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a b s t r a c t 

Melanoma is a type of skin cancer that poses significant health risks and requires early detection 

for effective treatment. This study proposing a novel approach that integrates a transformer-based 

model with hand-crafted texture features and Gray Wolf Optimization, aiming to enhance effi- 

ciency of melanoma classification. Preprocessing involves standardizing image dimensions and 

enhancing image quality through median filtering techniques. Texture features, including GLCM 

and LBP, are extracted to capture spatial patterns indicative of melanoma. The GWO algorithm is 

applied to select the most discriminative features. A transformer-based decoder is then employed 

for classification, leveraging attention mechanisms to capture contextual dependencies. The ex- 

perimental validation on the HAM10000 dataset and ISIC2019 dataset showcases the effectiveness 

of the proposed methodology. The transformer-based model, integrated with hand-crafted texture 

features and guided by Gray Wolf Optimization, achieves outstanding results. The results showed 

that the proposed method performed well in melanoma detection tasks, achieving an accuracy 

and F1-score of 99.54% and 99.11% on the HAM10000 dataset, and an accuracy of 99.47%, and 

F1-score of 99.25% on the ISIC2019 dataset. 

• We use the concepts of LBP and GLCM to extract features from the skin lesion images. 

• The Gray Wolf Optimization (GWO) algorithm is employed for feature selection. 

• A decoder based on Transformers is utilized for melanoma classification. 
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Method details 

Introduction 

Melanoma, a highly aggressive type of skin cancer, presents considerable diagnostic difficulties due to its intricate and diverse 

characteristics. The American Cancer Society predicted that 609,360 deaths and approximately 1.9 million new cancer cases will occur 

in 2022. Currently, skin cancer is a highly dangerous and prevalent disease. Skin cancer can manifest in various forms, including

basal cell carcinoma, melanoma, and squamous cell carcinoma. Among these, melanoma is considered the most unpredictable. Timely 

detection and precise diagnosis play a crucial role in enhancing patient outcomes and survival rates [ 1 ]. 

Deep learning models, specifically Convolutional Neural Networks (CNNs), have demonstrated potential in image-based medical 

diagnoses by effectively extracting pertinent features from raw image data [ 2 , 3 ]. Nevertheless, convolutional neural networks (CNNs)

have certain limitations, such as the requirement for extensive annotated datasets and significant computational resources. The Trans- 

former architecture, initially designed for natural language processing, has shown promise in computer vision tasks by effectively 

modeling long-range dependencies and capturing intricate patterns within the data [ 4 ]. Transformers, equipped with attention mech- 

anisms, present a strong alternative to conventional CNNs, demonstrating enhanced performance in diverse image classification tasks 

[ 5 ]. 

The integration of hand-crafted texture features with deep learning models in melanoma classification can improve performance 

by combining domain-specific knowledge with deep learning’s strong feature extraction capabilities. Texture features, such as those 

obtained from the Gray-Level Co-occurrence Matrix (GLCM), are able to capture significant spatial relationships and patterns in skin

lesion images. These features offer valuable diagnostic information [ 6 ]. The combination of hand-crafted features and deep learning

representations can enhance classification accuracy by leveraging the strengths of both approaches. Feature fusion poses challenges 

in feature selection and optimizing their combination. The Gray Wolf Optimization (GWO) algorithm is a meta-heuristic optimization 

technique that addresses complex, multi-dimensional problems. It is inspired by the social hierarchy and hunting behavior of gray

wolves [ 7 ]. The balance between exploration and exploitation in GWO makes it suitable for optimizing the feature fusion process in

melanoma classification systems. 

This study presents a novel approach for melanoma classification using a transformer-based decoder. We enhance the approach 

by fusing hand-crafted texture features and optimizing the model using the Gray Wolf Optimization algorithm. Using the attention

mechanisms of the Transformer model and texture features from GLCM, the proposed method creates a strong system for finding

melanoma. We use the GWO algorithm to optimize feature selection and fusion, maximizing classification performance by utilizing 

the most relevant features. 

