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Abstract: Persistent high temperature decreases the yield and quality of crops, including many
important herbs. White clover (Trifolium repens) is a perennial herb with high feeding and medicinal
value, but is sensitive to temperatures above 30 ◦C. The present study was conducted to elucidate
the impact of changes in endogenous γ-aminobutyric acid (GABA) level by exogenous GABA
pretreatment on heat tolerance of white clover, associated with alterations in endogenous hormones,
antioxidant metabolism, and aquaporin-related gene expression in root and leaf of white clover plants
under high-temperature stress. Our results reveal that improvement in endogenous GABA level in
leaf and root by GABA pretreatment could significantly alleviate the damage to white clover during
high-temperature stress, as demonstrated by enhancements in cell membrane stability, photosynthetic
capacity, and osmotic adjustment ability, as well as lower oxidative damage and chlorophyll loss.
The GABA significantly enhanced gene expression and enzyme activities involved in antioxidant
defense, including superoxide dismutase, catalase, peroxidase, and key enzymes of the ascorbic
acid–glutathione cycle, thus reducing the accumulation of reactive oxygen species and the oxidative
injury to membrane lipids and proteins. The GABA also increased endogenous indole-3-acetic acid
content in roots and leaves and cytokinin content in leaves, associated with growth maintenance and
reduced leaf senescence under heat stress. The GABA significantly upregulated the expression of
PIP1-1 and PIP2-7 in leaves and the TIP2-1 expression in leaves and roots under high temperature,
and also alleviated the heat-induced inhibition of PIP1-1, PIP2-2, TIP2-2, and NIP1-2 expression in
roots, which could help to improve the water transportation and homeostasis from roots to leaves.
In addition, the GABA-induced aquaporins expression and decline in endogenous abscisic acid
level could improve the heat dissipation capacity through maintaining higher stomatal opening and
transpiration in white clovers under high-temperature stress.

Keywords: adaptability; heat stress; water homeostasis; hormone; oxidative damage; stoma; transpiration

1. Introduction

Nowadays, the major impact of global warming is already discernible in animal and
plant populations [1]. In terms of plants, a global high temperature has resulted in the
increase in mortality of forest trees [2], substantial reduction in crop yield [3], and changes
in the spatial distribution of herbs [4]. Plant hormones and other plant growth regula-
tors (PGRs) perform pivotal functions in regulating plant adaptability to different abiotic
stresses. γ-aminobutyric acid (GABA), a non-protein amino acid comprising four carbons,
exists abundantly in living organisms including microbes, plants, and vertebrates. Over the
past 50 years, GABA has been regarded as a very important PGR that affects plant growth
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and the adaptability to high temperature or other environmental stresses [5]. A recent study
revealed that the improvement in GABA content or metabolism is an important defense
mechanism triggered by the exogenous spermidine (Spd) in white clover (Trifolium repens)
under heat stress [6]. GABA affected glutathione, carbon, and amino acid metabolism, asso-
ciated with better heat tolerance in creeping bentgrass (Agrostis stolonifera) [7]. Nayyar et al.
found that GABA could safeguard rice (Oryza sativa) seedlings during high temperature
by improving osmotic protection and antioxidant defense [8]. However, study of the
regulation mechanisms and physiological function of GABA is still in its infancy as com-
pared to other endogenous hormones (auxin (IAA), gibberellin (GA), cytokinin (CTK),
and abscisic acid (ABA)) crucial for plants growth and development [9,10]. As an im-
portant signal molecule, ABA participates in the regulation of stomatal movement and
multiple gene expression in response to abiotic stress [11]. GA or IAA could effectively
alleviate heat-induced growth inhibition and the decline in yield of lemon (Citrus limon)
trees or rice [12,13]. The CTK-regulated heat tolerance is associated with enhancement of
antioxidant defense and delayed leaf senescence in creeping bentgrass [14]. However, it
remains unclear so far whether the GABA-regulated heat tolerance is linked with changes
in endogenous hormones in plants.

