsy, and ALS, respec-

tively. These sizes are inversely proportional to the number of

seed genes in each case, and this number directly affects the size

of constructed balanced datasets across the entire gene pool.

All classifiers except for stacking showed comparable perfor-

mance when applied to the entire gene set for each disease case.

The stacking classifier consistently demonstrated slightly lower

performance than the rest of the classifiers (on average 0.05 lower

AUC score). This is somewhat expected because one of stacking’s

most notable properties is to smooth out predictions from its

base classifiers. This means that predictions supported by most

of its base classifiers are more likely to survive in the end, thus

potentially lowering the total number of correctly identified

genes, which might however be more robust than the predictions

from each individual classifier as a result of its conservative nature.

Dictionary of Inclusion and Exclusion Query Terms for

the Studied Disease Examples
Mantis-ml requires as input a YAML ain’t markup language

(YAML) config file containing information about the diseases/
2020
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Figure 2. Mantis-ml Classification Performance Benchmarking Using Different Supervised Models
Benchmarking of Seven Different Classifiers during the Positive-Unlabeled Learning Step of mantis-ml: Random Forest, Extra Trees,
Gradient Boosting, Extreme Gradient Boosting (XGBoost), Support Vector Classifier (SVC), Deep Neural Network (DNN), and a Stacking
(Ensemble) Classifier with Four Base Classifiers (Random Forest, Extra Trees, Gradient Boosting, and SVC) followed by a DNNMantis-ml
was run on ten random balanced datasets with 10-fold cross-validation based on the CKD example.
(A) Mean receiver operating characteristic (ROC) curves from stochastic positive-unlabeled learning with one of the seven classifiers.
ROC curves from all runs are also shown for the best performing classifier during benchmarking (random forest).
(B) Distribution of AUC scores across the seven classifiers tested. All classifiers showed comparable performance (AUC: 0.83–0.85), and
tree-based methods ranked on the top.
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Table 1. Optimal Parameters for Each Classifier Calculated with
Grid Search and 10-fold Cross-Validation

Parameters Selected with Grid Search

Deep neural network (DNN)

hidden layers: 2

nodes per layer: [32, 32]

dropout ratio: 0.3

L2 regularization parameter: 0.01

optimizer: ‘Adagrad’

epochs: 50

batch_size: 128

activation function: ‘‘ReLU’’

Extreme gradient boosting (XGBoost)

learning_rate: 0.01

n_estimators: 300

max_depth: 5

min_child_weight: 3

gamma: 0

subsample: 0.8

colsample_bytree: 0.8

objective: ‘‘binary:logistic’’

scale_pos_weight: 1

Extra trees

n_estimators: 100

max_features: ‘‘auto’’

max_depth: 15

min_samples_leaf: 2

min_samples_split: 5

Gradient boosting

n_estimators: 500

max_features: ‘‘sqrt’’

max_depth: 20

min_samples_leaf: 4

min_samples_split: 5

Random forest

n_estimators: 100

max_features: ‘‘auto’’

max_depth: 15

min_samples_leaf: 2

min_samples_split: 4

warm_start: false

Support vector classifier (SVC)

C: 0.01

kernel: ‘‘linear’’

Table 1. Continued

Parameters Selected with Grid Search

gamma: ‘‘auto’’

probability: true

shrinking: true
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phenotypes of interest. One field in the config file is required (‘‘dis-

ease/phenotype terms’’), whereas another two fields are optional

(‘‘additional associated terms’’ and ‘‘diseases/phenotypes to

exclude’’). The descriptions for these fields are as follows:

d ‘‘disease/phenotype terms’’- terms that characterize a pheno-

type or disease of interest and that are used for known

disease-associated gene selection and filtering of relevant fea-

tures (free text), required

d ‘‘additional associated terms’’- terms used along with ‘‘dis-

ease/phenotype’’ terms to extract additional disease- or

phenotype-associated features (free text), optional

d ‘‘diseases/phenotypes to exclude’’- terms to exclude from dis-

ease or phenotype characterization and feature selection

(free text), optional

The terms provided in these fields for each of the diseases under

study (CKD, epilepsy, and ALS) are available in Table 2.

Estimating Feature Importance with the Boruta

Algorithm
The Boruta algorithm was run on top of a ‘‘random forest’’ classi-

fier trained on 100 random balanced datasets with 10-fold cross-

validation and was run internally for 100 iterations. Boruta

assesses the importance of each feature by comparing its contribu-

tion with the ones from random permuted features and eventually

provides Z scores that quantify the distance from these compari-

sons. Upon each Boruta training cycle on a random balanced

dataset, features are characterized as ‘‘confirmed,’’ ‘‘tentative,’’ or

‘‘rejected,’’ and the full distribution of Z scores is provided for

each of them. Because of the stochastic nature of the positive-un-

labeled learning implemented by mantis-ml, features can be

characterized by different labels in different runs of the Boruta al-

gorithm. We have thus defined a decision threshold to classify

each feature as ‘‘confirmed,’’ ‘‘tentative,’’ or ‘‘rejected’’ on the basis

of its extracted labels across all Boruta runs. Specifically, for CKD

and epilepsy, features are eventually classified as ‘‘confirmed’’

when they receive this label across at least 90% of all Boruta

runs. The decision threshold for the ‘‘confirmed’’ feature classifica-

tion has been set to 60% for ALS to compensate for the higher vari-

ance of extracted feature importance labels across all iterations;

this higher variance is most likely due to the smaller set of seed

genes in that case. In all three cases, features labeled as ‘‘rejected’’

are eventually classified as such in at least 90% of the cases,

whereas the remaining features are characterized as ‘‘tentative’’

on the consensus labeling.

We also added an option for mantis-ml to be trained with only

the set of ‘‘confirmed’’ features extracted by the Boruta algorithm

(parameter ‘‘supervised_filters -> feature_selection: boruta’’ in

mantis_ml/conf/.config). We then tested mantis-ml’s performance

with each of the standard classifiers whenwe used different config-

urations of features: all features that survived after the feature
2020



Table 2. Query Terms per Disease Category Provided in the Configuration File for Mantis-ml (config.yaml)

Disease or Phenotype terms Additional associated terms Diseases or Phenotypes to exclude

Chronic kidney
disease (CKD)

renal, kidney, nephro, glomerul,
distal tubule

- adrenal

Epilepsy epilep, seizure brain, nerve, nervous, neuronal,
cerebellum, cerebral, hippocampus,
hypothalamus

-

Amyotrophic lateral
sclerosis (ALS)

amyotrophic lateral sclerosis,
degeneration of the lateral
corticospinal tracts, dysfunction
of lateral corticospinal tracts,
atrophy of the spinal cord,
progressive distal muscular atrophy,
spinal muscular atrophy, first dorsal
interossei muscle atrophy, cervical
spinal cord atrophy, corticospinal
tract atrophy, corticospinal tract
hypoplasia, atrophy/degeneration
involving the spinal cord

brain, muscle - skeletal, nerve,
nervous, neuronal, spine, spinal,
cerebellum, cerebral, hippocampus,
hypothalamus, muscular dystrophy,
muscular fitness, muscle function,
muscle, neuromuscular

heart muscle, heart_muscle,
cardiac_muscle, smooth_muscle,
cardiac muscle, smooth muscle,
striated_muscle, striated muscle

All query terms are case insensitive and follow regular rules of wild card pattern matching. Cells with a dash should be left empty in the config.yaml file.
pre-processing step or only Boruta-confirmed features (Figure S18).