Abbreviations 

Variable Description Variable Description 

GLCM Gray-Level Co-occurrence Matrix 𝑊𝑒𝑚𝑏 embedding matrix 

LBP Local Binary Pattern 𝑒𝑝𝑜𝑠 positional encoding 

Gwo Gray-wolf optimization 𝑊 𝑞 , 𝑊 𝑘 and 𝑊 𝑣 Weight matrix 

𝐼𝑝 , 𝐼𝑐 p th neighbor pixel intensity, Center pixel intensity 𝑄𝑖 , 𝐾𝑖 and 𝑉 𝑖 query, key and value 

𝑝 prey’s location vector ℎ𝑖 Attention head 

 wolves’ position in 𝑑-dimensional space MHSA Multi-Head Self Attention 

AKIEC Actinic Keratosis VASC Vascular Lesion 

BCC Basal Cell Carcinoma NV Melanocytic Nevus 

BKL Benign Keratosis MEL Melanoma 

DF Skin Fibroma 

Literature review 

Abdar et al. [ 8 ] employed a three-way decision-based Bayesian deep learning approach for automated boundary detection and

shape retrieval. This was followed by the use of GLCM and the Euclidean distance transform for texture feature computation. Qureshi

and Roos [ 9 ] investigated the use of deep neural network ensembles for transfer learning in order to improve skin cancer detection in

scenarios with imbalanced datasets. Araaf et al. [ 10 ] proposed a SCDC system that utilized GLCM features at different angles as well

as a KNN classifier. However, they restricted their study to binary classification. The authors proposed enhancing feature extraction

techniques and augmenting machine learning models with advanced deep learning methods. 

Tiwari et al. [ 11 ] proposed a technique for melanoma detection using HOSMI-LBP features. The authors’ method uses a combina-

tion of a Convolutional Neural Network (CNN) and a Neural Network (NN) for classification, along with the Sine Cosine Algorithm-

Gray Wolf Optimization (SLI-GWO) algorithm. 

H. Ding et al. [ 12 ] introduced the Archimedes Optimization Algorithm (AOA), which utilizes a dynamic transfer operator for

the purpose of feature selection and classification. The proposed approach combines Gray-Level Co-occurrence Matrix (GLCM) fea- 

tures with the Dynamic Archimedes Optimization Algorithm (DAOA) and Support Vector Machines (SVM). The method achieves an 

accuracy of 88%, a sensitivity of 96%, and a specificity of 81%. 

Mahmoud and Soliman [ 13 ] proposed an artificial intelligence (AI) system to detect skin cancer at an early stage. They utilized

the Gray Level Co-occurrence Matrix (GLCM) for texture analysis and the ABCDE rules for feature extraction. The authors utilized
2
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Adaptive Segmentation (AS) and Region Growing (RG) algorithms for segmentation and employed Neural Network (NN) and Support 

Vector Machine (SVM) algorithms for classification. The Artificial Neural Network (ANN) achieved an accuracy of 94%, precision of

96%, specificity of 95.83%, and sensitivity of 92.30%. 

Midasala et al. [ 14 ] introduced MFEUsLNet, an AI system for skin cancer detection that utilizes unsupervised learning and multi-

level feature extraction. The system demonstrated excellent performance on the ISIC-2020 dataset. The proposed model incorporates 

USL-KMC segmentation, GLCM, RDWT feature extraction techniques, and an RNN classifier. 

A study by Magdy et al. [ 15 ] introduced two classification methods for distinguishing between benign and malignant tumors in

dermoscopic images. These models achieved accuracy rates exceeding 99% in certain cases. The authors employed GLCM and texture 

features to classify the data. They evaluated different machine learning and deep learning methods, such as artificial neural networks,

KNN, SVM, Naïve Bayes, decision trees, and pretrained CNNs like AlexNet and VGG-16. 