Oxidative damage is one of the most imperative stress indicators when plants are
suffering from heat stress. High temperature leads toward massive production of reactive
oxygen species (OH−, O2

•−, and H2O2) in plants, resulting in increased oxidative stress to
various cell organelles [15]. Plants have evolved an efficient antioxidant defense system (en-
zymatic and non-enzymatic) to scavenge reactive oxygen species (ROS) under unfavorable
environmental conditions. For the enzymatic mechanism, superoxide dismutases (SODs)
including Cu/ZnSOD, MnSOD, and FeSOD are the first line of defense against ROS and
are involved in the dismutation of superoxide anion to produce hydrogen peroxide and
molecular oxygen. The Cu/ZnSOD dominates the main function in higher plants, while the
lower plants are dominated by MnSOD and FeSOD [16]. Catalase (CAT), peroxidase (POD),
and the ascorbic acid (ASA)–glutathione (GSH) cycle can convert H2O2 into H2O and
O2. For the ASA–GSH cycle, ascorbate peroxidase (APX), glutathione peroxidase (GPX),
monodehydroascorbate reductase (MR), dehydroascorbate reductase (DR), and glutathione
reductase (GR) remove H2O2 through catalyzing the oxidation–reduction of ASA and GSH.
In this process, ASA and GSH act as non-enzymatic antioxidants to scavenge ROS [17].
Previous studies showed that the GABA-regulated tolerance under unfavorable conditions
was closely related to enhanced antioxidant defense in different plant species. For instance,
pepper (Capsicum annuum) could resist low-light stress by increasing antioxidant defense
after GABA treatment [18], and GABA could slow down the oxidative injury induced by
salinity in white clover [19]. However, how GABA interacts with endogenous hormones to
affect antioxidant defense systems (enzymatic and non-enzymatic) in leaf and root remains
unclear when plants undergo a prolonged period of heat stress.

Under high-temperature stress, even if water supply is sufficient, plants will suffer
from physiological water shortage due to the aggravation of transpiration loss and the
decrease in water absorbing capacity in the roots [20]. Water transport in plants is regu-
lated mainly by three ways, including the apoplastic pathway, symplastic pathway, and
transcellular pathway. Among them, the transcellular pathway is mainly carried out by
aquaporins (AQPs). Four kinds of AQPs have been widely recognized in plants: plasma
membrane endogenous proteins (PIPS), vacuolar endogenous proteins (TIPS), nodule
protein 26 (NIPS), and small basic endogenous proteins (SIPS) [21]. PIPS are divided into
PIP1 and PIP2, that sense the change in water inside and outside of cell membranes, and
PIP2 shows a greater water channel efficiency than PIP1. TIPS are located in the vacuolar
membrane for sensing the change in water content in the cytoplasm, which performs a vital
role in maintaining cell permeability. NIPS is responsible for transporting a wide range
of substances, such as water, urea, glycerol, and some metal ions. There are only a few
studies on SIPS that are mainly located in endoplasmic reticulum [22–25]. It was reported
that AQPs perform crucial functions in plant water regulation under osmotic or extreme



Antioxidants 2021, 10, 1099 3 of 19

temperature stress. The study of Peng et al. showed that the overexpression of an AQP
gene pgtip1 enhanced the stress tolerance in Arabidopsis thaliana under low-temperature,
salinity, and water stress [26]. Alexandersson et al. found that atpip2-2 affected root water
transport under drought stress [27]. In soybean (Glycine max), TIP2-6 responds to high-
temperature stress through hormone regulation [28]. The expression of CsT1P1-3, CsT1P2-3,
and CsPIP2-4 was enhanced by high temperature in citrus (Citrus reticulata Blanco) [29]. Up
to now, it is not well documented whether GABA-regulated thermotolerance is related to
AQP expression in plants.

White clover is a perennial herb with high feeding and medicinal value. It is cultivated
worldwide as an important forage due to high crude protein content and nutritional
value, and extract productions derived from white clover such as flavonoids have multiple
effects, such as reducing blood fat, cancer prevention, immunity enhancement, and anti-
aging [30,31]. However, white clover is sensitive to high temperature and its growth is
inhibited significantly at temperatures above 30 ◦C [32]. With global warming, the heat-
induced damage to white clover is becoming increasingly prominent in summer. The
objective of the present study was to determine the impact of GABA on improvement
in thermotolerance associated with alterations of endogenous hormones, antioxidant
metabolism, water regulation, and AQP-related gene transcript level in leaf and root of
white clover. This will help to reveal the potential regulatory mechanism of GABA in herbs
under heat stress and improve the cultivation and utilization of white clover or other herbs
in more regions.