Training and prediction were performed with a set of 15 random

balanced datasets from the CKD disease example. Mantis-ml per-

formed slightly but non-significantly better when using the entire

feature set (average AUC, 0.817 versus 0.815; two sample t test,

p ¼ 0.515). However, since Boruta does not need to be run by

default as part of the mantis-ml workflow, the default configura-

tion retains the entire processed feature space and allows the

user to further explore by explicitly specifying ‘‘boruta’’ as the

feature selection algorithm in the ‘‘supervised_filters’’ field inman-

tis_ml/conf/.config. We also tested the performance of the ‘‘stack-

ing’’ classifier when fed with only the base classifier predictions

versus by employing the original feature space on top of the ex-

tracted base classifier predictions. The stacking classifier’s perfor-

mance was considerably better when retaining the original feature

space at the second layer of the ensemble training and prediction,

and this is the default configuration used by mantis-ml.

Enrichment of Top Mantis-ml Predictions among

Different Types of Qualifying Variants
We performed a stepwise hypergeometric test to assess the enrich-

ment of high mantis-ml predictions (top 5% per disease) among

different types of qualifying variants from the collapsing analyses

(focusing on the collapsing analyses gene subsets with p value

<0.05).

We observed that the enrichment of highmantis-ml predictions

among top-ranked putative loss-of-function (pLoF)-associated

genes is always statistically significantly different both from a

shuffled (randomized pLoF-associated gene list) enrichment signal

(Mann-Whitney U test p value ¼ 2.91 3 10�300, 5.53 3 10�147,

and 4.17 3 10�194 for CKD, epilepsy, and ALS, respectively) and

the enrichment signal of genes associated with synonymous vari-

ants (Mann-Whitney U test p value¼ 1.343 10�125, 1.603 10�33,

and 2.363 10�84 for CKD, epilepsy, and ALS, respectively). For the

enrichment analysis of synonymous variants, we have considered

‘‘Dom_coding’’ (dominant coding) as the comparator class in ALS

because of the lack of a real synonymous-based collapsing-analysis

gene list in the published analysis.

We sought to explore how each of the seven classifiers per-

formed when overlapped with top-ranked whole-exome

sequencing (WES)-based gene lists. We observed that with regard
The Ame
to AUC, the best-performing classifiers per disease category in

mantis-ml also ranked among the top three classifiers in terms of

area-under-curve ratios and/or total pLoF area (Figures S10–S12).

Other classifiers also performed comparably or slightly better,

which is in concordance with the similar AUC performance

achieved from differing classifiers retrieved from the original

mantis-ml training, again reinforcing the consistency and robust-

ness of the framework irrespective of chosen classifier.

Visualization of Cross-Validated Mantis-ml Predictions

and Downstream Analysis
After the cross-validation of mantis-ml predictions with rare-

variant collapsing-analysis studies, we apply dimensionality

reduction on the original feature space to highlight the novel pre-

dicted genes-of-highest interest in the entire exome space. PCA

performed for each of the three disease examples used in this study

achieves a slight segregation of positive and unlabeled genes; the

consensus novel and known gene predictions tend to differentiate

the most from the rest of genes (Figure S14). However, PCA fails to

capture a high ratio of the total variance to be explained by its first

two or three components (the variance explained by the first three

components in each disease case is on average about 21%).

Because PCA is representing the original features as linear combi-

nations of the projected principal components, its inability to

identify patterns of high variability in the entire gene set implies

that the associations between the various collections of features

driving gene predisposition to disease are probably non-linear.

Thus, we then apply two popular dimensionality-reduction

techniques that can identify non-linear patterns in the original

high-dimensional feature space for each disease example: t-SNE

and UMAP. We observe that both methods map most of the

consensus novel genes-of-highest-interest in the neighborhood

of distinct clusters of known genes (Figure S15). Both techniques

capture patterns in more localized regions of genes, although

UMAP might also retain elements from the global structure

more efficiently than t-SNE. By contrasting the two projections,

we can identify clusters of genes that are more likely to be close

(i.e., similar) to each other in absolute terms of distance (similar-

ity). Finally, the mantis-ml tool provides interactive visualizations

of all three projections (PCA, t-SNE, and UMAP) for further inspec-

tion of gene clusters and offers all extracted two-dimensional
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representations of the original data space that allow for further

extraction of clusters of genes (e.g., through the use of HDBSCAN

for further downstream analysis).
Benchmarking of Gene-Prioritization Tools
Benchmarking of gene-prioritization tools is usually impeded by

the high variability of input data, target-prediction goals, and

output results provided by each tool. For this test, we selected

the current state-of-the-art tools that allow for asmuch direct com-

parison against mantis-ml as possible.

Phenolyzer runs similarly to mantis-ml, in that the user only

needs to provide disease-associated terms in free text. We ran Phe-

nolyzer with the following terms by disease:

d CKD- ‘‘chronic kidney disease, nephropathy, glomerulop-

athy, kidney, renal’’ (in accordance with the terms employed

by mantis-ml- ‘‘renal, kidney, nephro, glomerul, distal

tubule’’)

d Epilepsy- epilepsy, seizure (in accordance with the terms em-

ployed by mantis-ml- ‘‘epilep, seizure’’)

d ALS: ‘‘amyotrophic lateral sclerosis, degeneration of the

lateral corticospinal tracts, dysfunction of lateral corticospi-

nal tracts, atrophy of the spinal cord, progressive distal

muscular atrophy, spinal muscular atrophy, first dorsal

interossei muscle atrophy, cervical spinal cord atrophy, corti-

cospinal tract atrophy, corticospinal tract hypoplasia, atro-

phy/degeneration involving the spinal cord’’ (exactly the

same as with mantis-ml).

For all Phenolyzer runs, we selected the ‘‘disease only’’ option in

the ‘‘phenotype interpret’’ parameter. Selecting the ‘‘phenotype

interpretation’’ option (i.e., looking for both diseases and pheno-

types) for this parameter did not give any enrichment against

collapsing analysis predictions (data not shown). On the other

hand, we trainedmantis-ml by selecting any phenotype or disease

term associated with the provided string input (i.e., not restricting

it exclusively to disease-associated terms), yet it managed to cap-

ture probable pathogenic gene signals substantially better than

Phenolyzer. All other parameters for Phenolyzer were used with

their default value in the webserver application:

d ‘‘Gene selection/Region selection/Weight Adjust/Word

Cloud’’- no

d ‘‘Addon Seed Gene’’- ‘‘DisGenet Disease Gene Mapping,’’

‘‘Genetic Association Database’’

d ‘‘Addon Gene Relations’’- nothing selected

d ‘‘Addon Gene Scores’’: ‘‘Gene Haploinsufficiency Score,’’

‘‘Gene Intolerance Score’’

When we tested Phenolyzer’s predictions against the collapsing

analyses, we ensured that we were testing only for genes that are

represented both in Phenolyzer’s output and in the collapsing re-

sults to avoid any unfair conclusions in the results.