Manoj et al. proposed a YOLOv3-DCNN architecture for the detection and classification of malignant melanoma. Their method- 

ology entails utilizing YOLOv3 to generate feature maps, QuadHistogram to extract color features, and GLCM and RCT to extract

texture features. These features are subsequently combined and pass into a DCNN for classification [ 16 ]. 

Materials and methods 

The melanoma classification approach encompasses preprocessing, texture feature extraction (combining GLCM and LBP), feature 

selection using the Gray Wolf Optimization (GWO) algorithm, and a transformer-based decoder for classification. Fig. 1 , depicts the

proposed methodology of the melanoma classification. 

Preprocessing 

In this section, we preprocess the dermoscopic skin images in the following manner: First, it is necessary to resize the skin image

to a fixed dimension of 256 × 256. Next, applying a median filter will help enhance the overall image quality. To ensure accuracy, it

is crucial to remove any hair from the images using morphological operations. The next step involves applying the k-means clustering

algorithm [ 17 ] to segment the skin lesion and normal skin regions. Finally, the segmented skin lesion regions can be cropped for

further analysis. Fig. 2 illustrates the preprocessing process. 

Texture feature extraction 

Gray-level Co-occurrence matrix (GLCM) 

This research employs textural features extracted from the gray-level co-occurrence matrix (GLCM) [ 18 ]. GLCM is a robust feature

descriptor that effectively captures the spatial relationships between pixel intensities in images. The matrix 𝐼(𝑖, 𝑗, 𝑑, 𝜃) measures the 

frequency of pixel pairings with the same brightness levels, which are separated by distance 𝑑 and angle 𝜃. The angles 0◦, 45◦, 90◦,
and 135◦, correspond to different spatial orientations, and the distance between pixels is set to one unit [ 6 ]. 

𝐼( 𝑖, 𝑗, 𝑑, 𝜃) = Number of occurrances of ( 𝑖, 𝑗 ) at distance d and orientation 𝜃
Total occurrences at distance 𝑑 and orientation 𝜃

(1) 

After the GLCM matrix was acquired, several texture characteristics (such as contrast, entropy, homogeneity, energy, and corre- 

lation) [ 19 ] were extracted to describe the spatial patterns in pictures of skin lesions [ 20 ]. 
Fig. 1. Proposed Method of Melanoma classification. 

Fig. 2. Preprocessing pipeline. 

3
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• Correlation feature quantifies the linear relationship between pixel intensities 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑
𝑖,𝑗 

𝐼( 𝑖, 𝑗 ) 
(
𝑖 − 𝜇𝑖 

)(
𝑗 − 𝜇𝑗 

)
𝜎𝑖 𝜎𝑗 

(2) 

• Contrast measure quantifies the local variations in pixel intensities. It is obtained by calculating the weighted sum of the squared

difference between pixel intensities in the GLCM. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
∑
𝑖,𝑗 

𝐼( 𝑖, 𝑗 ) ( 𝑖 − 𝑗 ) 2 (3) 

• Homogeneity reflects the proximity of pixel intensities in GLCM. 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =
∑
𝑖,𝑗 

𝐼( 𝑖, 𝑗 ) 
1 + |𝑖 − 𝑗 | (4) 

• Angular Second Moment measures the uniformity of pixel pairs in an image, specifically focusing on GLCM texture features. 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 =
∑
𝑖,𝑗 

( 𝐼( 𝑖, 𝑗 ) ) 2 (5) 

• Entropy quantifies the level of randomness and uncertainty present in an image. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
∑
𝑖,𝑗 

𝐼( 𝑖, 𝑗 ) log ( 𝐼( 𝑖, 𝑗 ) + 𝜖) (6) 

where: 𝑖, 𝑗 are the pixel intensities; 𝐼(𝑖, 𝑗 ) is the joint probability at certain distance and orientation; 𝜇𝑖 , 𝜇𝑗 are the means of intensities

in i th and j th distance, respectively; 𝜎𝑖 , 𝜎𝑗 are the standard deviations of the intensities in the i th and j th distance, respectively; 𝜖 is a

small positive constant. 