2. Materials and Methods
2.1. Plant Materials and Treatments

Seeds of white clover (cultivar “Ladino”) were surface sterilized with 0.1% mercuric
chloride (HgCl2) solution for 4 min and rinsed thrice with deionized water. Seeds (20 g/m2)
were placed in a container (24 cm length, 15 cm width, and 8 cm height) comprising
quartz sand. The containers were kept in controlled laboratory conditions (23 ◦C/19 ◦C
day/night, 12 h photoperiod, 700 µmol m−2 s−1 photosynthetically active radiation, and
75% relative humidity). Seeds were firstly germinated in ddH2O for 7 days and then
cultured in Hoagland nutrient solution for 24 days [33]. Before the beginning of heat stress,
plant materials were grown on Hoagland’s solution with or without 2 mM GABA for
3 days. The half of non-pretreated or GABA-pretreated plants was kept in the controlled
growth chamber (conditions as illustrated above) as the control (C) or the control + GABA
(C+GABA) for 30 days, and the other half was transferred into a high-temperature chamber
(38/33 ◦C day/night and other conditions the same as the normal growth chamber) as heat
stress (H) and heat+GABA (H+GABA) for 30 days. Fresh Hoagland’s solution was applied
to the plants every day. The plastic containers were laid out in completely randomized
design with four biological replicates. Leaf samples were taken on 0, 5, 10, 15, 20, and 30 d
after heat stress, respectively. Root samples were taken at 15 d for gene expression and at
30 d for other parameters.

2.2. Determination of Endogenous GABA and Phytohormones Content

The GABA content was estimated by using the Test Kit obtained from Suzhou Comin
Biotechnology Co. Ltd, Suzhou, China. following the manufacturer’s guidelines. For
the determination of ABA, GA, and IAA, fresh samples (0.4 g) were crushed with 3 mL
methanol:isopropanol (1:4, v/v) and 1% glacial acetic acid. The mixture was centrifuged
for 1 h at 4 ◦C. A total of 2 mL of supernatant was collected, dried, and mixed in CH3OH
(300 µL). The reaction solution was then filtered by passing through a 0.22 µm PTFE
filter [34]. The concentrations of endogenous IAA, GA, and ABA were determined by
Waters Acquity UPLCSCIEX Se-lex ION Triple Quad 5500 mass spectrometer (waters,
Milford, MA, USA). A 5 µL sample was loaded into the Acquity UPLC beh C18 column
(1.7 µm, 50 × 2.1 mm; waters, Waxford, Ireland) at 40 ◦C. The mobile phase was composed
of 40% acetic acid solution and 60% CH3OH, and the flow rate was 1 mL min−1. The
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CTK content was estimated by using enzyme-linked immunosorbent assay (ELISA) in
accordance with the manufacturer’s guidelines. The Test Kit was obtained from Beijing
Fang Cheng Biotechnology Co., Ltd, Beijing, China.

2.3. Measurement of Water Status and Photosynthetic Parameters

For leaf relative water content (RWC), the fresh weight (FW) was weighed instantly
when leaves were cut off from plants. The leaf samples were drenched in deionized water
for 24 h to obtain the saturated weight (SW) and later kept in an oven at 85 ◦C for 72 h
to obtain the dry weight (DW). The RWC was formulated as RWC (%) = [(FW − DW)/
(SW − DW)] × 100% [35]. Root viability was estimated by following the procedure of
McMichael and Burke [36]. The osmotic potential (OP) was detected by using the protocols
of Blum. Fresh leaves or roots were immerged in distilled water for 12 h and quickly frozen
in liquid nitrogen for 10 min after the surface moisture being absorbed, and then thawed at
4 ◦C for 30 min. The cell fluids were squeezed from leaves or roots, and the osmolality of
cell sap was determined by using a vapor pressure osmometer (Wescor, Logan, UT, USA),
and the OP was converted based on − c × 2.58 × 10−3 [37]. For electrolyte leakage (EL),
the procedure of Blum and Ebercon was utilized [38]. Chlorophyll (Chl) was measured by
Arnon’s method [39]. The photochemical efficiency (Fv/Fm) and performance index absorption
basis (PIABS) were measured by using a Chl fluorescence system (Pocket PEA, Hansatech, UK).
Prior to analysis, fresh leaf samples were kept in dark conditions for 30 min with attached leaf
clips. Net photosynthetic efficiency (Pn), water use efficiency (WUE), stomatal conductance
(Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) were recorded with a
movable photosynthetic system (CIRAS-3, PP Systems, Amesbury, MA, USA) that supplied
CO2 (400 µL−1) and red and blue light (800 µmol photon m−2), respectively.

