RESEARCH PAPER

Taylor & Francis

OPEN ACCESS Check for updates

In silico analysis and a comparative genomics approach to predict pathogenic trehalase genes in the complete genome of Antarctica Shigella sp. PAMC28760

Prasansah Shrestha^a, Jayram Karmacharya^a, So-Ra Han^a, Hyun Park^b, and Tae-Jin Oh^{a,c,d}

^aDepartment of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Korea; ^bDivision of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea; ^cDepartment of Life Science and Biochemical Engineering, SunMoon Univesity, Genome-based BioIT Convergence Institute, Asan, Korea; ^dDepartment of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Korea

ABSTRACT

Although four Shigella species (S. flexneri, S. sonnei, S. dysenteriae, and S. boydii) have been reported, S. sp. PAMC 28760, an Antarctica isolate, is the only one with a complete genome deposited in NCBI database as an uncharacterized isolate. Because it is the world's driest, windiest, and coldest continent, Antarctica provides an unfavourable environment for microorganisms. Computational analysis of genomic sequences of four Shigella species and our uncategorized Antarctica isolates Shigella sp. PAMC28760 was performed using MP3 (offline version) program to predict trehalase encoding genes as a pathogenic or non-pathogenic form. Additionally, we employed RAST and Prokka (offline version) annotation programs to determine locations of periplasmic (treA) and cytoplasmic (treF) trehalase genes in studied genomes. Our results showed that only 56 out of 134 Shigella strains had two different trehalase genes (treF and treA). It was revealed that the treF gene tends to be prevalent in Shigella species. In addition, both treA and treF genes were present in our strain S. sp. PAMC28760. The main objective of this study was to predict the prevalence of two different trehalase genes (treF and treA) in the complete genome of Shigella sp. PAMC28760 and other complete genomes of Shigella species. Till date, it is the first study to show that two types of trehalase genes are involved in Shigella species, which could offer insight on how the bacteria use accessible carbohydrate like glucose produced from the trehalose degradation pathway, and importance of periplasmic trehalase involvement in bacterial virulence.

Introduction

Shigella is a Gram-negative bacterium that is genetically related to Escherichia coli [1]. It is a facultative anaerobe and a non-spore former. It belongs to non-motile and rod-shaped bacteria. Shigella are among common causes of diarrhoea worldwide. Shigella infection is one of the top four infections among African and South Asian children [2]. Based on its serological features, Shigella genus can be differentiated into four species: S. dysenteriae (serogroup A), S. flexneri (serogroups B), S. boydii (serogroups C), and S. sonnei (serogroup D). Shigella species has a highly immunogenic O-antigen made of many oligosaccharides unit (O) repeats with a wide range of sugar components, number of repeats, arrangements, and linkages. Each Shigella species can be further differentiated into several serotypes based on O-antigen on its lipopolysaccharide layer: S. dysenteriae having 15 serotypes, S. flexneri having 6 serotypes with 15 subtypes, S. boydii having 18 serotypes, and S. sonnei having only 1 serotype [3-5]. Although serogroups A, B, and C are physiologically identical, due to its positive beta-D-galactosidase and ornithine decarboxylase activity, *S. sonnei* is distinguished as a single serogroup D [6]. A previous study has reported that 60% of all infections worldwide are caused by *S. flexneri*. Thus, *S. flexneri* has been intensively studied, which has enhanced our understanding of *Shigella* pathophysiology and the underlying "host-pathogen" communication [7]. *S.* sp. PAMC28760 is a lichen-associated polar bacteria isolated from Antarctica. It has been deposited in the NCBI (National Center for Biotechnology Information) database (https://www.ncbi.nlm.nih.gov/) as an uncharacterized organism. Antarctica is a geographical mass covered with up to 13000 feet of ice and bare rock, with small mosses and lichens being its primary vegetation [8].

Various microorganisms remain unknown in such a harsh environment since they have developed specific adaption abilities towards a wide range of extreme conditions to thrive in such habitat [9]. Generally, *Shigella* species can grow in a temperature range from

CONTACT Tae-Jin Oh 🔯 tjoh3782@sunmoon.ac.kr

ARTICLE HISTORY

Received 10 January 2022 Revised 19 August 2022 Accepted 23 August 2022

KEYWORDS

Shigella sp.; trehalase; MP3; HMM; SVM; prokka

 $[\]ensuremath{\mathbb{C}}$ 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(6-8) °C to (45-47) °C [10]. However, temperatures about 65 °C cause their rapid inactivation. Some Shigella species can survive for long durations when they are frozen at -20 °C or refrigerated at 4 °C [11,12]. Bacteria have developed a wide range of coping mechanisms to endure adverse environments such as food deprivation, biochemical and biological changes, and extreme temperatures. Temperature is one of the most crucial elements that can influence microbial protein expression. According to previous studies, expression levels of outer membrane proteins were analysed using proteome profiles of S. flexneri cells grown at 37, 38.5, and 40° C. Pathogens might use the overexpression of specific proteins (18.4, 25.6, and 57.0 kDa) to govern the expression of virulence-related proteins when cells were exposed to higher temperatures [13]. Moreover, cold-adapted enzymes from organisms living in polar regions, deep oceans, and high altitudes have several benefits, they have been increasingly analysed in recent years.

Trehalose is also essential to organisms as a survival mechanism in a stress environment because of its unique physiochemical properties, which allow it to protect cell integrity against a different environmental damage and nutritional limitations [14]. Also, trehalose and its derivatives have also been found to possess crucial functions in the pathogenicity of a wide range of organisms, including bacteria (Gram-positive and Gram-negative) and plants [15] Also, trehalose metabolism could be employed as a target for novel pathogen-specific treatments. Trehalose is a disaccharide produced by various organisms. It can be degraded via several pathways. Among these pathways, the trehalose-6-phosphate pathway (TPP) is used by many bacteria to degrade trehalose. This pathway has been investigated under conditions of low osmolarity in both Gram-positive and Gram-negative bacteria [16,17]. It was reported in E. coli K-12 that under different osmolarity conditions, it may survive on trehalose as its sole carbon source and uses different pathways for its breakdown. Likewise, the external trehalose is hydrolysed by periplasmic trehalase (TreA) at high osmotic conditions. At that moment, the glucose PTS then transports the produced glucose molecules back into the cytoplasm [17,18]. During the transition between high and low osmolarity, a second trehalase, cytoplasmic trehalase (TreF), is active which removes the internal pool of trehalose as the cells alter their metabolism to low osmolarity. TreF's low enzymatic activity is low enough not to interfere with trehalose biosynthesis during high osmolarity, but high enough to breakdown the accumulated trehalose during the return to normal conditions, when no more biosynthesis proceeds [19].