Local binary pattern (LBP) 

LBP is a texture descriptor that encodes the relationship between pixel intensities and their neighbors to characterize local patterns

[ 21 ]. The process entails comparing the central pixel’s intensity with its surrounding neighbors in a circular region, resulting in a

binary code that represents the local texture pattern [ 22 , 23 ]. The creation of the LBP feature vector involves the following steps: 

• LBP Operator: Given an image pixel 𝐼(𝑥, 𝑦 ) at coordinates (𝑥, 𝑦 ) , the LBP operator is 

𝐿𝐵𝑃𝑃 ,𝑅 ( 𝑥, 𝑦 ) =
𝑃−1 ∑
𝑝 =0 

𝑠
(
𝐼𝑝 − 𝐼𝑐 

)
2𝑝 (7) 

where P is number of sampling points on circle; R is radius of circle; 𝐼𝑐 is intensity of the center pixel at (𝑥, 𝑦 ) ; 𝐼𝑝 is intensity of the

𝑝 th neighbor pixel.; 𝑠 ( 𝑧 ) = {1 , 𝑧 ≥ 0 
0 , 𝑧 < 0 is a step function. 

The LBP code is generated by comparing the intensities of neighboring pixels with the center pixel and applying a threshold. It

indicates if the neighboring pixel is brighter or darker than the center. 

• LBP Histogram: Subsequently, the LBP codes are computed for each pixel in the image, and a histogram 𝐻 is generated to represent

the distribution of various LBP patterns in the image. 

𝐻( 𝑖) = number of occurrences of LBP code 𝑖 (8) 

• LBP Uniform Patterns: LBP codes can be classified into two categories: uniform and non-uniform patterns. Uniform patterns are

patterns that have a maximum of two transitions (0–1 or 1–0) in their binary representation. 

• Rotation Invariance: The LBP operator was updated to accommodate circularly shifted patterns for rotation invariance. The rotation 

with the lowest LBP code. 

𝐿𝐵 𝑃 𝑟𝑖 
𝑃 , 𝑅 

( 𝑥, 𝑦 ) = min 
{
𝐿𝐵𝑃𝑃 ,𝑅 ( 𝑥, 𝑦, 𝑟 ) |𝑟 = 0 , 1 , … , 𝑃 − 1 

}
(9) 

where 𝐿𝐵𝑃𝑃 ,𝑅 (𝑥, 𝑦, 𝑟 ) is the LBP code at rotation 𝑟 . 

Feature selection 

A total of 328 texture features, consisting of 256 features based on LBP and 72 features based on GLCM, were extracted from the

skin lesion image. This study employs the Gray Wolf Optimization (GWO) algorithm [ 24 ] to reduce the dimensionality of the feature

vector while maintaining the data quality. 
4
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Gray-Wolf optimization 

GWOs [ 7 ] resemble the hunting strategy employed by a pack of gray wolves. The behavior of gray wolves living in packs of five

to twelve wolves is influenced by their social intelligence. This model mimics a leadership system with four levels: 𝛼, 𝛽, 𝛿, and 𝜔 .

The significant role of the alpha ( 𝛼) is to make decisions; the beta ( 𝛽) assists the 𝛼 alpha in making decisions and provides feedback.

Delta ( 𝛿) is a hunter, and omega ( 𝜔 ) wolves must follow all wolves [ 25 ]. The circling behavior of GWOs is 


𝑡 +1 = 

𝑡 
𝑝 
+   (10) 

Here  is coefficient vectors, 𝑝 is prey’s location vector,  represents the of wolves’ position in 𝑑-dimensional space, 𝑡 is the

number of iterations.  is defined as 

 = |||  𝑡 
𝑝 
− 

𝑡 ||| (11) 

here,  and  are evaluated as 

 = 2a 𝑟1 −a (12) 

 = 2 𝑟2 (13) 

The vectors 𝑟1 and 𝑟2 are randomly generated within the range of [0 , 1 ] . The encircling coefficient 𝑎 decreases from 2 to 0 as the

number of rounds increases. Gray wolves observe the alpha as the most suitable candidate for the task, while the beta and delta

are expected to possess knowledge about the location of the prey. Until a particular iteration, the top three answers are retained,

compelling entities such as omega to modify their positions in the decision space. 