2.4. Determination of Antioxidant Metabolism

The protein carbonyl content and the total antioxidant capacity (TAC) was measured
by using the Test Kit purchased from Suzhou Kangmin Biotechnology Co, Suzhou, China.
Superoxide anion (O2

•−) or hydrogen peroxide (H2O2) were measured following the
method of Elstner and Heupel [40] or Velikova et al. [41], respectively. As for malondialde-
hyde (MDA), SOD, CAT, POD, APX, DR, GR, and MR activities, fresh tissues (0.15 g) were
taken and mechanically ground in 1.5 mL of precooled phosphoric acid buffer solution
(150 mM and pH 7.0), and then transferred into a centrifugal tube. The homogenate was
centrifuged at 15,000× g at 4 ◦C for 20 min to obtain the supernatant. For MDA con-
tent, supernatant (0.5 mL) was added in reaction solution (1 mL) having trichloroacetic
acid (20%) and thiobarbituric acid (0.5%). The mixture was kept in a boiling water bath
(95 ◦C) for 15 min and later hastily cooled in an ice bath. The solution was centrifuged
at 8000× g for 10 min at 4 ◦C. The absorbance value was noticed spectrometrically at
532 and 600 nm [42]. The activities of SOD, CAT, POD, or APX were estimated by noting
absorbance values at 560, 240, 470, or 290 mm, respectively [43–45]. The GR, MR, or DR
activity was detected by using the protocols of Cakmak et al. [46]. Bradford’s method was
used to detect soluble protein content [47]. ASA and GSH content were measured using
the method of Gossett et al. [48].

2.5. Total RNA Extraction and qRT-PCR Analysis

Real time quantitative polymerase chain reaction (qRT-PCR) was used to determine
the gene expression. The Rneasy Mini Kit (Qiagen, Duesseldorf, Germany) was used for
extracting total RNA in fresh leaves or roots. The RNA samples were treated with DNAsa
to remove possible DNA and then reverse-transcribed to cDNA using a revert Aid First
Stand cDNA Synthesis Kit (Fermentas, Lithuania). Primers of antioxidant enzyme genes
(Cu/ZnSOD, MnSOD, FeSOD, CAT, POD, APX, DR, GR, MR) and aquaporin genes (PIP1-1,
PIP2-2, PIP2-7, SIP1-1, TIP1-1, TIP2-1, TIP2-2, NIP1-2, NIP2-1) are recorded in Table S1
(β-actin as an internal control). For all genes, PCR conditions (iCycler iQ qRT-PCR detection
system with SYBR Green Supermix, Bio-Rad, Hercules, CA, USA) were as follows: 5 min at
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94 ◦C and 30 s at 95 ◦C (45 repeats of denaturation), annealing and extending for 45 s at 58
to 66 ◦C (Table S1), and amplicon from 60 to 95 ◦C to obtain the melting curve.

2.6. Statistical Analysis

Statistical analysis of all the data was conducted using SPSS 23 (IBM, Armonk,
NY, USA). Significant differences among various treatments were estimated by one-way
ANOVA together with LSD test at 5% probability level (p ≤ 0.05).