Several prokaryotes and eukaryotes can degrade trehalose to glucose through the enzyme trehalase [EC 3.2.1.28] [20,21]. It has been reported that E. coli has two trehalases, including cytoplasmic trehalase (TreF) and periplasmic trehalase (TreA). The periplasm is a small space between the outer and inner membranes of Gram-negative bacteria. Trehalases from E. coli, such as periplasmic TreA (Tre37A), have an extra C-terminal region, whereas TreF has an extended N-terminal region. Both enzymes are monomeric and have a 47% similarity [22]. Neutral trehalase (L72) is a protein found in Klebsiella oxytoca that has been linked to several functions, including energy sources and stress protection [23]. Experimental evidence of periplasmic treA gene in needed for optimal development of type 1 fimbriae for cell invasion and colonization in extraintestinal pathogenic E. coli (ExPEC) strain MT78 has been addressed in the previous study [24]. Similarly, in Burkholderia pseudomallei, a single trehalase-encoding gene, identical to E. coli TreA, which is involved in stress tolerance and virulence in mouse and insect infection models, plays a role in stress tolerance and virulence [25]. Despite its tiny size, the periplasm contains many important proteins required for a variety of physiological activities and bacterial survival under stress. Periplasmic proteins aid in the defence against different stresses, making it easier for bacteria such as S. Typhimurium to colonize the host [26]. However, there has been no complete analysis of the expression of many periplasmic proteins, especially periplasmic trehalase (TreA), in Shigella strains. The goal of this study was to determine the prevalence of two different trehalase genes (treF and treA) in 134 complete Shigella genomes, including lichen-associated S. sp. PAMC28760 isolated from the Antarctica region. Additionally, we would like to determine which trehalase genes (treF or treA) might contribute to virulence. It is thought that analysis of pathogenic and non-pathogenic trehalase might provide a new direction to understand bacterial pathogenic mechanism at the genetic level and to provide a new insight on drug development for the treatment of bacterial infections. The use of a bioinformatics tools such as MP3 can allow the study of virulence genes involved in respective strains without the need to perform hazardous laboratory experiments.

Materials and methods

Data sources

The complete genome and amino acid sequences of *Shigella* species were obtained from the NCBI database (https://www.ncbi.nlm.nih.gov/) [27]. A total of 134 *Shigella* strains deposited in NCBI by September 2021

were analysed, including our Antarctica isolate *S.* sp. PAMC28760, whose genome size was 4,558,287 bp [28].

Phylogenetic tree construction and average nucleotide identity (ANI) analysis

To compare 16S rRNA sequences of S. sp. PAMC28760 with those in other complete genomes of Shigella strains (133 strains), phylogenetic analysis was performed using the ClustalW alignment tool and the Molecular Evolutionary Genetic Analysis (MEGA X) (https://www.megasoftware.net/) tools [29]. MEGAX was used to create the phylogenetic tree, which was built on a neighbour-joining tree method [30] and 1,000 bootstrap replications [31]. The online software Interactive Tree life (iTOL) v6 (https://itol.embl.de/) was used to analyse phylogenetic trees [32]. Orthologous Average Nucleotide Identity Software Tool (OAT) [33] was used to determine the average nucleotide identity (ANI) of 16S rRNA from closely related species acquired from EziBio Cloud (www.ezi biocloud.net) [34]. To determine if the strain PAMC28760 belonged to Shigella or Escherichia, EziBio cloud 16S rRNA sequencing was used. Secondary data was used to identify the cytoplasmic trehalase or periplasmic trehalase from the characterized strains E. coli strain K-12 substrain MG1655 (NC 000913.3) as a reference for the construction of a phylogenetic tree for trehalase genes (*treA* and *treF*) in those studied strains who possess both trehalase genes. NCBI, RAST, and Prokka were used to find the cytoplasmic and periplasmic genes. MUSCLE [35,36] was used to align amino acid sequences, and maximum-likelihood and neighbour-joining methods were used to build a phylogenetic tree.

Comparative genomic analysis and, prediction of periplasmic trehalase and cytoplasmic trehalase

The prevalence of trehalase genes in the studied genome, as well as to predict pathogenic and non-pathogenic factors, were carried out using the MP3 (offline version) program (http://metagenomics.iiserb.ac.in/mp3/index. php) [37]. This program uses two modules including Support Vector Model (SVM) and Hidden Markov Model (HMM) to predict pathogenic and nonpathogenic proteins in the genome. Furthermore, Rapid Annotations utilizing Subsystems Technology (RAST, https://rast.nmpdr.org/rast.cgi) [38] and Prokka annotation (Prokka 1.14.6 offline version) [39] were used to locate predicted trehalase genes. CGView ServerBETA (www.cgview.ca) was used to better visualization of location predicted trehalase genes [40].

Results and discussion

Phylogenetic tree analysis of S. sp. PAMC28760

Phylogenomic analysis revealed that S. sp. PAMC28760 and S. dysenteriae ATCC12037 belonged to the same branch (Figure 1a). MEGA X program was used to construct phylogenetic tree to analyse their evolutionary history using the neighbour-joining method [41] with 1,000-replicate bootstrap. Furthermore, ANI value revealed that S. sp. PAMC28760 had a close relationship with strains S. flexneri ATCC29903(T) (99.80%), S. sonnei CECT4887(T) (99.70%), E. coli ATCC11775(T) and S. boydii GTC779(T) (99.19%), E. fergusonii ATCC35469(T) (99.70%), S. dysenteriae ATCC13313 (T) (98.99%), and E. albertii TW07627 (T) (98.89%) (Figure 1b). These results suggest that the S. sp. PAMC28760 strain is closely related to Escherichia strain as both belong to the same family Enterobacteriaceae.

Trehalase gene and its phylogeny

When complete genomes of 134 Shigella strains including our strain PAMC28760 were studied, only 56 strains were found to have two types of trehalase (treF and treA) genes. Furthermore, we employed RAST annotation database and, Prokka annotation to differentiate cytoplasmic (treF) and periplasmic (treA) trehalase. In addition, the CGview online server (Figure 2) visualize the predicted trehalase genes in S. sp. PAMC28760. When we aligned them with characterized trehalase genes (treF and treA) of E. coli K-12 substrain MG655, S. sp. PAMC28760 was found to also encode the same genes involved in trehalose degradation (Figure 3). While 48, 47, and 47 of S. flexneri's strains had treF, treA, and both treF and treA genes, respectively, 39, 2, and 2 of S. sonnei's strains had treF, treA, and both treF and treA genes, respectively. In addition, of a total of 20 S. boydii strains, 18, 5, and 3 strains had treF, treA, and both treF and treA genes, respectively. For a total of 25 S. dysenteriae strains, 12,12, and 3 strains had treF, treA, and both treF and treA genes, respectively (Figure 4). Results showed that S. sp. PAMC28760 had both trehalase genes treF (cytoplasmic trehalase) and treA (periplasmic trehalase).