The updated locations are 

𝑡 +1 =
(
𝑥1 + 𝑥2 + 𝑥3 

)
∕3 (14) 

𝑥1 = 𝛼 −1 𝛼 ; 𝑥2 = 𝛽 −2 𝛽 ; 𝑥3 = 𝛿 −3 𝛿 (15) 

where, 𝑥1 , 𝑥2 and 𝑥3 are the three optimal wolves at an iteration 𝑡 . 1 , 2 and 3 are evaluated using Eq. (12) . 𝛼 , 𝛽 and 𝛿 are

computed using Eq. (11) 

𝛼 = ||1 𝛼 −  

||; 𝛽 = |||2 𝛽 −  

|||; 𝛿 = ||3 𝛿 −  

|| (16) 

Where 1 , 2 and 3 are evaluated using Eq. (13) . 

The GWO utilizes the top three choices to update the location of each wolf. Omega wolves comprise a large population and exhibit

lower fitness compared to alpha, beta, and delta wolves. Realigning the less dominant wolves can enhance GWO’s ability to diversify

and yield improved outcomes. Fig. 3 illustrates the flow diagram of GWO. 

Classification using transformer-based decoder 

In the classification stage, we utilizes the transformer [ 5 , 26 ] based decoder approach, shows in Fig. 4 . The input features of the

transformer are selected using GWO algorithm. 

The input embedding is obtained by multiplication of input matrix 𝑋 and embedding matrix 𝑊𝑒𝑚𝑏 , and output is added to the

positional encoding 𝑒𝑝𝑜𝑠 . 

𝑋𝑖 = 𝑋 𝑊𝑒𝑚𝑏 + 𝑒𝑝𝑜𝑠 (17) 

Matrices 𝑊 𝑞 , 𝑊 𝑘 and 𝑊 𝑣 with 𝑋𝑖 , to generate three vectors 𝑄𝑖 , 𝐾𝑖 and 𝑉 𝑖 are query, key and value, respectively. 

𝑄𝑖 = 𝑊 𝑞 𝑋𝑖 ; 𝐾𝑖 = 𝑊 𝑘 𝑋𝑖 ; 𝑉 𝑖 = 𝑊 𝑣 𝑋𝑖 (18) 

The attention output for each token is computed by applying the SoftMax function to the scaled dot product of 𝑄𝑖 and 𝐾𝑖 . The

scaled dot product is multiplied by 𝑉 𝑖 to create a refined representation that captures the contextual importance of each token in the

input. Fig. 5 , shows the attention score calculation and scale dot product. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
(
𝑄𝑖 , 𝐾𝑖 , 𝑉 𝑖 

)
= 𝑆𝑜𝑓𝑡𝑀𝑎𝑥

( 

𝑄𝑖 
(
𝐾𝑖 

)𝑇 √
𝑑𝑘 

) 

⋅ 𝑉 𝑖 (19) 

After obtaining the attention output, we concatenate the outputs from all attention heads using MHSA layer. 

𝑀 𝐻 𝑆𝐴 = 𝐶𝑜𝑛𝑐𝑎𝑡
(
ℎ1 , ℎ2 , … , ℎ𝑖 , … , ℎ𝐻 

)
𝑊 𝑜 (20) 

where, ℎ𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄𝑖 𝑊
𝑄 

𝑖 
, 𝐾𝑖 𝑊 𝐾 

𝑖 
, 𝑉 𝑖 𝑊 𝑉 

𝑖 
) ; We are using three head in our model. 

The output generated by the MHSA layer is then sent to the position wise feed-forward network (FFN). Two linear transformations

are sequentially executed in this network, with an activation function inserted between them. 