With regard to ToppGene, for benchmarking on ALS we pro-

vided the same set of seed genes as with mantis-ml (77 genes)

and provided the rest of the exome as the test set. Attempting to

run ToppGene for CKD and epilepsy by providing the respective

mantis-ml-generated sets of seed genes (587 and 864 genes, respec-

tively) and providing the rest of the exome as the test set was not

possible because the webserver was crashing while trying to read

and pre-process the original training and test-set input. We thus
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employed as our test set a smaller set of genes that was amenable

to processing by the ToppGene webserver. In order to compensate

for the inability of ToppGene to look into the entire exome, we

provided the top 7,000 genes predicted by the collapsing analyses

onCKD and epilepsy as our test set, thus informing it with approx-

imately the top one-thirdof the exome, which is more likely to be

associated with the respective disease.

The training and test sets employed by ToppGene for each dis-

ease were also used for ToppNet. In addition to that, we selected

the default graph-prioritization parameters for each disease

example:

d Prioritization method: k-step Markov

d Step size: 6

All data and scripts used for benchmarking are available at

the GitHub repository under ‘‘mantis-ml-release/misc/overlap-

collapsing-analyses’’ and are separated into folders for each bench-

marked tool.
Concordance of Classifier Predictions for the Generic

Mantis-ml Score
The generic mantis-ml score (GMS) was trained on the basis of all

OMIMdisease-associated genes via six different classifiers: random

forest, extra trees, gradient boosting, XGBoost, SVC, and DNN.

Here, we have excluded the stacking classifier because it has a

much longer training time than the other classifiers and, as a

result, has a slightly lower AUC performance. Results retrieved

by all classifiers were highly concordant. Specifically, of the

4,041 known genes, around 1,300 (32.2%) were consistently iden-

tified by all classifiers (with probability >0.5). Another 380 known

genes (9.4%) were further identified by at least five of the six clas-

sifiers. With regard to novel disease-associated genes, again the

largest group of predicted genes (n¼ 600) was predicted by all clas-

sifiers, and ~320 novels genes were predicted by at least five classi-

fiers. In both cases, DNN had the highest number of known and

novel predictions identified solely by a single classifier (280 and

680 predicted genes, respectively).
Mantis-ml Package Structure
We built our mantis-ml framework by using Python on top of the

sckit-learn and keras libraries. We have also employed the ‘‘Boruta’’

R package for feature selection based on the Boruta algorithm. The

main components of mantis-ml are the ‘‘pre_processing,’’ ‘‘unsu-

pervised_learn,’’ ‘‘supervised_learn,’’ ‘‘post_processing,’’ and ‘‘vali-

dation’’ modules. The ‘‘pre_processing’’ module implements the

functionality for compilation of the input feature table, which

contains three classes of features: generic features (tissue and/or

disease-agnostic), features filtered by tissue and disease-specific

features. Compilation of tissue and/or disease-specific features is

performed with a curated dictionary of relevant query terms. After

data compilation, the ‘‘pre_processing’’ module implements the

rest of its main functionality around feature pre-processing,

exploratory data analysis, and visualization of features distribu-

tion. The ‘‘unsupervised_learn’’ module performs dimensionality

reduction on the processed feature set for visualization purposes

and extraction of two-dimensional representations of the data

for downstream analysis, such as clustering and pathway-enrich-

ment analysis. Processed feature tables are then passed on to the

‘‘supervised_learn’’ module for feature selection with Boruta and

the stochastic positive-unlabeled learning task, which is the core
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of the mantis-ml workflow. Prediction probabilities extracted from

this step are fed to the ‘‘post_processing’’ module for aggregation

of results and optional overlap with third-party studies (e.g.,

rare-variant cohort studies or any independently generated ranked

gene list) through use of the ‘‘validation’’ module.

External Libraries Used for Implementations of

Supervised-Learning Models
For random forest, extra trees, gradient boosting, and SVC, we

used their implementations from scikit-learn (v0.20.3), whereas

for DNNs we used Keras (v2.2.4) with Tensorflow (v1.10.0) in

the backend. XGBoost’s implementation was provided by the

xgboost Python package (v0.80).

Computational Requirements and Time Complexity
All three benchmarked disease examples have been run on a sim-

ple linux utility for resource management (SLURM) cluster with 10

CPU cores (Intel(R) Xeon(R) CPU E5-2683 v. 4 at 2.10 GHz) for ten

stochastic iterations. The total time required for each study was

inversely proportional to the respective number of seed genes

because this directly influences the total number of random

balanced datasets that need to be trained with k-fold cross-valida-

tion. Specifically, total execution time across all classifiers was 1 h

55 min, 2 h 33 min, and 11 h 23 min for epilepsy, CKD, and ALS,

respectively (for 864, 587, and 77 seed genes, respectively).
Results

Mantis-ml Overview

We developed mantis-ml as an automated machine-

learning (AutoML) framework to enable learning from an

arbitrary set of gene-associated features (Figure S1). We

collated data from a diverse set of gene-annotation sources

(Figure 1A and Table S1) classified into three categories:

generic resources (disease and/or tissue agnostic), resources

filtered by tissue, and finally, disease-specific features.

Given a set of user-specified query terms relating to a tissue

and/or disease of interest, the data compilation and clean-

ing is performed automatically (see Methods). Currently,

over 1,200 gene-annotation features are integrated in our

framework. Additionally, mantis-ml automatically gener-

ates a rich set of visualizations for exploratory analysis

on the original feature space (see Methods).

Stochastic Semi-supervised Learning for Gene

Prioritization

Positively labeled genes for the gene prioritization are

retrieved by mantis-ml from the Human Phenotype

Ontology5 (HPO) on the basis of user-provided inclusion

and exclusion query terms that are relevant to a particular

disease (seeMethods). The HPO component then identifies

seed genes on the basis of the documentation of gene-dis-

ease association in OMIM and additional clinical terminol-

ogy curated by clinicians participating in regular

workshops hosted by the HPO team. An important pecu-

liarity for this problem derives from the fact that in most

diseases, the overall set of known disease-associated genes

(positive labels) is typically in the range of approximately
The Ame
tens to hundreds of genes. This makes the entire protein-

coding gene set (n ¼ 18,626) highly imbalanced in terms

of the overall population of positive and unlabeled data

points. Additionally, the entire gene space is finite and

practically already known, so we are not bound by the

usual machine-learning requirement to train a model

that can generalize well on unseen data. Our end goal is

to rank the entire gene set with respect to a diverse pool

of disease groups and ensure that our predictions are not

biased by a single training dataset of a subset of genes

assumed to be representative of the global distribution of

all genes. As a result, and in combination with the lack

of a well-defined negative set, training a sufficiently gener-

alizable model to then make predictions on the basis of a

test set would not be ideal in this context.