Phylogenetic tree analysis of trehalase genes (*treF* and *treA*) with a characterized *E. coli* K-12 substrain MG 1655 revealed that *treA* of *S.* sp. PAMC28760 and *E. coli* K-12 substrain MG1655 shared the same clade with 100% sequence identity, whereas *S.* sp. PAMC28760 did not share the same clade as *E. coli* K-12 substrain MG1655, although both shared 99.82% sequence identity (Figure 5). This shows that trehalase

Figure 1. (a) Circular phylogenetic analysis of the complete genomes of *Shigella*: Phylogenetic tree showing the relationships of genomes of a total 134 *Shigella* strains including an Antarctica isolate *Shigella* sp. PAMC28760 (represented in red text), and their phylogenetic position. This analysis was prepared using MEGA X based on 16S rRNA sequences with neighbour-joining method with 1,000-replicate bootstrap. (**b**) Heatmap generated with OrthoANI values calculated using the OAT software to determine the close relationship of strain *S.* sp. PAMC28760 with *S. flexneri* ATCC29903(T), *S. sonnei* CECT4887(T), *E. coli* ATCC11775(T), *S. boydii* GTC779 (T), *E. fergusonii* ATCC35469(T), *S. dysenteriae* ATCC13313(T), and *E. albertii* TW07627(T).

Figure 2. Circular genome comparison using CGView Server^{BETA} (http://cgview.Ca/) tool for the representation of genome and features of the *S*. sp. PAMC28760. The contents of the featured rings (starting with the outermost ring to the centre) are as follows. Ring 1, combined ORFs in forward and reverse strands; Ring 2, trehalose degradative genes, combined forward and reverse strand, and CDS (including tRNA and rRNA) in forward and reverse strands; Ring 3, GC skew plot, values above average are depicted in green, and below average in purple; Ring 4, GC content plot; and Ring 5, Sequence ruler.

S_flexneri_C32	MKSPAPSRPQKMALIPACIFLCFAALSVQAEETSVTPQPPDILLGPLFNDVQNAKLFPDQ	60
S_spPAMC28760	MKSPAPSRPQKMALIPACIFLCFAALSVQAEETPVTPQPPDILLGPLFNDVQNAKLFPDQ	60
E.coliK-12_MG1655	MKSPAPSRPQKMALIPACIFLCFAALSVQAEETPVTPQPPDILLGPLFNDVQNAKLFPDQ	60
S_boydii_ATCC_49812	MKSPAPSRPQKMALIPACIFLCFAALSVQAEETPVTPQPPDILLGPLFNDVQNAKLFPDQ	60
S_flexneri_C32	KTFADAVPNSDPLMILADYRMQQHQSGFDLRHFVNVNFTLPKEGEKYVPPEGQSLREHID	120
S_spPAMC28760	KTFADAVPNSDPLMILADYRMQQNQSGFDLRHFVNVNFTLPKEGEKYVPPEGQSLREHID	120
E.coliK-12_MG1655	KTFADAVPNSDPLMILADYRMQQNQSGFDLRHFVNVNFTLPKEGEKYVPPEGQSLREHID	120
S_boydii_ATCC_49812	************************************	120
S_flexneri_C32 S_spPAMC28760 E.coliK-12_MG1655 S_boydii_ATCC_49812	GLWPVLTRSIENTEKWDSLLPLPKPYVV GGRFREVYYWDSYFTMLGLAESGHWDKVADM GLWPVLTRSTENTEKWDSLLPLPEPYVV GGRFREVYYWDSYFTMLGLAESGHWDKVADM GLWPVLTRSTENTEKWDSLLPLPEPYVV GGRFREVYYWDSYFTMLGLAESGHWDKVADM ************************************	180 180 180 180
S_flexneri_C32	VANFAHEIDTYGHIFNGNRSYYLSRSQPFFFALMVELLAQHEGDAALKQYLPQMQKEYAY	240
S_spPAMC28760	VANFAHEIDTYGHIFNGNRSYYLSRSQPFFFALMVELLAQHEGDAALKQYLPQMQKEYAY	240
E.coliK-12_MG1655	VANFAHEIDTYGHIFNGNRSYYLSRSQPFFFALMVELLAQHEGDAALKQYLPQMQKEYAY	240
S_boydii_ATCC_49812	VANFAHEIDTYGHIFNGNRSYYLSRSQPFFFALMVELLAQHEGDAALKQYLPQMQKEYAY	240
S_flexneri_C32 S_spPAMC28760 E.coliK-12_MG1655 S_boydii_ATCC_49812	WMDGVENLQAGQQEKRVVKLQDGTLLNRYWDDRDTPRPESWVEDIATAKSNPNRPATEIY WMDGVENLQAGQQEKRVVKLQDGTLLNRYWDDRDTPRPESWVEDIATAKSNPNRPATEIY WMDGVENLQAGQQEKRVVKLQDGTLLNRYWDDRDTPRPESWVEDIATAKSNPNRPATEIY WMDGVENLQAGQQEKRVVKLQDGTLLNRYWDDRDTPRPESWVEDIATAKSNPNRPATEIY CR4#	300 300 300 300
S_flexneri_C32	RDLRSAAASGWDFSSR WMDNPQQLNTLRTTSIVPVDLNSLMFKMEKILSRASKAAGDNAM	360
S_spPAMC28760	RDLRSAAASGWDFSSR WMDNPQQLNTLRTTSIVPVDLNSLMFKMEKILARASKAAGDNAM	360
E.coliK-12_MG1655	RDLRSAAASGWDFSSR WMDNPQQLNTLRTTSIVPVDLNSLMFKMEKILARASKAAGDNAM	360
S_boydii_ATCC_49812	RDLRSAAASGWDFSSR WMDNPQQLNTLRTTSIVPVDLNSLMFKMEKILARASKAAGDNAM	360
S_flexneri_C32 S_spPAMC28760 E.coliK-12_MG1655 S_boydii_ATCC_49812	ANQYETLANARQKGIEKYLWNDQQGWYADYDLKSHKVRNQLTAAALFPLYVNAAAKDRAN ANQYETLANARQKGIEKYLWNDQQGWYADYDLKSHKVRNQLTAAALFPLYVNAAAKDRAN ANQYETLANARQKGIEKYLWNDQQGWYADYDLKSHKVRNQLTAAALFPLYVNAAAKDRAN ANQYETLANARQKGIEKYLWNDQGWYADYDLKSHKVRNQLTAAALFPLYVNAAAKDRAN ************************************	420 420 420 420
S_flexneri_C32	KMATATKTHLLQPGGLNTTSVKSGQQMDAPNGWAP_QWVATEGLQNYGQKEVAMDISWHF	480
S_spPAMC28760	KMATATKTHLLQPGGLNTTSVKSGQQMDAPNGWAP_QWVATEGLQNYGQKEVAMDISWHF	480
E.coliK-12_MG1655	KMATATKTHLLQPGGLNTTSVKSGQQMDAPNGWAP_QWVATEGLQNYGQKEVAMDISWHF	480
S_boydii_ATCC_49812	KMATATKTHLLQPGGLNTTSVKSGQQMDAPNGWAP_QWVATEGLQNYGQKEVAMDISWHF	480
S_flexneri_C32 S_spPAMC28760 E.coliK-12_MG1655 S_boydii_ATCC_49812	# CR5 LTNVQHTYDREKKLVEKYD/STTGTGGGGGGEYPLQDGFGMTNGVTLKMLDLICPKEQPCD LTNVQHTYDREKKLVEKYD/STTGTGGGGGEYPLQDGFGMTNGVTLKMLDLICPKEQPCD LTNVQHTYDREKKLVEKYD/STTGTGGGGGEYPLQDGFGMTNGVTLKMLDLICPKEQPCD LTNVQHTYDREKKLVEKYD/STTGTGGGGGGEYPLQDGFGMTNGVTLKMLDLICPKEQPCD	540 540 540 540