𝐹 𝐹 𝑁( 𝑥) = 𝜎
(
𝑥𝑊1 + 𝑏1 

)
𝑊2 + 𝑏2 (21) 
5
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Fig. 3. Gray Wolf Optimization Algorithm. 

Fig. 4. Transformer-based Decoder. 
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Fig. 5. Attention calculation and scale-dot product. 

 

 

 

 

 

 

where, 𝑊1 , 𝑊2 are the weights of networks; 𝑥 is 𝑂𝑢𝑡𝑝𝑢𝑡𝑀 𝐻 𝑆𝐴 = 𝑀 𝐻 𝑆𝐴1 , … , 𝑀 𝐻 𝑆𝐴𝑖 , … , 𝑀 𝐻 𝑆𝐴𝑛 ; 𝑏1 𝑏2 are the bias parameters; 𝜎

is the 𝐺𝑒𝐿𝑈 ( ⋅) transfer function. Finally, the result of the FFN layer is processed by an additive normalization layer, generating the

final outcome from the single-layer encoder. 

𝑦𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛( 𝐹 𝐹 𝑁( 𝑥) ) (22) 

Finally, 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 activation function predicts the probability distribution of each word 𝑦𝑖 in the response. 

𝑝
(
𝑦𝑖 |𝑦0 , … , 𝑦𝑖 −1 

)
= 𝑆𝑜𝑓𝑡𝑀𝑎𝑥

(
𝑊 𝑦𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 

)
(23) 

Method validation 

Dataset 

The proposed method was primarily trained on the HAM10000 dataset and its effectiveness was also confirmed on the ISIC2019

dataset. The HAM10000 dataset, consisting of 10,015 skin images categorized into seven lesion types: actinic keratosis (AKIEC), 

melanocytic nevus (NV), basal cell carcinoma (BCC), melanoma (MEL), vascular lesion (VASC), benign keratosis (BKL), and skin 

fibroma (DF) [ 27 , 28 ], which is publicly available. The images are sized at 600 × 450 pixels. In Fig. 6 , sample images representing

each class from the HAM10000 dataset are depicted. The dataset is split into a training set and a test set, following an 80:20 ratio.

The ISIC2019 dataset consist of 25,331 images belonging to eight categories: AKIEC, BCC, BKL, DF, MEL, NV, VASC, and squamous

cell carcinoma (SCC). The training/test set ratio of 80:20. Training set is 20,269 images and test set are 5062 images. Here is the

breakdown of each category in the dataset, as shown in Tables 1 and 2 . 
Table 1 

Dataset distribution in training and test splits of HAM10000 dataset. 

Types AKIEC NV BCC MEL VASC BKL DF Total 

Train 261 5364 411 890 113 879 92 8010 

Test 66 1341 103 223 29 220 23 2005 

Total 327 6707 514 1113 142 1099 115 10,015 

7
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Fig. 6. (a) Actinic Keratosis, (b) Basal Cell Carcinoma, (c) Benign Keratosis, (d) Skin Fibroma, (e) Melanocytic Nevus, (f) Melanoma, (g) Vascular 

Lesion. 

Table 2 

Dataset distribution in training and test splits of ISIC2019 dataset. 

Types AKIEC NV BCC MEL VASC BKL DF SCC Total 

Train 694 10,300 2659 3618 203 2100 192 503 20,269 

Test 173 2575 664 904 50 524 47 125 5062 

Total 867 12,875 3323 4522 253 2624 239 628 25,331 

 

 

 

Experimental details 

We utilized PyTorch in our experimental setup on Kaggle. We utilize a fusion of hand-crafted texture features, such as GLCM

and LBP. These features have been meticulously chosen based on GWOs, ensuring their suitability for the task. Lastly, we employ

a transformer-based classifier for melanoma detection. The training method used categorical cross-entropy loss, and weight updates 

were performed using the Adam optimizer, which improves model performance by adjusting weight values. The training consisted 

of 100 epochs and utilized a learning rate scheduler to optimize the learning rate. Table 3 , provides a thorough overview of the

hyperparameters. 