To address this issue, we constructed a gene-prioritiza-

tion framework that is based on a positive-unlabeled

approach: a stochastic semi-supervised learning technique

(L iterations) across multiple random balanced datasets

from the entire gene set (Figures 1B and S1B) with iterative

predictions on out-of-bag data. In each stochastic iteration,

we create a random partitioning of the unlabeled gene

space to formM balanced datasets, with a positive-to-unla-

beled points ratio equal to 1:1.5. Each balanced dataset

contains a random X percentage sample of the positive

(seed) genes (default X ¼ 80%) to reduce bias induced by

use of the entire positive gene pool in each training task.

The unlabeled data are treated as negative because training

on positive and unlabeled data in general gives scores pro-

portional to the ones retrieved by training on positive and

negative data.18We then perform a stratified k-fold split on

each balanced dataset (default k ¼ 10) and train with a

standard classifier for each possible combination of k � 1

folds (training set) followed by prediction each time on

the out-of-bag kth fold (test set). This process is performed

k times over each balanced dataset, and upon each training

cycle, prediction probabilities are retrieved only for the

genes belonging to the respective test set (out-of-bag kth

fold). We tested seven different classifiers to be used during

positive-unlabeled learning for each balanced dataset (see

Methods). All classifiers performed comparably (average

AUC, 0.831–0.850), implying that mantis-ml is not sensi-

tive to the underlying machine-learning method but is

rather enabled by the informativeness of the integrated

data itself.

This process creates, from the entire gene space, multiple

smaller gene poolsthat have comparable numbers of

known and unlabeled genes and allow the classifier to cap-

ture strong patterns among the known genes to then rank

all genes (both known and novel) with respect to a disease

profile. Notably, this process can also identify mislabeled

known genes and automatically readjust their rank given

a sufficiently curated starting set of known disease-associ-

ated genes. The entire procedure is repeated for L itera-

tions, each one leading to a random set of balanced sets

to allow inclusion of each gene in out-of-bag sets multiple

times and subsequently lead to less biased andmore robust
rican Journal of Human Genetics 106, 659–678, May 7, 2020 667
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Figure 3. Mantis-ml Performance Sensitivity on Seed Genes and Consensus of Top Feature Contributors across Different Disease
Examples as Determined with the Boruta Algorithm
(A) Prediction probability distributions from positively labeled (seed) genes across the three disease examples when selected from HPO
versus randomly assigned. Random seed genes are predicted with an almost uniform probability distribution, whereas real seed genes
successfully get ranked to the top of the spectrum (probability values close to 1).

(legend continued on next page)
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results. mantis-ml does not define a static underlying

model but prioritizes all genes on the basis of the probabil-

ity prediction they have achieved over multiple iterations

that have grouped the genes into random balanced groups.

Eventually, we aggregate the prediction probabilities as-

signed to each gene member from out-of-bag sets (either

positive or unlabeled) across all L 3 k 3 M iterations. For

each gene, this forms a probability distribution regarding

the association of a gene with the disease under examina-

tion. The final gene predictions are ranked on the basis of

the mean of their probability distributions (results equiva-

lent with median, Pearson’s r > 0.9996, p < 2.2 3 10�308).

Application on Three Disease Examples: ALS, CKD, and

Epilepsy

We applied mantis-ml on three complex diseases: ALS,

CKD and epilepsy (genetic generalized epilepsy). We

selected these because studies involving hypothesis-free

exome-wide association statistics have been previously

published for these disease examples. The positively

labeled gene set for each disease was selected on the basis

of a user-defined curated dictionary of inclusion and exclu-

sion terms used for automated querying and extraction

from HPO (Table 2). Tissue-specific and disease-relevant

features were automatically extracted on the basis of the

same query terms applied to the mantis-ml integrated

knowledgebase (see Methods). The total number of known

(seed) positively labeled genes found for each disease on

the basis of HPO was 587, 864, and 77 for CKD, epilepsy,

and ALS, respectively.

We first ran a benchmarking test on ten random

balanced datasets from the CKD example and obtained

an average best AUC performance of 0.85 (Figure 2; see

Methods); scores were comparable across all classifiers.

We then applied all seven classifiers on each disease

example Each yielded comparable performance (see

Methods): average AUC scores were 0.846, 0.821, and

0.814 for CKD, epilepsy, and ALS, respectively. Specifically,

XGBoost and random forest had the best performance in

CKD (average AUC: 0.846); this was followed by gradient

boosting and extra trees (average AUC: 0.843 and 0.839,

respectively), and some of the most well-established CKD

genes (PKD1, PKD2, COL4A1, COL4A3, COL4A4, and

COL4A5) ranked in the top 0.2%–0.7% of all genes

(Figure S6). An aggressive prediction-probability threshold

of 0.5 was used for classifying genes as either predicted

known or novel and assessing the concordance of results

across classifiers. We observe high concordance between

the predictions from all classifiers with regard to known

and novel disease-associated genes (see Supplemental

Methods). Having no further knowledge to validate
(B) Top feature contributors per disease example are based on the su
ranked merely on the basis of their Z scores and are considered co
whether they reach significance level.
(C) Intersection of confirmed Boruta features across the three disease e
Features in black font correspond to the top 20 features as determin
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mantis-ml predictions at this stage, we choose to consider

the gene rankings of the classifier with the highest average

and individual AUC scores as the default mantis-ml prior-

itization scheme for the respective disease.

We then sought to examine the importance of the seed-

gene set for the prediction performance of mantis-ml. We

thus tested the prediction probabilities across all seed

(positively labeled) genes in the three disease examples

(CKD, epilepsy, and ALS) when the seed-gene set is selected

either randomly or on the basis of the HPO annotation

(Figure 3A). The size of seed-gene sets varies in these dis-

ease examples (CKD: 587, epilepsy: 864, and ALS: 77), al-

lowing exploration of the importance of seed-gene lists

of varying length. We observed that in all three diseases,

the prediction probabilities for seed genes when a real

seed-gene set was used are skewed toward a probability of

1.0, whereas the respective distribution acquired when

random seed genes of the same length were used is almost

uniformly distributed across the entire probability spec-

trum (0.0–1.0). In all cases, themantis-ml probability-score

distributions obtained when real seed genes were used

were significantly different from those obtained with

random seed genes of matched gene-set size (Mann-Whit-

ney U test p value¼ 3.813 10�87, 2.343 10�87, and 1.023

10�08 for CKD, epilepsy, and ALS, respectively).