Figure 3. Cytoplasmic trehalase (TreF) amino acid sequence alignment with a characterized trehalase (TreF). TreF (GH37) from *E. coli* K-12 substr. MG1655, trehalase from *S. flexneri* C32, trehalase from *Shigella* sp. PAMC28760, and trehalase from *S. boydii* ATCC49812. The signature motif 1 and signature motif 2 represent two highly conserved sequence segments that belong to the GH37 family. The "#" symbol denotes the catalytic sites of Asp₃₁₂ and Glu₄₉₆. the three black boxes represent conserved regions (CR3–CR5).

genes (*treA* and *treF*) of *S*. sp. PAMC28760 could be distinctly divided into two major clades. It was found that *treA* and *treF* genes from studied genome clustered together more closely with both genes of *S*. *flexneri*. The *treA* gene is clustered with *S*. *flexneri* FDAARGOS-74 and *S*. *flexneri* WW1 whereas *treF* is clustered with *S*. *flexneri* 2016AM-0877 and *S*. *flexneri* 74–1170.

These results suggest that S. sp. PAMC28760 might have a trehalose degradation pathway like that of

E. coli. Also, it has been reported that TreA in *E. coli* is a trehalase found in the periplasmic area of cells that hydrolyzes trehalose glucose under high osmolarity, whereas TreF is a cytoplasmic isoform of TreA trehalase that plays important role in trehalose breakdown produced within bacterial cells under high osmolarity conditions [42,43]. Similarly, in the case of cytoplasmic trehalase (TreF), it becomes active during the transition between high and low osmolarity. TreF can deplete the

Figure 4. Venn diagram categorizes trehalase genes involved in the complete genomes of four *Shigella* species along with uncategorized *Shigella* sp. PAMC28760. Green circle represents the cytoplasmic trehalase (*treF*), whereas red circle represents the periplasmic trehalase (*treA*). The number outside the circles represents the absence of both trehalase genes.

Figure 5. Circular phylogenetic tree based on trehalase genes (*treF/treA*) sequence in the complete genomes of *Shigella* strains with reference to the characterized trehalase of *E. coli* strain K-12 substrain MG165 using a neighbour-joining tree method with 1,000-replicate bootstrap. The pink highlighted boxes represent the characterized trehalase genes (*treF* and *treA*), whereas the red text indicates the strain (*Shigella* sp. PAMC28760) under study.

internal trehalose pool as the cell metabolism shifts to a low osmolarity state. TreF has a low enzymatic activity that is low enough not to interfere with trehalose production under high osmolarity, but high enough to degrade the accumulated trehalose once the environment returns to normal [19].

Trehalose degradative pathway

Six routes of trehalose degradation pathways (trehalose degradation I, II, III, IV, V, and VI) have been found in organisms depending on their subcellular locations. These pathways have been reported in the MetaCyc pathway database [44]. They are summarized in (Figure 6). Depending on the organism, trehalose might enter cells via a permease where it remains unmodified, or it gets transformed to phosphorylated trehalose 6-phosphate forms via a phosphotransferase system (PTS). Trehalose that cannot be modified might get degraded by a hydrolysing trehalase (EC 3.2.1.28) or might be split by trehalose phosphorylase (EC 2.4.1.64, and EC 2.4.1.231) (Figure 7). It was revealed that our Antarctica isolate S. sp. PAMC28760 had the trehalase gene based on the prediction of trehalose degradative pathway. The result is summarized in Figures 2 and 6. Trehalose is broken down into two molecules of glucose and water by the trehalase enzyme that utilizes glucose as a carbon source. Trehalase is classified into glucoside hydrolase (GH) families such as GH37, GH65, and GH15 in the CAZy (Carbohydrate-Active Enzyme) database (http://www.cazy.org/) [45]. The GH37 family possesses only trehalase enzymes, whereas GH65 and GH15 families possess other enzymes along with trehalase enzymes. In 2007, it was reported that *Mycobacterium smegmatis* and *Mycobacterium tuberculosis* possessed trehalase that belonged to the GH15 family [46].

Trehalase belonging to the GH37 family can hydrolyse a molecule of \propto, \propto -trehalose into two molecules of glucose by inverting the anomeric orientation. Trehalase belonging to the GH37 family have been found in different species, including bacteria, fungi, yeasts, plants, insects, and vertebrates [22]. GH family has been divided into "clans" in the CAZy database, where enzymes are regarded to have a common evolutionary origin. Clan GH-G was ascribed to GH37 enzymes, while clan GH-L was ascribed to GH65 and GH15 enzymes. Although clans GH-G and GH-L share only a low amount of sequence homology, such finding is significant. GH37 trehalase has two catalytic residues, Asp and Glu, in their CDs (catalytic domains). Asp and Glu residues tend to be involved in the function of GH65 and GH15 trehalases. These amino acid residues are most likely to be involved in a common inverting mechanism during catalysis [47]. Structures of these trehalases are comprised of conserved regions (CRs),

Figure 6. Trehalose degradative pathways. Six different trehalose degradative pathways are found in organisms (bacteria, fungi, yeast, Arthropoda, and plants). Among them, only two degradation pathways (Trehalose degradation pathway II (cytosolic) and VI (periplasmic)) are found in *Shigella* species.