Evaluation metrics 

Four generally used measures are utilized to objectively evaluate the effectiveness of the suggested methodology for detecting 

tomato diseases: precision, recall, F1 score, and accuracy. 

𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 =
𝑃𝑇 +𝑁𝑇 

𝑃𝑇 + 𝑃𝐹 +𝑁𝑇 +𝑁𝐹 

(24) 

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑃𝑇 

𝑃𝑇 + 𝑃𝐹 

(25) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑃𝑇 

𝑃𝑇 +𝑁𝐹 

(26) 

𝐹 1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × ( 𝑃 ×𝑅 ) 
( 𝑃 + 𝑅 ) 

(27) 

Where 𝑃𝑇 , 𝑁𝑇 , 𝑃𝐹 , and 𝑁𝐹 are true positives, true negatives, false positives and false negative respectively. 
Table 3 

Parameter for Transformer based classifier. 

Parameter Value 

Learning rate 0.0001 

Batch size 128 

Optimizer Adam 

Epoch 100 

Scheduler Learning Rate Scheduler 

Loss function Categorical cross entropy 
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Results & discussion 

This section validates the effectiveness of the Gray Wolf Optimization (GWO) method for feature selection. We assess the algo-

rithm’s performance through experimental testing on the HAM10000 and ISIC2019 datasets. We evaluate the GWO method against 

Particle Swarm Optimization (PSO) [ 29 ], Whale Optimization (WO) [ 30 ], Bat Method (BAT) [ 31 ], Multi-Verse Optimization (MVO)

[ 32 ], and Firefly Optimization (FFO) [ 33 ]. We use a variety of measures to evaluate the effectiveness of various optimization meth-

ods in addressing complex numerical problems. Table 4 displays the parameters associated with each approach. There are 50 search

agents and 500 iterations. 

The parameters of MVO (Weighted Euclidean Projection and Total Deviation Ratio) require careful adjustment, which can be 

especially difficult in applications involving feature selection. On the other hand, GWO’s linear reduction of variable "a" is more

direct and often more efficient. Although WOA’s distinctive processes have advantages, GWO’s leadership hierarchy provides a more 

organized approach to selecting the best feature subsets. PSO necessitates meticulous calibration of many parameters (w, c1, c2),

which might pose challenges in feature spaces with a high number of dimensions. The advantage of GWO’s simplified parameter

adjustment is evident. While BAT efficiently utilizes loudness and pulse rate, GWO’s balance between exploration and exploitation 

is more direct and often more effective for feature selection. FFA is good at multimodal optimization, but GWO is better at feature

selection tasks because the top solutions and adaptive parameters interact in a way that makes the system more balanced and stable.

Table 5 summarizes the results of the feature selection algorithms after training with the HAM10000 and ISIC2019 datasets. The

findings of the HAM10000 dataset illustrate the efficacy of GWO in attaining the highest values for accuracy, precision, and F1-score.

MVO and FFA rank as the second and third most effective, respectively. The second dataset shows that GWO is the most stable,

followed by MVO, WO, and FFA. 

By using GWOs as a feature selector, it achieves impressive performance metrics scores: 99.54% for accuracy, 99.44% for precision,

98.79% for recall, and 99.11% for f1-score for using HAM10000 dataset. In other dataset the performance metrices score: 99.47%

for accuracy, 99.37% for precision, 99.13% for recall, and 99.25% for f1-score. Fig. 7 displays the confusion matrix of the proposed

model for melanoma detection using the HAM10000 dataset. 

We conduct a comprehensive assessment of the efficiency of our model by comparing it to other cutting-edge techniques for

melanoma detection using the HAM10000 dataset, as shown in Table 6 . The transformer model we have developed demonstrates

excellent performance, with a remarkable accuracy rate of 99.43%. Additionally, it exhibits exceptional levels of accuracy (99.54%) 

and f1-score (99.11%). The AlexGWO based model has shown an exceptional recall rate (100%) and precision (99.47%) with notable

accuracy and f1-score of 99% and 98.63%, respectively. The YOLO-v3-DCNN based model has good performance in terms of recall. 
Table 4 

Parameter values of each approach. 