Mouse Model Phenotypes, Tissue Expression, Protein-

Protein Interactions, and Intolerance Metrics Are

Recurrently among the Top Features

Althoughmantis-ml focuses on identifying features highly

predictive of known seed genes, we expect that some fea-

tures are generally strong predictors of disease-associated

genes. In total, mantis-ml integrates more than 1,200 fea-

tures (Figure 1) that are automatically subset according to

the disease under study. We sought to explore the contri-

bution of each of the features during learning across all

three examined disease examples. We adopted the

Boruta21 algorithm based on a random forest classifier

across 100 random balanced gene subsets with 10-fold

cross-validation (see Methods). The Boruta algorithm pro-

vides an unbiased assessment of feature contribution

because it constructs artifactual features (shadow features)

from random permutations of each of the actual features of

a dataset and then iteratively confirms or rejects the orig-

inal features on the basis of their Z score distances from

the importance levels achieved by the random (shadow)

features. We ran Boruta for CKD, epilepsy, and ALS and ex-

tracted the consensus profile of feature importance in each

disease case across ten stochastic iterations (Figures S9A–

S9C; see Methods). We then normalized the Z scores

among the three disease cases (min-max normalization)
m of normalized average Z scores returned by Boruta. Features are
nfirmed features according to this rank but without reference to

xamples (CKD, epilepsy, and ALS) and the generic disease classifier.
ed by the aggregate normalized Boruta scores.
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to compare the relative importance of each feature in the

different diseases and provide a disease-agnostic consensus

of the feature-importance profile (Figures 3B and 3C).

The consensus of feature selection across CKD, epilepsy,

and ALS reveals mouse-model phenotypes and tissue-spe-

cific expression (in kidney, brain, and either brain or skel-

etal muscle, respectively, on the basis of ProteinAtlas and

GTEx) as consistently highly important contributors. Spe-

cifically, the ‘‘MGI mouse knockout feature’’ is the top

contributor in all three cases. This feature captures human

genes with mouse orthologs that (according to Mouse

Genome Informatics [MGI]) are associated with a ‘‘high-

level mammalian phenotype’’ relevant to the disease un-

der study (see Methods). Moreover, human orthologs of

mouse genes that have been found to be essential for basic

developmental functions and/or survival in mice (MGI

essential gene) are the next top contributors in CKD and

epilepsy and are among the top contributors for ALS. Tis-

sue-specific expression [‘‘GTEx tissue specific expression

(TPM)’’, ‘‘ProteinAtlas expression (not detected),’’ and

‘‘GTEx tissue specific expression rank’’] follow in the order

of consistent feature importance and makes a particularly

high contribution to ALS compared to the other two dis-

ease cases. An interesting outcome of the Boruta algorithm

is the emergence of protein-protein interactions-related

features’ (‘‘inferred seed genes overlap’’ and ‘‘experimental

seed genes overlap’’) being ranked in the top five recur-

rently important features. These represent bespoke con-

structed features to capture the ratio of known (seed) genes

interacting directly with the index gene on the basis of

either an ‘‘experimental’’ or ‘‘inferred’’ prediction from

the ‘‘InWeb_IM’’ resource8 (see Supplemental Methods).

Finally, tissue-specific gene ontology (GO) terms, intoler-

ance scores based on ExAC and GnomAD (‘‘GnomAD_

pLI’’, ‘‘GnomAD_obs_lof,’’ ‘‘GnomAD_oe_mis,’’ ‘‘GnomAD_

pRec,’’ and ‘‘RVIS’’), tissue-specific GWAS metrics (‘‘GWAS

max p value’’ and ‘‘GWAS max OR’’), and gene size com-

plete the picture of the most contributing features for clas-

sification of disease-associated genes.

Application of Mantis-ml Predictions to Support

Triaging of Exome-wide Cohort Association Studies

The rapid development of next-generation sequencing

(NGS) technologies in recent years has led to the ubiqui-

tous application of large-scale genomic studies by large

genomic and/or healthcare institutions for research and

diagnostic purposes. Of special interest are large associa-

tion studies that assess the enrichment of rare predicted

deleterious variants in a collection of disease-ascertained

cases in comparison to an available control population.

Depending on the contribution of individual genes to

disease risk, these studies can provide experiment-wide

significant results,15,22 but more often they yield many

highly ranked genes of interest that do not exceed themul-

tiplicity-adjusted genome-wide statistical-significance

threshold. Thus, biologically relevant genes are expected

to be residing among stochastic signals representing the
670 The American Journal of Human Genetics 106, 659–678, May 7,
natural tail of the null distribution. Teasing apart the bio-

logical signals from stochastic signals among the top ranks

is a key challenge for most high-throughput genomics

screens. Often downstream bioinformatic analysis in-

volves laborious post-hoc review through existing litera-

ture, and this process can be biased by differing decisions

influenced by an individual researcher’s prior experience

or familiarity. Thus, the adoption of different resources

by different researchers will ultimately result in triaging

different genes.

Mantis-ml eliminates subjectivity and post-hoc design

from gene prioritization by using a standardized set of

community knowledge and collectively assessing all inter-

actions (both linear and non-linear) between multiple fea-

tures. To demonstrate the utility of leveraging the power of

mantis-ml predictions to support triaging candidate genes

found among results from WES-based association studies,

we selected three disease studies whereby genes have

been previously ranked on the basis of the significant

case-enrichment of various types of qualifying variants,

e.g., pLoF, missense, synonymous, etc. For CKD, we are

cross-referencing a study examining the preponderance

of rare pLoF and other types of rare variants across a popu-

lation of 3,150 affected individuals and 9,563 controls.14

Another study of 640 individuals with familial genetic

generalized epilepsy and 3,877 controls has been em-

ployed for further triaging on the basis of the mantis-ml

predictions for the epilepsy disease case.15 Finally, for

ALS, we are using the results from a study looking into

the collapsing analysis results of nearly 3,000 individuals

with ALS versus 6,405 controls.13

In each example, we ask the question of whether the

lowest p values from the exome-wide association statistics

(highest ranked from cohort studies) are significantly en-

riched for genes that achieved among the highest

mantis-ml predictions for that corresponding disease. To

this end, we apply a hypergeometric enrichment test

asking whether the top 5% of mantis-ml predictions in

each disease example are preferentially overlapping with

the top signals (genes with p < 0.05) from the cohort-level

association studies. To strengthen our experimental design

with negative control components, we assess this enrich-

ment across several differing classes of qualifying variants,

including synonymous and permutation-based gene-

ranks, which should represent the null, to contrast the

more biologically interesting models, such as the pLoF

and ultra-rare deleterious missense collapsing analyses.