Figure 7. Schematic diagram of the trehalose metabolism pathway in Gram-negative bacteria is formulated from Kosciow et al., 2014 and Purvis et al., 2005. The green boxes represent the trehalose synthesis genes (*otsA*, trehalose-6-phosphate phosphatase; *otsB*, trehalose-6-phosphate synthase; and *treC*, trehalose-6-phosphate hydrolase), whereas grey boxes represent the trehalose degrading genes (*treA*, periplasmic trehalase; and *treF*, cytoplasmic trehalase). At cytoplasm, trehalose is degraded by cytoplasmic trehalase gene (*treF*). The plasma membrane, stretch-activated proteins (SAP) facilitate the exit of trehalose under hypotonic conditions to the periplasm where it further degraded by periplasmic trehalase gene (*treA*).

which include catalytic residues. These CRs can form active sites that usually have loops. CDs of GH enzymes contain well-known trehalase signature motifs, motif 1 (PGGRFXEXY[G/Y] D[S/T] Y] and motif 2 (QWD[Y/ F]PN/Y) [G/A] W[P/A] P), whereas GH65 and GH15 trehalases do not [48,49]. Our Antarctica isolate S. sp. PAMC28760 possesses GH37 trehalase with two signature motifs (motifs 1 and 2) as well as highly conserved regions (CR3-CR5), which have also been found in E. coli. Further study confirms that S. sp. PAMC28760 possesses trehalase enzyme, a member of the GH37 CAZyme family (Figure 3). The Gram-positive bacteria like Bacillus subtilis (non-pathogenic) and Clostridioidess difficile (pathogenic) share a pathway in which exogenous trehalose can be imported by a PTS to produce glucose and glucose-6-phosphate via the phosphotreahalose TerA (analogous to the PTS-TreC system in pathogenic E. coli). Due to the acquisition of an additional cluster of trehalose metabolism genes, namely a second PTS that mediates high-efficiency trehalose uptake from the environment, epidemic *C. difficile* strains can also grow on low trehalose. By increasing toxin levels, both modified trehalose utilization systems contributed to the growth and toxicity of these epidemic *C. difficile* strains [49]. There have been no previous papers on the function of the trehalose degradation pathway in virulence in Antarctic isolates till date. However, in *Variovorax* sp. PAMC28711 [50], the presence of trehalose metabolic pathway was mentioned.

Prediction of pathogenic and non-pathogenic proteins

MP3 (standalone program) can predict the presence of pathogenic and non-pathogenic proteins in a complete genome of a microbe based on two models, SVM and HMM, and their hybrids (integrated SVM and HMM models). To predict pathogenic and non-pathogenic trehalase, we retrieved complete genomes of 134 Shigella species (strains) from the NCBI database along with our S. sp. PAMC28760 isolates from Antarctica. Our strain S. sp. PAMC28760 showed pathogenic proteins of 1,136 (based on SVM model) out of 4329 total proteins (Table 1), with periplasmic trehalase as a pathogenic trehalase (data not shown). MP3 tool can be used to compare numbers of pathogenic proteins in healthy and infected samples by precisely identifying pathogenic protein fragments (based on amino acid composition and dipeptide composition) commonly found in metagenomic data without needing a time-consuming homology-based alignment [37]. In comparison with other publicly available bioinformatic tools, this program can predict pathogenic proteins with improved accuracy (95.06%), sensitivity (85.59%), and specificity (96.64%) as it employs both SVM and HMM models. Also, it is essential to analyse complete genome sequences of pathogenic and non-pathogenic bacteria of closely related species to determine if any significant genomic changes have occurred. It has been proposed that both pathogenic and non-pathogenic strains have virulence factors/genes. They can be distinguished based on gene content. When other genes suppress the virulence factors/genes, the bacterium becomes non-pathogenic. However, when suppressing genes are lost, a commensal can become pathogenic [51].

In addition, the detection of transposon mutants in extraintestinal pathogenic E. coli (ExPEC) that are defective in binding to non-phagocytic cells is an unexpected finding on the probable role of periplasmic trehalase (treA) in virulence [24]. Furthermore, while trehalase enzymes are known to have a role in virulence of some fungal species, the occurrence of multiple enzymes can inhibit their potential as an antifungal drug target. Because the trehalose pathway and its enzymes are not found in mammals (including humans), fungi-specific inhibitors of the trehalose pathway and their enzymes should be generally non-toxic to mammals [52,53]. Likewise, a previous study has reported that inactivating trehalose biosynthesis pathways does not reduce resistance to oxidative stress in many bacteria, but a periplasmic trehalase gene (*treA*) mutant in Burkholderia pseudomallei shows increased sensitivity to oxidative stress despite elevated trehalose levels in the mutant, which is expected to protect against this stress [25]. Another study also reported that validmycin А was ineffective against Clostridioides difficile TreA, whereas trehalose derivatives such as epimers containing hydroxyl groups (2and 4-positions), and thiotrehalose derivatives showed promise as TreA inhibitors with a larger spectrum. The

efficacy of these drugs in treating specific bacterial infections is currently being studied [54]. It has also been reported that the PTS route for trehalose uptake (trehalose degradation I, low osmolarity) is inhibited when the osmolarity is high. Thus, trehalase (TreA) in the periplasm can allow cells to utilize trehalose at a high osmolarity by breaking it down into glucose molecules, which can be subsequently transported by phosphotransferase mediated system [55]. Genome of Shigella strains were analysed for pathogenic and nonpathogenic trehalase genes in this study for the first time. It is assumed that studying trehalase in one pathogenic bacterium like Shigella species could be important for further studies. Trehalase (TreA) from the pathogenic strain of extraintestinal E. coli known as MT78 has also been identified as a member of glycoside hydrolase 37 (GH37). Similarly, deletion of these genes in the meningoencephalitis-causing yeast Crytococcus neoformans resulted in severe defects in spore production, a decrease in spore germination, and an increase in the production of alternative development structures, which spores forms are plausible infectious particles [56]. Trehalose does not have to solely play a role in osmoregulation. According to Lee et al., it has stated that if glucose is present in the cytoplasm, molecules like trehalose are produced at levels approaching 400 mM in the cytoplasm [57]. Glycine betaine and L-proline often accumulate in the cytoplasm (around 700 and 400 mM, respectively) and can replace trehalose [58]. Many species utilize these osmolytes, which appear to be well-adapted to cellular functions. The electro-neutral solutes trehalose, glycine betaine, and L-proline, as well as potassium glutamate, have various chemical characteristics that may suit their functions in cell survival during osmotic shock.