Algorithm Parameter Values 

PSO w (Inertia weight) = 0.7, c1 (Cognitive coefficient) = 1.5, c2 (Social coefficient) = 1.5 

WO a = Linearly decreases from 2 to 0, A = Random value in [-a, a], C = Random value in [0, 2] 

BAT A (Loudness) = 0.5, r (Pulse rate) = 0.5, Qmin = 0, Qmax = 2 
MVO WEP (Wormhole Existence Probability) = Linearly increases from 0.2 to 1, TDR (Travel Distance Rate) = Linearly decreases from 1 to 0 

FFA 𝛼 (Randomization parameter) = 0.25, 𝛽0 (Attractiveness at r = 0) = 1, 𝛾 (Absorption coefficient) = 1 
GWO a = Linearly decreases from 2 to 0 

Table 5 

All experimental runs of each algorithm. 

Algorithm HAM10000 ISIC2019 

Accuracy 

(%) 

Precision 

(%) 

Recall (%) F1 score (%) Accuracy 

(%) 

Precision 

(%) 

Recall (%) F1 score (%) 

PSO 98.33 98.10 97.90 98.00 98.67 98.45 98.25 98.35 

WO 98.86 98.71 98.51 98.61 98.92 98.74 98.54 98.64 

BAT 97.85 97.66 97.18 97.42 98.54 98.32 98.15 98.23 

MVO 99.21 99.01 98.84 98.92 99.31 99.21 99.03 99.12 

FFA 99.11 98.79 98.56 98.67 98.85 98.72 98.53 98.62 

GWO 99.54 99.44 98.79 99.11 99.47 99.37 99.13 99.25 

Table 6 

Comparison with other state-of-art methods. 

Ref Feature Extraction Classification Accuracy (%) Precision (%) Recall (%) F1 score (%) 

[ 16 ] GLCM + CLCM + RCT YOLO-v3-DCNN 95 94 98.6 –

[ 15 ] GLCM AlexNet + GWO 99 99.47 100 98.63 

[ 34 ] GLCM + Color + Shape SVM 81.35 – – –

Our GLCM + LBP + GWO Transformer 99.54 99.44 98.79 99.11 
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Fig. 7. Confusion Matrix. 

 

 

 

 

 

 

 

Conclusion 

This study presents a robust and effective method for detecting melanoma from skin lesion images. It highlights the significance of

combining features and utilizing a cutting-edge transformer-based algorithm. The approach encompasses preprocessing, texture fea- 

ture extraction (combining GLCM and LBP), feature selection using the Gray Wolf Optimization (GWO) algorithm, and a transformer- 

based decoder for classification. The experimental results on the HAM10000 dataset demonstrate the effectiveness of the proposed 

model, achieving an impressive accuracy of 99.54% and an exceptional f1-score of 99.11%. The findings underscore the promise of

our method for use in dermatology, offering a valuable tool for detecting melanoma. In the future, further investigation of additional

hand-crafted and deep learning-based features, such as wavelet transformations or pre-trained representations, might improve the 

model’s performance and usefulness. Furthermore, integrating the system with clinical platforms and developing real-time apps may 

broaden its practical relevance, making it more accessible for regular dermatological diagnostics. Longitudinal studies that look at 

how well the model works in clinical settings over long periods of time would also give us useful information about its long-term

benefits and usefulness. Similarly, making the transformer-based model easier to understand and interpret could help clinicians use 

it. However, shortcomings include dependence on hand-crafted characteristics, computational complexity, and the model’s opaque 

nature, which may impede clinical acceptability in the absence of a clear decision-making procedure. Addressing these limits, as well

as verifying the model in a variety of datasets and clinical contexts, are critical steps towards increasing its melanoma diagnostic

reliability. 
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