We observed a strong enrichment in all three disease ex-

amples, and mantis-ml predictions overlapped signifi-

cantly with the exome study ranking for pLoF variants

(Figure 4A; see Methods). Notably, the significance of

enrichment for pLoF signal within mantis-ml predictions

is higher than for signals formed on the basis of other

types of qualifying variant classes (synonymous, common,

missense, and shuffled/random permutation; pLoF

p value ¼ 0.0004, 0.0005, and 0.009 for CKD, epilepsy,

and ALS, respectively, on the basis of the hypergeometric
2020
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Figure 4. Cross-Validation of Mantis-ml Predictions (Wehn Both Known and Novel Genes Are Considered) with Cohort-Level Rare-
Variant Association Studies
(A) Hypergeometric test enrichment of disease-specific mantis-ml predictions with collapsing-analysis results fromCKD (1), epilepsy (2),
and ALS (3) cohorts. The horizontal dashed red line corresponds to the significance threshold of p ¼ 0.05 for the hypergeometric tests.
The places where the plot(s) go above this line highlight significant enrichment of mantis-ml-top-gene predictions among the popula-
tion-genomic collapsing analyses. The vertical dashed lines, colored on the basis of the different classes of qualifying variants, indicate

(legend continued on next page)
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test at the step where collapsing analysis reaches a p value

of 0.05). Additionally, the enrichment of high mantis-ml

predictions among top-ranked pLoF-associated genes is al-

ways statistically significantly different both from a shuf-

fled enrichment signal (Mann-Whitney U test p value ¼
2.91 3 10�300, 5.53 3 10�147, and 4.17 3 10�194 for

CKD, epilepsy, and ALS, respectively) and from the enrich-

ment signal of genes associated with synonymous variants

(Mann-Whitney U test p value ¼ 1.34 3 10�125, 1.60 3

10�33, and 2.36 3 10�84 for CKD, epilepsy, and ALS,

respectively). This evidently suggests the biological rele-

vance of mantis-ml predictions with pathogenicity

likelihood.

We further quantified the enrichment signal by calcu-

lating the ratios of areas under the curve between the

pLoF and synonymous collapsing-analysis signals for

CKD and epilepsy; for ALS, we used the total areas covered

by the pLoF enrichment signal for ALS (because of the lack

of a synonymous-associated signal in the respective pub-

lished study; Figure 4A). The synonymous enrichment

signal serves as a negative control (technical baseline)

because we expect genes prioritized during collapsing anal-

ysis based on synonymous variants not to be associated

with pathogenicity, in general.

We also performed the hypergeometric test to assess the

enrichment of mantis-ml-predicted ‘‘known’’ or ‘‘novel’’

genes, separately, against the results of the collapsing anal-

ysis. We observe that mantis-ml predictions for ‘‘known’’

genes are significantly enriched for the top results of the

collapsing analysis for all three disease examples

(Figure S22A), indicating the biological relevance of the

HPO-extracted seed genes (average p values in the signifi-

cantly enriched region for ALS, 0.0085; CKD, 0.0034; epi-

lepsy, 0.019). Similarly, mantis-ml predictions of ‘‘novel’’

genes are also significantly enriched for the top

collapsing-analysis hits (Figure S22B) consistently across

all three disease examples, proving that mantis-ml cap-

tures novel signals that have direct genetic evidence and,

thus, are more likely to be biologically relevant for the dis-

ease of interest (average p values in the significantly en-

riched region for ALS, 0.013; CKD, 0.044 ; epilepsy, 0.031).

By applying the hypergeometric test for mantis-ml pre-

diction enrichment in published case-control association

studies, we can eventually extract a consensus list of pre-

dicted novel genes of highest interest that satisfy both

the hypergeometric test (p< 0.05) and the collapsing-anal-

ysis statistical significance threshold (p < 0.05). Through

the application of mantis-ml predictions onto published

collapsing-analysis results, we are able to highlight 19

(CKD), eight (epilepsy), and 13 (ALS) novel (unlabeled)
the last index of top-ranked genes from the collapsing analyses achie
represent the magnitude of enrichment signal for LoF and synonymo
and the hypergeometric enrichment test against mantis-ml predictio
(B) Consensus of genes of highest interest (novel) that satisfy the sign
hypergeometric results and that are supported by five out of seven cla
disease examples.
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genes of highest interest. To validate this approach, we

also assessed the results retrieved with regard to known

(seed) genes for each disease. For example, in CKD we

observe that some of the most well-established CKD-asso-

ciated genes (PKD1, PKD2, COL4A1, COL4A3, COL4A4,

and COL4A5) rank in the top nine genes among the 17

known CKD genes that achieved both a collapsing analysis

p < 0.05 and hypergeometric test p < 0.05 (Figure S13).

Downstream Review of Cross-Validated Mantis-ml and

Collapsing-Analysis Predictions

The unlabeled genes of highest interest (novel mantis-ml

predictions) represent a collection of genes that were not

among the HPO-derived set of seed genes in the initial pro-

cess of mantis-ml.We looked in the literature for references

for the top-suggested novel genes per disease by mantis-ml

and found supporting evidence for several genes. For

instance, it has been reported in the last two years that

LAMA5 variants are co-inherited with COL4A5 variants

in familial hematuria,23 and such co-inheritance might

affect pediatric nephrotic syndrome.24,25 Moreover, NOS3

and NOS2—although not associated with CKD in

OMIM—have been implicated in CKD in multiple

studies,26–29 whereas MEF2C, a gene typically associated

with neurodevelopmental disorders, has also been associ-

ated with estimated glomerular filtration rate (eGFR) or

proteinuria.30 SCLT1 deficiency has been linked with cystic

kidney disease,31 and SMAD genes (including SMAD3)

have been reported to affect CKD progression when they

are dysregulated.32 INPP5B impairment has been associ-

ated with severe renal phenotypes, such as proximal-tu-

bule endocytosis,33 and targeting NFE2L2 (NRF2) has

been tested as a method of preventing kidney disease

progression.34

With regard to the top novel epilepsy-associated predic-

tions, CACNA1B is associated with the voltage-gated cal-

cium channel that has been only recently implicated in

epileptic phenotypes.35–37 USF1 deficiency in mice (in

combination with USF2 knockout) has been shown to

cause epileptic seizures,38 suggesting the important role

this gene plays in normal brain function. Furthermore,

KDM6B is associated with neuronal survival,39 and when

haploinsufficient, it has been reported to cause severe

seizures.40 ANK3 has also been reported to be involved in

epilepsy.41,42 Loss-of-function (LoF) and gain-of-function

variants in KCNQ5 have been shown to cause epileptic

encephalopathy.43

As for the ALS consensus novel predictions, missense

variants in SYNE1 have been reported to be associated

with a multisystemic neurological-phenotypic spectrum
ving a p value <0.05. The highlighted areas (light green and gray)
us variants identified both from the collapsing analyses (p < 0.05)
ns (p < 0.05).
ificance-threshold criteria in both the collapsing-analysis and the
ssifiers used by mantis-ml in the CKD (1), epilepsy (2), and ALS (3)
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that includes ALS (see Web Resources).44,45 ALDH5A1 is

significantly downregulated in the spinal cord of an ALS

murine model,46 whereas ABCA1 is among the altered

genes in the frontal cortex of ALS samples.47 Finally, motor

neurons in human ALS show significant abnormalities in

DNMT3A, which is also overexpressed in synapses of

mice with motor-neuron degeneration.48

We also report sets of novel genes that have not been

previously associated with the respective disease. Specif-

ically, we have predicted the following sets of most likely

novel disease-associated genes: AMER1, CCP110, CAT,

SERPIND1, GNPTAB, ITPR3, ARHGAP1, CCDC39, FBLN1,

HSPA5, and ERBB4 for CKD; IFT57, MED1, and NFASC for

epilepsy; and NF2, SZT2, ACADVL, MED12, TSC2, EP400,

RYR2, VCL, and BBS2 for ALS.