Conclusions

Although there are many studies on trehalase, it was not studied in *Shigella* species based on two different trehalase genes (*treF* and *treA*) and pathogenicity. Most *Shigella* species (*S. flexneri*, *S. boydii*, *S. dysenteriae*, and *S. sonnei*), as well as our strain *S.* sp. PAMC28760, have cytoplasmic trehalase, and all periplasmic trehalase predicted in the studied strains showed up as pathogenic proteins using MP3, RAST, and Prokka tools. Notably, *treF* was detected in all strains of *S. sonnei*, but *treA* was identified in only two strains. This sort of research on pathogenic and non-pathogenic trehalase could help researchers to elucidate how and why *Shigella* species have certain traits. Furthermore, before performing any **Table 1.** MP3 prediction of the total proteins, pathogenic protein, and non-pathogenic proteins in all the complete genomes of *Shigella* strains including *Shigella* sp. PAMC28760, which is indicated as a asterisk symbol. Hybrid: predictions from both HMM and SVM models.

is indicated as a asterisk	symbol. F	-i Shorid:	predictions	trom both H	MIM and SVM models.									
Strain	Total proteins	MMH	Hybrid	SVM	Strain	Total proteins	HMMH	lybrid	SVM	Strain	Total proteins	HMMH	łybrid	SVM
Shigella flexneri					Shigell					Shigella boydii				
S. flexneri C32	4746	367	1126	1259	S. sonnei 2015C_3566	4295	279	1002	1125	S. boydii 54_1621	3409	181	069	803
5. flexneri la 228	39/3	254	843	559 1001	5. sonnei 2015AM-1099	4318	181	766	6111 2001	5. boydii 59_248	3958	254 010	208 777	700
5. Texneri 1a 439	4080	707	8/3 000	1001	5. Sonnel AR_0426	4120	C07	/88	104	5. boyall 83_5/8	27/5	617	111	890 010
Sulexiell 14 0/0 C Accord 22 001	400/	757	000	166	S sound ALCC 29,930	4140 3030	C/7	929 070	1041	s boudin ALCC 0700	00450 2005	404 150	C7/	010
э. пехнен za эот S. flexneri 2a 2457T	3827	236	805	923	5. sonnei FDAARGOS 715	4149	274	931 931	1061	S. boydii ATTC 35,964	4070	248	887	914 1004
S. flexneri 2a	4043	269	892	1019	S. sonnei KCCM41282	4041	269	892	1006	S. boydii ATCC 49,812	4347	285	971	0601
AUSMDU00010535 S.flexneri 2a str 301	4313	260	835	959	S.sonnei 866	4086	274	919	1046	S. boydii ATCCRAA 1247	3723	228	783	905
S. flexneri 4c 702	3996	250	853	964	S. sonnei 53 G	4648	313	1119	1239	S. boydii CDC 3083 94	3909	252	854	970
S. flexneri 5a M90T S. flexneri 64-5500	3972 3981	260 250	863 870	984 981	S. sonnei 75_02 S. sonnei	4583 4114	319 899	1106 899	1231 1023	S. boydii KCCM 41,690 S. boydii NCTC 9733	3650 3611	212 240	749 793	867 885
					FDAARGOS_524									
5. flexneri /4_11/0 5. flexneri 2016AM 0877	4099 4062	261 269	88/ 875	2101 204	5. sonnei 5s046 5. sonnei FORC 011	4056 4499	282 306	903 1087	1026 1218	S. boydii NCIC 9850 S. hovdii Sh 227	3/49 3819	224 227	/92 805	909 924
S. flexneri 61_4982	3933	240	811	931	S. sonnei 2015C_3794	4218	272	987	1111	S. boydii 59_2708	3753	236	780	894
S. flexneri 2,002,017	4045	263	879	998	S. sonnei CFSAN030807	4316	288	1016	1142	S. boydii NCTC9353	3318	177	672	778
5. flexneri 2,003,036	3770	235	235	200	S. sonnei FC1653	3930	256 760	865	986 1024	5. boydii 600,657 5. boydii 600,657	3702	240	888	111
S. flexneri AR0423	3980	251	848 848	096	5. sonnei LUIT/10	4040 4184	272	938 938	1059	5. bovdii 600.690	40.23	267	965 965	807
					AUSMDU00008333									
S. flexneri FC906	3882	239	822	950	S. sonnei AR_0030	4319	277	956	1080	5. boydii 602,068	3777	245	796	903
S. flexneri G1663	39/6	261	261	1/6	5. sonnei 2015C_3807	3857	2/4	840	950	5. boydii FDAARGOS 1139	3641	221	/48	855
S. flexneri shi06HN006	3795	237	804	916	S. sonnei ALISMINION10534	4165	280	921	1045	I				
S. flexneri Y 93-3063	4100	275	911	1027	S. sonnei FDAARGOS 90	4149	182	931	1061					
S. flexneri Y PE577	3807	239	802	915	S. sonnei 19.0821.348	4196	260	883	1006					
S. flexneri FDAARGOS_74	3925	262	847	967	S. sonnei 19.1125.3493	4097	260	862	983	Strain	Total nroteins	HMMH	lybrid	SVM
S. flexneri 1c Y394	3922	258	834	951	S. sonnei 506	4505	295	982	1099	S.sp. PAMC 28,760*	4329	303	1006	1136
S. flexneri AR_0425	3937	259	848	961	S. sonnei 1205.3131	4201	267	887	1013					
S. flexneri /b 94_300/	411/	2/3	006	1020	5. sonnei 620/	4260	269	909	1201					
5. IleXINERI INCIC 9728 5. Annori 00, 2102	2000	245 215	765	969 000	5. sonnel 000/ 5. sonnoi 6004 77	4112 CCON	707	0/0	566 70					
S. flexneri	3905	246	830	953	5. sonnei 7111.69	4168	262	873	666					
AUSMDU00008355														
S. flexneri 89_141	3880	252	835	947	S. sonnei 3,123,885	3916 1165	251	832	947					
S. HEXNEN 4C 12US C. Hevneri 04-3145	40/0 3785	CY2 75C	784	0011	5. SONNEL 9, 103,033 5. Sonnei 401 030 105	4100 4044	107	8/2 861	013					
S. flexneri NCTC1	3769	234	784	898	5. sonnei L4094	4127	266	886	1005					
S. flexneri SFL1520	3833	236	809	915	S. sonnei SE6-1	4262	325	960	1078					
S. flexneri 5str 8401	3838	244	807	919	S. sonnei UKMCC-1015	4146	268	874	986					
S.flexneri 2a ATCC 29,903	4117	253	895	1014	S. sonnei 401,952,027	4141	259	867	990					
5. flexneri 4C 1002 5. flexneri FDAARGOS 535	4109	270	924 892	1012 1012	5. sonnei 203.916 5. sonnei 893.916	4141 3864	241 241	810 810	928					
I													Contin	(pən

