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Abstract: Heterogeneous nanostructures containing nanoparticles of various sizes and shapes have
attracted significant attention in the development of nano-biosensors. Especially, plasmonic properties
of such materials are advantageously exploited for the detection of biological and chemical substances.
Since these media exhibit optical anisotropy, a valid homogenization procedure must be able to describe
appropriately the relationship between the geometry of the inclusions and the nature of local field
modes. We present a model approach for extension of the effective medium approximation (EMA) and
its application to anisotropic nanostructures. The proposed model is based on a “strong-couple-dipole”
(SCD) method including a volume-integral correction term in a Green tensor that enables to obtain
more accurate representation of polarizability tensor. Derived depolarization factors for discs and
bi-cone particles are compared with the early known shapes (spheroids, cylinders) and applied to
nanostructures composed of the Fe or Au nanodots in polyacrylate.
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1. Introduction

The development of novel nano-fabrication technologies has attracted significant attention
because of the plasmonic properties of nanomaterials and the feasibility of exploiting them for the
detection of biological and chemical substances [1]. Noble metal nanoparticles, such as gold and
silver, exhibit unique optical resonance properties, and they have been proven to be useful for these
applications [2–4]. Therefore, the immobilization of nanostructures with nanoparticles of various
sizes and shapes is an important fabrication process for the development of nano-biosensors [5,6].
Increasing requirements of the accuracy and reliability of sensing devices can be advantageously solved
by theoretical modelling [7,8]. A tentative design of composite nanostructures based on an appropriate
theoretical model brings the possibility of pragmatic tuning of the required properties at a low-cost.

The applicability of effective medium approximation (EMA) is restricted by the size of the
structures composing the mixture; sufficiently large to preserve locally their own electromagnetic
behavior and small enough for the composite to appear homogeneous compared to the wavelength of
the interacting radiation. Since the traditional approach for effective permittivity introduction used
for isotropic media [9] is not satisfactory for such materials, models exploiting depolarization tensors
have been developed [10,11], however, only for spheroidal inclusions. As the size and/or number of
particle shapes should be explicitly incorporated within homogenization procedures, the deriving of
corresponding depolarization tensors demands generalized methods, based, for example, on the Green
electromagnetic tensor application [7,12]. If the nanoparticles are not extremely small, then the spatial
extent of an associated Green tensor should not be neglected [9].
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The article is organized as follows: The Maxwell-Garnett model of EMA and the basic principle of
SCD (strong-couple-dipole) polarizability model are introduced in the next section in their generalized
forms for homogeneous anisotropic nanoparticles. This theory is presented with an extension for
disc- and cone-shaped inclusions because depolarization factors for nanoparticles of these shapes
have not been referred to so far in detail. Further, in Section 2, there are also disclosed newly derived
correction terms for cylindrical and conical particles. The third section contains, among other things,
the application leading to the magneto-plasmonic (MO-SPR) response in the effective permittivity
of Fe and Au nanoparticles deposited in polyacrylate. The importance of correction factors is also
discussed in this section.

2. Methods

2.1. Effective Permittivity and Green Electromagnetic Tensor

If the electrostatic interaction between nanoparticles is not negligible, it should be taken into
account by the generalized Maxwell-Garnett approach. It estimates the macroscopic response of the
composite as an average effect of the dipole field induced in the host medium by different inclusions.
This can be done by the Bragg-Pippard model of EMA [8] with a modification for a bi-anisotropic
case [11,13]. Assuming volume fraction f of the metallic nanoparticles is in a host medium, effective
permittivity tensor εef can be written as

εe f = εh + f (ε− εh)
[

f I + (1− f )vα−1(ε− εh)
]−1

(1)

The depolarization field is characterized through polarizability tensor α in the Equation (1) by
wavelength λ (see wavenumber k0 = 2π/λ), as well as by the material properties of particles (permittivity
tensor ε) and the permittivity of the host medium (εh). Its frequently used form [9,10],

α = (ε− εh)[εh + L(ε− εh)]
−1
εh,

is expressed as a function of tensor L of depolarization factors, mirroring only the spheroidal particles
of given volume v. In our version, we worked with Green tensor G that enabled us to also take in
account other types of geometries of single particles.

In cases when the inclusions aligned with principal axes, the polarizability tensor can be expressed
in the form [12]

α = v(ε− εhI)
[
I− k2

0v〈G〉(ε− εhI)
]−1

(2)

where k0 = 2π/λ. Denoting the wavenumber k = k0
√
εh, Green tensor G is defined as

G(r, r0) =
(
I +

1
k2∇×∇

)
g(r, r0) , g(r, r0) =

1
4π

eik‖r−r0‖

‖r− r0‖
(3)

where g is the free space Green function of the Helmholtz operator. Assuming an electrically small
characteristic nanoparticle dimension, the tensor 〈G〉 averaged over a volume v with the unit outward
normal vector n of its surface S can be written in the split form [14]

v〈G〉 =
∫
v

G(r, r0)dv =

∫
v

(G−Gs)dv−
1

4πk2

∫
S

n⊗ (r− r0)

‖r− r0‖
3 dS (4)

with

Gs =
1

4πk2∇⊗∇

(
1

‖r− r0‖

)
(5)
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2.2. Depolarizing Tensor

The surface integral

L =
1

4π

∫
S

n⊗ (r− r0)

‖r− r0‖
3 dS (6)

predominates in Equation (4), therefore, we meet its resolved form in numerous practical applications.
Derivation of this term can be proved in several ways [4,15,16]. This integral does not depend on the
volume, but rather on the geometrical shape of the particle. The results are well-known for current
nanoparticle shapes [15,17,18] when these are axially and centrically symmetric.