Finally, we employ three-dimensionality reduction

methods (PCA, t-SNE, and UMAP) and provide static and

interactive visualizations of the predicted known and

novel genes over the transformed two-dimensional spaces

retrieved with each technique for visual exploration and

downstream analysis (see Methods).

Benchmarking against Other Gene-Prioritization

Methods

We then wanted to assess how mantis-ml predictions

compare with previously published methods. Mantis-ml

performs an exome-wide prioritization of genes without

explicitly requiring a user-defined test set. Thus, we sought

to employ methods that provide gene rankings across the

whole exome or at least a large proportion of it so that

they can be directly compared with mantis-ml. Eventually,

we selected three methods for this benchmarking test:

Phenolyzer,49 which is the current state-of-the-art method,

and another two popular tools, ToppGene50 and

ToppNet.51 With regards to selecting a ground truth set

for our benchmarking, we wanted to use a completely in-

dependent dataset so that none of the benchmarked tools,

including mantis-ml, had features informed by our truth

set, thus inducing a circular feedback loop of prediction

and, consequently, biasing the results. We therefore

employ the results from rare-variant genetic association

studies (collapsing analyses12) to assess the enrichment

of highly ranked genes from each tool against the top

ranked genes from each cohort study, which are highly en-

riched for loss-of-function variants in cases compared to

controls.

Earlier, we demonstrated that mantis-ml’s predictions

are highly enriched for the top predictions from collapsing

analyses across three diseases for which data are publicly

available (CKD, ALS, and epilepsy). We thus wanted to

explore the degree of enrichment for the predictions

from each external benchmarked tool when trained for

the same diseases and phenotypes. We trained each tool

by providing either the same disease-relevant terms or

the same training set of genes as inmantis-ml, where appli-

cable (see Methods). We ran the enrichment test against all

gene predictions from mantis-ml and Phenolyzer because
The Ame
they provide prioritization scores for both ‘‘known’’ and

‘‘novel’’ genes (Figure 5A). ToppGene and ToppNet do

not include prioritization results for the provided ‘‘known’’

(seed) genes; thus we also ran enrichment tests against

only the novel ‘‘gene’’ predictions across all benchmarked

tools (Figure 5B). We observe that mantis-ml enrichment

among predictions from genetic association studies is sub-

stantially higher than enrichment for all other methods

across all three disease examples (Figure 5). Phenolyzer

achieves a significant enrichment for CKD and epilepsy

when both known and novel genes are considered but

does not reach the significance threshold for predictions

of novel genes. ToppGene’s novel predictions are relatively

enriched in ALS, and ToppNet’s novel predictions are

borderline enriched in CKD and ALS. However, in all cases,

enrichment derived from each of these tools is consider-

ably lower than that derived from mantis-ml, and each

of these methods overlaps with amuch smaller set of genes

that are significantly enriched in the respective collapsing

analysis. Thus, mantis-ml provides the best-in-class priori-

tization for data extracted from whole-exome -sequencing

studies and potentially from other high-throughput

genomic studies as well (e.g., whole-genome sequencing

and CRISPR screens).

Generic Mantis-ml Score for Gene Disease Likelihood

One of the key requirements for the above three disease-

specific applications of mantis-ml is a sufficient collection

of known OMIM disease-associated genes based on HPO

term linkage. A rich collection of genes will not always

be available. Therefore, we wanted to further explore the

generation of generic mantis-ml predictions. To achieve

this, we trained mantis-ml by using all current OMIM dis-

ease-associated genes (4,041 in total; see Methods) as seed

genes to create a GMS that can be used as a general estimate

of gene-disease likelihood. Although it does not take full

advantage of tissue- and disease-specific features, the

GMS could be an opportunity to prioritize genes among

disorders about which we currently have insufficient

knowledge about disease-associated genes.

We calculated the OMIM-based GMS by using six

different classifiers (see Methods). Gradient boosting was

the top-performing classifier (average AUC ¼ 0.84), fol-

lowed by random forest, XGBoost, and extra trees with

comparable AUC scores (Figure S16). Similar to the dis-

ease-specific cases, in the generic disease mantis-ml results,

we observe a high concordance between the predictions

from all classifiers with regard to known disease-associated

genes among the out-of-bag test sets (see Methods). We

provide the average probability scores returned by gradient

boosting as the default ranking for GMS along with the

respective percentile score for each gene (Table S5).

Furthermore, we re-ran the Boruta algorithm for a single

(L ¼ 1) stochastic iteration to identify the most important

features that drive gene classification on the basis of the

entire OMIM disease annotation and compared it against

the respective features (where applicable) extracted from
rican Journal of Human Genetics 106, 659–678, May 7, 2020 673
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Figure 5. Benchmarking of Gene-Prioritization Tools Is Based on Enrichment of Their Top Predictions against Highly Ranked Genes
from Rare-Variant Genetic-Association Studies across Three Disease Examples: CKD, Epilepsy, and ALS
(A and B) The enrichment signal for each tool is derived from a hypergeometric test between the significant hits (p < 0.05) from the
genetic-association studies (looking into LoF variant enrichment) and the top 5% of ‘‘known’’ and ‘‘novel’’ gene predictions (A) or
‘‘novel’’ gene predictions only (B), from each of the benchmarked tools. The horizontal dashed red line corresponds to the significance
threshold of p ¼ 0.05 for the hypergeometric tests. The vertical dashed lines above each plot, which were colored on the basis of the
respective benchmarked tool, indicate the last index of top-ranked genes that achieved a p value <0.05 in the collapsing analysis
and overlapped the top 5% of gene predictions from that tool.
the disease-specific cases. We observe that mouse-model

phenotypes (‘‘MGI essential gene’’ and ‘‘essential mouse

knockout’’), protein expression (based on GTEx and Pro-

tein Atlas), protein-protein interaction features (‘‘inferred

seed genes overlap’’ and ‘‘experimental seed genes over-

lap’’) are still the top feature contributors as in CKD, epi-

lepsy, and ALS (Figure 6A). Additionally, gene length,

gene ontology features, and intolerance scores (RVIS and

the scores based on GnomAD) rank highly in the normal-

ized average Boruta score scale.

To validate the generic disease classifier results, we

explored the ability of mantis-ml to correctly identify a

set of known genes that has not been provided as part of

the original seed gene set. Thus, we masked a random se-

lection of 40% of the 4,041 seed genes (considered unla-

beled) and then trained the generic mantis-ml algorithm

by using gradient boosting as the standard classifier for

L ¼ 5 stochastic iterations. Notably, there was no signifi-

cant difference between predictions of masked OMIM dis-

ease-associated genes and unmasked seed genes (Mann-
674 The American Journal of Human Genetics 106, 659–678, May 7,
Whitney U test p value ¼ 0.119; Figure 6B). We explored

the predictive power of GMS in this case in terms of distin-

guishing seed genes from unlabeled ones and retrieved

AUC scores of 0.853 and 0.83 for unmasked and masked

(hidden) seed genes, respectively (Figure 6C).