VIRULENCE 🔄 1511

Table 1. (Continued).											
	Total					Total				Total	
Strain	proteins	HMMH	Hybrid	SVM	Strain	proteins	HMM Hybrid	SVM	Strain	proteins	HMM Hybrid SVM
S. flexneri	4116	269	908	1033							
AUSMI/U00008332 C flevneri 33 888 048	3611	775	746	860							
5. flavnari 2013C 3740	4074	761	878	1001							
S. flexneri 5908 2	3777	241	802	1001							
S. flexneri FDAARGOS 691	3730	230	783	904							
S. flexneri M2901	4092	261	883	1006							
S. flexneri	5533	348	1276	1442							
AUSMDU000021847											
S. flexneri	5494	343	1283	1434							
AUSMDU00022017	C111	010	0001	0111							
S. Hexneri WWI	C144	040	10201	1270							
S. Nekileli 83 S. Avsenterise ATCO753	0020		854	0/61							
S dysenteriae ATCG754	0500	164	109	670							
S diventeriae ATC(12037	3831	101	830	946							
S diventeriae ATC(12030	3947	257	820	041							
S. dvsenteriae ATCC49346	3689	229	786	898							
5. dvsenteriae ATCC49347	3868	241	823	941							
S. dysenteriae BU53M1	3697	229	760	869							
S. dysenteriae	2688	150	554	625							
CFSAN010954											
S. dysenteriae	4019	274	890	1014							
CFSAN010956											
S. dysenteriae	3917	262	829	946							
CFSAN029786											
S. dysenteriae 07_3308	3274	175	614	721							
S. dysenteriae 08_3380	3518	213	700	812							
S. dysenteriae 53_3937	3310	179	628	736							
5. dysenteriae 69_3818	3462	207	688	790							
S. dysenteriae 161/	3140	1/6	629	95/							
S. dysenteriae 2017C_4522	3621	216	759	866							
S. dysenteriae ATCC9752	3087	178	619	713							
S. dysenteriae ATCC13313	3474	208	686	792							
S. dysenteriae E670_74	4364	271	964	1105							
S. dysenteriae NCTC9718	3356	199	651	756							
S. dysenteriae Sd197	4294	222	695	804							
S. dysenteriae 80_547	3462	207	688	790							
5. dysenteriae AICC9751	3062	182	642 770	734							
5. dysenteriae 79_8006	3098	877	/60	8/4							
o. dysenteriae HNCMB20080	0675	6/1	010	119							

kinds of wet lab work, these bioinformatics tools are important in determining the nature of proteins present in a complete genome of bacteria.

Acknowledgment

The authors would like to thank Ms. Phataratah Sanguannarm for her help in downloading the offline version of MP3 and Prokka programs.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was part of a project entitled "Development of potential antibiotic compounds using polar organism resources (20200610, KOPRI Grant PM22030)" funded by the Ministry of Oceans and Fisheries, Republic of Korea.

Data availability statement

Data used in this study are available from the corresponding author upon reasonable request.

References

- Yabuuchi E. Bacillus dysentericus (sic) 1897 was the first taxonomic rather than Bacillus dysenteriae 1898. Int J Syst Evol Microbiol. 2002;3:1041. doi:10.1099/ 00207713-52-3-1041.
- [2] Kotloff KL, Nataro JP, Blackwelder WC, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013;382(9888):209–222. DOI:10.1016/S0140-6736(13)60844-2.
- [3] Muthuirulandi Sethuvel DP, Devanga Ragupathi NK, Anandan S, et al. Update on: *shigella* new serogroups/ serotypes and their antimicrobial resistance. Lett Appl Microbiol. 2017;64(1):8–18.
- [4] Lampel KA, Maurelli AT. Shigella species. Ch 11. In: Miliotis M and J Bier, editors. International handbook of foodborne pathogens. Boca Raton: CRC Press. 2003:167–180. doi:10.1201/9780203912065.
- [5] Levine MM, Kotloff KL, Barry EM, et al. Clinical trials of *Shigella* vaccines: two steps forward and one step back on a long, hard road. Nat Rev Microbiol. 2007;5 (7):540–553.
- [6] Hale TL, Keusch GT. Med Microbiol. Galveston (TX): University of Texas Medical Branch at Galveston. 1996:303–310.
- [7] Schroeder GN, Hilbi H. Molecular pathogenesis of *Shigella* spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev. 2008;21(1):134–156.

- Bargagli R. Environmental contamination in Antarctic ecosystems. Sci Total Environ. 2008;400(1–3):212–226.
- [9] Stan-Lotter H, Fendrihan S. Adaptation of microbial life to environmental extremes: novel research results and application. second edition. (Switzerland: Springer Cham). 2017.
- [10] Stewart SE, Parker MD, Amézquita A, et al. Microbiological risk assessment for personal care products. Int J Cosmet Sci. 2016;38(6):634–645.
- [11] Coates K. Foodborne microorganisms of public health significance. Aust Vet J. 1999;77(1):54.
- [12] Warren BR, Parish ME, Schneider KR. Shigella as a foodborne pathogen and current methods for detection in food. Crit Rev Food Sci Nutr. 2006;46 (7):551–567.
- [13] Harikrishnan H, Ismail A, Banga Singh KK. Temperature-Regulated expression of outer membrane proteins in *Shigella flexneri*. Gut Pathog. 2013;5(1). DOI:10.1186/1757-4749-5-38
- [14] Luyckx J, Baudouin C. Trehalose: an intriguing disaccharide with potential for medical application in ophthalmology. Clin Ophthalmol. 2011;5:577–581.
- Bhumiratana A, Anderson RL, Costilow RN. Trehalose metabolism by *Bacillus popilliae*. J Bacteriol. 1974;119 (2):484–493.
- [16] Helfert C, Gotsche S, Dahl MK. Cleavage of trehalosephosphate in *Bacillus subtilis* is catalysed by a phosphoα-(1-1)-glucosidase encoded by the *treA* gene. Mol Microbiol. 1995;16(1):111–120.
- [17] Boos W, Ehmann U, Bremer E, et al. Trehalase of *Escherichia coli*. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem. 1987;262(27):13212–13218.
- [18] Styrvold OB, Strom AR. Synthesis, accumulation, and excretion of trehalose in osmotically stressed *Escherichia coli* K-12 strains: influence of amber suppressors and function of the periplasmic trehalase. J Bacteriol. 1991;173(3):1187–1192.
- [19] Horlacher R, Uhland K, Klein W, et al. Characterization of a cytoplasmic trehalase of *Escherichia coli*. J Bacteriol. 1996;178(21):6250–6257.
- [20] Zhou Y, Li X, Katsuma S, et al. Duplication, and diversification of trehalase confers evolutionary advantages on lepidopteran insects. Mol Ecol. 2019;28 (24):5282–5298.
- [21] Shukla E, Thorat L, Bendre AD, et al. Cloning, and characterization of trehalase: a conserved glycosidase from oriental midge. *Chironomus Ramosus*. 3 Biotech. 2018;8:1–7.
- [22] Sakaguchi M. Diverse and common features of trehalases and their contributions to microbial trehalose metabolism. Appl Microbiol Biotechnol. 2020;104 (5):1837–1847.
- [23] Tang P, Hseu YC, Chou HH, et al. Proteomic analysis of the effect of cyanide on klebsiella oxytoca. Curr Microbiol. 2010;60(3):224–228.
- [24] Pavanelo DB, Houle S, Matter LB, et al. The periplasmic trehalase affects type 1 fimbria production and virulence of extraintestinal pathogenic *Escherichia coli* strain MT78. Infect Immun. 2018;86(8). DOI:10.1128/ IAI.00241-18