Tensor L is symmetrical and real-valued; for appropriate orientation of principal axes, it becomes
diagonal. Moreover, the trace Tr(L) = 1 over any sufficiently smooth surface (S). It means the third
diagonal element of L is coupled with the other two; it is L = diag(L⊥, L⊥, 1 − 2L⊥) when the coordinate
axis x3 is integrated with the particle axis. Besides the sphere (L = (1/3, 1/3, 1/3)), we mention at least
the depolarizing factors of the cylinder and spheroid—see Table 1. In this work, we present newly
obtained formulas for the disc and bi-cone (Figure 1).
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Figure 1. Nanoparticle shapes: (A) bi-cone, (B) disc.

The main idea of the depolarizing factors derivation for the nano-disc consists in the following.
Without loss of generality we identify the coordinate center with the center of the disc (Figure 2).
The transform into spherical coordinates leads to the following expression of the radius vector r and
normal vector n:

r = (R sinθ cosϕ, R sinθ sinϕ, R cosϕ−R + h), n = (sinθ cosϕ, sinθ sinϕ, cosϕ) (7)

where ϕ ∈ <0, 2π> and θ ∈<0, acos(1 − h/R)>. This step, among others, eliminates the singularity at
point r = r0 = o.
Nanomaterials 2019, 9, x FOR PEER REVIEW 4 of 8 

 

 
 

Figure 2. Disc–coordinate system and basic notation. 

After the integration of the surface integral (Equation (6)), the substitution h/d = a leads to the 
depolarizing factors in the form  

 
   

    
     

 


2 3 2

11 22 333 3

2 3 3 3 3 3,
3 1 3 1

a a a a a aL L L L L
a a

 (8) 

In the case of the bi-cone, the coordinate center is located into the common center of platforms. 
Similar steps as in previous cases give the results presented in the third row of Table 1. 

Table 1. Depolarizing factors dependence on the geometric shape of nanoparticles. 

Geometric Shape Depolarizing Factor 

CYLINDER  
 2

1
2 1

aL
a

 

SPHEROID 




 
         

2

2 2 2

2

arccos , oblate
11

2 1 1 1 1ln , prolate
1

a a
aaL

a a a da
a a ha

 

BI-CONE    

 
             

2 2 2 2

1 11 ln
2 1 1 1 1 1

a aL a
a a a a a

 

2.3. Correction Tensor 

The role of volume averaged integral  

   ds
v

VM G G  (9) 

in Equation (4) is emphasized especially in the SCD applications, because it enables more adequate 
representation of nanoparticle polarizability. Note that volume v needs not be infinitesimal. The 
evaluation of this term also leads to the diagonal tensor whose elements for cylindrical and conical 
particle are newly derived.  

x2 

x3 

x1 

S 

R 

r h 

 

Figure 2. Disc–coordinate system and basic notation.



Nanomaterials 2019, 9, 1380 4 of 8

After the integration of the surface integral (Equation (6)), the substitution h/d = a leads to the
depolarizing factors in the form

L⊥ = L11 = L22 =
a
(
2a2 + 3a + 3

)
3(1 + a)3 , L‖ = L33 = −

a3
− 3a2

− 3a− 3

3(1 + a)3 (8)

In the case of the bi-cone, the coordinate center is located into the common center of platforms.
Similar steps as in previous cases give the results presented in the third row of Table 1.

Table 1. Depolarizing factors dependence on the geometric shape of nanoparticles.

Geometric Shape Depolarizing Factor

CYLINDER L⊥ =
1
2

a
√

1 + a2

SPHEROID L⊥ =
1
2

a
1− a2


arccosa
√

1− a2
− a, oblate

1
a
−

a2
√

1− a2
ln

1 +
√

1− a2

a
,

(
a =

d
h

)
prolate

BI-CONE L⊥ =
1
2
·

a
1 + a2

a− 1 +
1

√
1 + a2

ln
a(√

1 + a2 − a
)
·

(√
1 + a2 − 1

) 
2.3. Correction Tensor

The role of volume averaged integral

M =

∫
v

(G−Gs)dV (9)

in Equation (4) is emphasized especially in the SCD applications, because it enables more adequate
representation of nanoparticle polarizability. Note that volume v needs not be infinitesimal.
The evaluation of this term also leads to the diagonal tensor whose elements for cylindrical and
conical particle are newly derived.