To avoid any over-prediction bias from the unmasked

seed genes, we assessed the ability of GMS to efficiently

stratify different OMIM- and MGI-based gene classes on

the basis of prediction probabilities assigned to hidden

seed genes only. The gene classes that we used have been

defined in a previous work,9 and the intersection with

the hidden genes used in this case are as follows: OMIM

dominant-negative genes (130), OMIM de novo and hap-

loinsufficient genes (46), OMIM de novo genes (168),

OMIM recessive genes (304), OMIM haploinsufficient

genes (70), and MGI seizure orthologs (25). We also

compiled the union of these gene classes as the OMIM_

MGI_union set (510). We observed a high predictive power

for GMS in this classification task; AUC scores ranged from

0.82–0.86 across the different OMIM or MGI gene sets and
2020
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C D

Figure 6. Generic Disease Mantis-ml Classifier for Estimation of Gene Disease Likelihood
(A) Comparison of consensus top feature contributors from CKD, epilepsy, and ALS with GMS feature-importance scores. The consensus
of the disease-specific case is calculated as the mean of the normalized average Z scores returned by Boruta for each disease case.
(B) Generic mantis-ml prediction probabilities across different gene classes. The ranking was performed with 60% of the original seed
genes set, and the other 40% of seed genes were treated as unlabeled. The unlabeled sample class represents a random sample from

(legend continued on next page)
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was 0.80 of the union of these genes (Figure 6D). These

scores are considerably higher than those from similar as-

sessments using other metrics of genic intolerance: gno-

mAD_pLI, gnomAD_mis_z, RVIS_ExACv2, ExAC_

cnv.score, and LoF_FDR_ExAC. The AUC performance of

these scores in the task of OMIM/MGI versus non-

OMIM/MGI classification (Figure S21) were in the range

of 0.58–0.85 (gnomAD_pLI), 0.47–0.79 (gnomAD_mis_z),

0.47–0.70 (ExAC_cnv.score), 0.50–0.68 (RVIS_ExACv2),

and 0.50–0.72 (LoF_FDR_ExAC). The respective AUC

scores for the classification of the union of OMIM/MGI

gene sets versus non-OMIM/MGI genes were in the range

of 0.48–0.60 across all these metrics. It is, however, impor-

tant to note that these component metrics are based on

more specific datatypes, whereas mantis-ml leverages the

information from a wider and more diverse collection of

features. The ability of mantis-ml to correctly classify hid-

den seed genes underlines its power to subsequently

correctly identify other unlabeled genes and provide a bio-

logically meaningful ranking.

Finally, we explored howGMSwould performwhen over-

lapped with disease-specific rare-variant collapsing-analyses

results. This explorationwas similar to our above assessment

where we used the disease-specific mantis-ml predictions

(Figure S17). We noticed that there is still significant enrich-

ment of the LoF signal in all three disease examples, but it is

at a lower level than in the disease-specific cases (GMS ratios

ofLoF to synonymousarea, 1.18, 0.81, 2.21; respective scores

with disease-specific classifiers, 4.97, 33.95, not defined, as a

result of the lack of a synonymous class in the ALS disease

example). This highlights the added value of leveraging the

disease-specific features to efficiently identify genes associ-

ated with a disease when such information (seed genes) is

available.
Discussion

Presently, the genomics community is generating and

analyzing large volumes of genomic data to better under-

stand the genetic architecture of rare and common com-

plex disorders. Here, we introduce a multi-dimensional

machine-learning framework, mantis-ml, to support the

triaging of the large-scale genome-wide readouts to further

aid the prioritization of novel disease-associated genes.

Mantis-ml takes its name from the Greek word mάnth2
which means ‘‘fortune teller.’’ Here, we have shown

demonstrable predictive utility when combining mantis-

ml with gene lists generated by large-scale association

studies to enable a standardized and objective prioritiza-

tion of genes for further functional validation in in vitro

and in vivo models.
the unlabeled genes of equal size to the set of hidden genes.. Mann-W
distributions of all pairs of gene classes (p values shown at the box o
(C) Predictive power of GMS to distinguish seed genes (unmasked an
(D) Predictive power of GMS to distinguish different OMIM- and MG
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As with most machine-learning frameworks, one limi-

tation of mantis-ml is its dependency on existing pat-

terns. As such, mantis-ml is most powerful in identifying

new disease-associated genes that might cause disease

through an existing understood mechanism. Disease-

associated genes representing an entirely unexpected dis-

ease mechanism might not be as highly prioritized.

However, there might be opportunities to explore unsu-

pervised approaches by clustering the results from

t-SNE and UMAP (which are part of the mantis-ml pro-

cessing workflow) to detect gene clusters that might

not be well recognized. Moreover, the current mantis-

ml package supports bespoke disease-specific features

for CKD and cardiovascular disease (e.g., CKDdb, GOA,

exSNP, etc.). These sets of features could be expanded

for additional diseases via relevant data resources that

might enable even more refined stratification of genes

in other disease categories.

It will be interesting to explore how mantis-ml results

validate against additional independent datasets that

reflect gene rankings (e.g., CRISPR screens, GWAS etc.).

For micro-array variant-level GWASs, one way to explore

this would be to extract gene rankings on the basis of the

lowest p value found for each gene. However, the mapping

process is a challenge in this context because many of the

variant signals from GWASs do not map to a single gene,

especially in gene-dense regions of the genome, and

thus, the confidence that a variant is mapped to the under-

lying biologically relevant gene can be low when the

closest protein-coding gene is selected. Although this po-

tential application on GWAS data is currently out of scope,

we do provide the ‘‘mantisml-overlap’’ command line tool

as part of the mantis-ml framework to enable users to vali-

date the mantis-ml predictions against any other gene

rankings (extracted e.g., from GWAS, CRISPR, or other

high-throughput genetic screens).

Opportunities for future technical expansion of this

approach include exploring integrating autoencoders for

fully feature-agnostic dimensionality reduction as well as

applying graph convolutional networks into a multiple

kernel learning approach to better leverage information

from multiple protein-protein interaction networks at

the same time. Our framework could also extend to variant

prioritization; however, this would require a revised design

and a different collection of variant-level features.

We propose use of mantis-ml as an objective, standard-

ized, fully quantitative and automated gene-prioritization

tool for disease-specific or disease-agnostic studies. Addi-

tionally, we provide it as a complementary tool for the

assessment of putative disease-associated genes extracted

from completely orthogonal large-scale studies of human

genetics thus reducing the required time for triaging top
hitney U tests were performed between the prediction-probability
n the right) to quantify their similarity degree.
d hidden) from unlabeled genes via a logistic regression classifier.
I-based hidden seed genes from unlabeled ones.
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gene candidates from what is often a weeks to months-

long process down to just a couple of hours.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.03.012.
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