- [25] Vanaporn M, Sarkar-Tyson M, Kovacs-Simon A, et al. Trehalase plays a role in macrophage colonization and virulence of *Burkholderia pseudomallei* in insect and mammalian hosts. Virulence. 2017;8(1):30–40.
- [26] Shome A, Kumawat M, Pesingi PK, et al. Isolation and identification of periplasmic proteins in *Salmonella typhimurium*. Int J Curr Microbiol Appl Sci. 2020;9 (6):1923–1936.
- [27] Sayers EW, Beck J, Bolton EE, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021;49(D1):D10–D17. DOI:10. 1093/nar/gkaa892.
- [28] Han SR, Kim DW, Kim B, et al. Complete genome sequencing of *Shigella* sp. PAMC 28760: identification of CAZyme genes and analysis of their potential role in glycogen metabolism for cold survival adaptation. Microb Pathog. 2019;137:103759.
- [29] Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549.
- [30] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–425.
- [31] Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. N Y: Evolution; 1985.
- [32] Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments | Nucleic Acids Res | Oxford Academic. Nucleic Acids Res. 2019;47 (W1):W256–W259.
- [33] Lee I, Kim YO, Park SC, et al. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 2016;66(2): 1100–1103.
- [34] Yoon SH, Ha SM, Kwon S, et al. Introducing EzBiocloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67(5):1613–1617.
- [35] Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5(1):113.
- [36] Rc E. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5): 1792–1797.
- [37] Gupta A, Kapil R, Dhakan DB, et al. MP3: a software tool for the prediction of pathogenic proteins in genomic and metagenomic data. PLoS One. 2014;9(4): e93907.
- [38] Aziz RK, Bartels D, Best A, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9(1): DOI:10.1186/1471-2164-9-75.
- [39] Seemann T. Prokka: rapid prokaryotic genome annotation | Bioinformatics | Oxford Academic. Bioinformatics. 2014;30(14):2068–2069.
- [40] Grant JR, Stothard P. The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 2008;36(Web Server):W181–W184.
- [41] Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004;101 (30):11030–11035.

- [42] Tourinho-dos-Santos CF, Bachinski N, Paschoalin VM, et al. Periplasmic trehalase from *Escherichia coli*-characterization and immobilization on spherisorb. Braz J Med Biol Res. 1994;27(3):627–636.
- [43] Uhland K, Mondigler M, Spiess C, et al. Determinants of translocation and folding of TreF, a trehalase of *Escherichia coli*. J Biol Chem. 2000;275 (31):23439–23445.
- [44] Caspi R, Billington R, Keseler IM, et al. The MetaCyc database of metabolic pathways and enzymes-a 2019 update. Nucleic Acids Res. 2020;48(D1):D445–D453.
- [45] Lombard V, Golaconda Ramulu H, Drula E, et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(D1):D490–D495.
- [46] Carroll JD, Pastuszak I, Edavana VK, et al. A novel trehalase from *Mycobacterium smegmatis* – purification, properties, requirements. Febs J. 2007;274 (7):1701–1714.
- [47] Maicas S, Guirao-Abad JP, Argüelles JC. Yeast trehalases: two enzymes, one catalytic mission. Biochim Biophys Acta - Gen Subj. 2016;1860(10):2249–2254.
- [48] Barraza A, Sánchez F. Trehalases: a neglected carbon metabolism regulator? Plant Signal Behav. 2013;8(7): e24778.
- [49] Kalera K, Stothard AI, Woodruff PJ, et al. The role of chemoenzymatic synthesis in advancing trehalose analogues as tools for combatting bacterial pathogens. Chem Commun. 2020;56(78):11528–11547.
- [50] Shrestha P, Kim MS, Elbasani E, et al. Prediction of trehalose-metabolic pathway and comparative analysis of KEGG, MetaCyc, and RAST databases based on complete genome of *Variovorax* sp. PAMC28711. BMC Genom. 2022;23(1). DOI:10.1186/s12863-021-01020-y
- [51] Loren B, Ali N, Bocklitz T, et al. Discrimination between pathogenic and non-pathogenic *E. coli* strains by means of Raman microspectroscopy. Anal Bioanal Chem. 2020;412(30): 8241–8247.
- [52] Perfect JR, Tenor JL, Miao Y, et al. Trehalose pathway as an antifungal target. Virulence. 2017;8(2):143–149.
- [53] Argüelles JC. Trehalose as antifungal target: the picture is still incomplete. Virulence. 2017;8(2):237–238.
- [54] Danielson ND, Collins J, Stothard AI, et al. Degradation-Resistant trehalose analogues block utilization of trehalose by hypervirulent Clostridioides difficile. Chem Commun. 2019;55(34):5009–5012.
- [55] Gutierrez C, Ardourel M, Bremer E, et al. Analysis and DNA sequence of the osmoregulated *treA* gene encoding the periplasmic trehalase of *Escherichia coli* K12. MGG Mol Gen Genet. 1989;217(2-3):347-354.
- [56] Botts MR, Huang M, Borchardt RK, et al. Developmental cell fate and virulence are linked to trehalose homeostasis in *Cryptococcus neoformans*. Eukaryot Cell. 2014;13(9):1158–1168.
- [57] Lee SJ, Gralla JD. Osmoregulation of bacterial transcription via poised RNA polymerase. Mol Cell. 2004;14(2):153–162.
- [58] Larsen PI, Sydnes LK, Landfald B, et al. Osmoregulation in *Escherichia coli* by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose. Arch Microbiol. 1987;147(1):1–7.