Again, we suppose that the nanoparticle center of gravity is placed at the center of the coordinate
system. Carrying out the tensor operations in Equations (3) and (5), the components of the Green
tensor are expressed as

Gi j =
eikr

4πk2r3

[xix j

r2

(
3− 3ikr− k2r2

)
− δi j

(
1− ikr− k2r2

)]
(10)

Gs,i j =
1

4πk2r3

[
3

xix j

r2 − δi j

]
(11)

where δij denotes the Kronecker tensor. It can be easily shown that this term is zero-valued for spherical
particles. In the case of the other symmetric particles, an appropriate coordinate transformation enables
obtaining correction tensor elements in a closed form, keeping the assumption about sufficiently
small particle dimensions compared with the wavelength of the acting electromagnetic field. The two
derived correction terms are presented in Table 2.

Table 2. Correction factors dependence on the geometric shape of nanoparticles.

Geometric Shape Correction Factors

CYLINDER M⊥ = −
1
2

R2 ln
(√

1 + a2 − a
)

, M‖ = R2a
(√

1 + a2 − a
)

BI-CONE M⊥ =
aR2

4
√

1 + a2
, M‖ =

aR2
(
1 + 2a2

− 2a
√

1 + a2
)

2
√

1 + a2
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3. Results and Discussion

The properties of a Green tensor related to various shapes of nanoparticles have an important
influence on the effective permittivity defined by Equation (2). In any physical model, the effective
permittivity is importantly influenced by the content of inclusions in the host medium, i.e., by filling
factor f. Especially, if the metallic nanoparticles are exposed to an external magnetic field, then the
induced anisotropy causes the presence of non-zero off-diagonal elements in the permittivity tensor.
This effect is transferred into the polarizability tensor, and, subsequently, into the relative permittivity of
the effective medium. In the presented examples, we assume the polar magneto-optical configuration,
where the acting magnetic field is oriented perpendicular to the sample, i.e., parallel with the x3-axis
(see Figure 2). Thus, the permittivity tensor has non-zero off-diagonal elements ε12 = −ε21 (=εxy, ef).

The most conspicuous response is again observed for cylindrical nanoparticles in agreement
with the previous result. This fact is demonstrated by tensor component εxy in Figure 3 for the iron
nanoparticles in polyacrylate by varying the fill factor. Optical functions of Fe and PAC (polyacrylate)
are in [19,20], respectively.
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Figure 3. Off-diagonal components of effective permittivity for cylindrical Fe nanoparticles in
polyacrylate (a = height/diameter = 10/5 nm, fill factor 0.2, 0.5, 0.8) compared to pure Fe [19]
and polyacrylate.

The electric dipoles induced in metal nanoparticles by external fields strongly modify the optical
function of plasmonic materials (e.g., Au, Ag) that is in the visible optical region manifested through
the resonance peaks of the effective permittivity. In the Figure 4, we observe this effect close to the
wavelength corresponding to the localized plasmon excitation [21]. The optical function of gold and
the data for permittivity off-diagonal terms are adopted from References [22,23].
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shape-dependent effective permittivity of heterogeneous nanostructures containing inclusions of
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several forms. The cylindrical nanoparticles exhibit the most expressive effects corresponding to the
depolarizing factors of this inclusions shape (see Figure 5).
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The components of depolarizing tensor L are of the order tenths (Table 3). An affection of the
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[
L− k2M

]
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The correction term k2M is more significant for prolate nanoparticles having its diameter d less
than the height h even as the particle height has prevailing effect. This fact is demonstrated by the data
in Table 3 for cylinder or conical nanoparticles.

Table 3. Correction factor k2M ⊥ dependence on nanoparticle dimensions for cylinder (the first row)
and bi-cone at fixed wavelength λ = 632 nm.

k2M ⊥ d [nm]

CYLINDER/BI-CONE 5 10 20 50

h [nm]

5 0.0011/0.0002 0.0006/0.0006 0.0003/0.0012 0.0001/0.0031
10 0.0071/0.0003 0.0044/0.0009 0.0024/0.0022 0.0010/0.0061
20 0.0414/0.0003 0.0285/0.0011 0.0174/0.0035 0.0077/0.0115
50 0.3704/0.0003 0.2857/0.0012 0.2035/0.0046 0.1089/0.0218

Note that the resulting forms in Table 2 contain the particle radius R besides the characteristic
parameter a that need be respected in applications of these model results. Moreover, the k2M ⊥ term
also depends on the wavelength through the factor k. An example of the outstanding correction factor
influence on the effective permittivity in particular case (see the value emphasized in the Table 3) is
demonstrated in the following figure (Figure 6).
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4. Conclusions

The introduced extension of EMA via the SCD model for anisotropic nanoparticles offers a possible
tool to analyze anisotropic nanostructured heterogeneous media in various applications, where natural
or artificial composites (metamaterials) act as significant components of studied optical systems. As a
novel aspect, an extension of the Green tensor regarding the volume-integral term is presented.
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