3. Results
3.1. Changes in Endogenous GABA and Hormones Content

The endogenous GABA content significantly increased after exogenous GABA pre-
treatment (Figure 1A). On the 15th day, the GABA content increased significantly in
the GABA-pretreated and non-pretreated plants under the high-temperature condition,
and the increase was more significant in the GABA-pretreated plants (Figure 1A). On
the 30th day, the GABA content in the roots and leaves of two heat-stressed treatments
(“H” and “H + GABA”) was still significantly higher in contrast to normal treatments
(“C” and “C + GABA”), and GABA pretreatment could further increase heat-induced
GABA content in roots and leaves (Figure 1A,B). The GABA pretreatment had no sig-
nificant effect on ABA, GA, IAA, and CTK contents in leaves and roots under normal
conditions (Figure 2A–D). The ABA content increased significantly, but GA, IAA, and CTK
contents decreased significantly in leaves and roots after 30 d of heat stress (Figure 2A–D).
Under the high-temperature condition, the GABA application significantly inhibited heat-
induced increases in ABA content in roots and leaves (Figure 2A), but did not affect the GA
content (Figure 2B). The IAA content in roots and leaves as well as CTK content in leaves
were increased significantly by the GABA pretreatment (Figure 2C,D).
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Figure 1. Effects of GABA application on the content of GABA in plant leaves (A) and roots (30th day) (B) under normal-
temperature and high-temperature stress. The vertical bar above the column in (A) or (B) represents + SE of the mean (n = 
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Figure 1. Effects of GABA application on the content of GABA in plant leaves (A) and roots (30th day) (B) under normal-
temperature and high-temperature stress. The vertical bar above the column in (A) or (B) represents + SE of the mean
(n = 4) and the different letters in the columns indicate significant differences at a given day of treatment based on LSD
(p ≤ 0.05). C, control (normal condition); C + GABA, control plants pretreated with GABA (normal condition); H, heat
stress; H + GABA, heat-stressed plants pretreated with GABA.
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Figure 2. Effects of GABA application on ABA content (A), GA content (B), IAA content (C), and CTK content (D) of
leaves (30th day) and roots (30th day) under normal-temperature and high-temperature stress. The vertical bar above the
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GABA (normal condition); H, heat stress; H + GABA, heat-stressed plants pretreated with GABA.

3.2. Effects of GABA on Cell Membrane Stability and Oxidative Damage

The MDA, H2O2, and O2
•− content significantly increased in leaves and roots of

the GABA-treated and untreated plants due to high-temperature stress and the GABA
application could significantly alleviate these effects (Figure 3A–C). However, no significant
differences in the accumulation of O2

•−, H2O2, and MDA content between GABA- treated
and untreated plants were observed under normal conditions (Figure 3A–C). EL in leaves
gradually increased with the extension of heat stress time. The GABA-pretreated plants
maintained a 12.86, 22.48, or 20.27% decrease in EL in leaves as compared to the non-
pretreated plants on 15, 20, or 30 d of high-temperature stress, respectively (Figure 4A).
Similarly, exogenous GABA application also effectively alleviated the heat-induced increase
in EL in roots after 30 d (Figure 4B). With the passage of stress time, the carbonyl content
increased significantly under high temperature, but the application of GABA showed
a significant inhibitory effect on the increase in carbonyl content in leaves and roots in
response to heat stress (Figure 4C,D). The GABA-treated white clover plants showed a
significant reduction in carbonyl content when compared to untreated plants on the 15th,
20th, and 30th days of heat stress (Figure 4C). Under heat stress, the GABA-pretreated
plants maintained a 20.86% greater decrease in the carbonyl content than non-pretreated
plants in roots (Figure 4D).
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C + GABA, control plants pretreated with GABA (normal condition); H, heat stress; H + GABA, heat-stressed plants
pretreated with GABA.

Antioxidants 2021, 10, x FOR PEER REVIEW 7 of 19 
 

 
Figure 3. Effects of GABA application on superoxide anion content (A), hydrogen peroxide content (B), and malondialde-
hyde (MDA) content (C) of plants leaves (30th day) and roots (30th day) under normal-temperature and high-temperature 
stress. The vertical bar above the column in (A), (B), or (C) represents + SE of the mean (n = 4) and the different letters in 
the column indicate significant differences in leaf or root based on LSD (p ≤ 0.05). C, control (normal condition); C + GABA, 
control plants pretreated with GABA (normal condition); H, heat stress; H + GABA, heat-stressed plants pretreated with 
GABA. 

 
Figure 4. Effects of GABA application on electrolyte leakage of leaves (A) or roots (30th day) (B), carbonyl content of leaves 
(C) or roots (30th day) (D) of plants under normal-temperature and high-temperature stress. Vertical bars above curves in 
(A) or (C) represent the least significant difference (LSD) values at a particular day (n = 4; p ≤ 0.05). The vertical bar above 
the column in (B) or (D) represents + SE of the mean (n = 4) and the different letters in the columns indicate significant 
differences based on LSD (p ≤ 0.05). C, control (normal); C + GABA, control plants pretreated with GABA; H, heat stress; 
H + GABA, heat-stressed plants pretreated with GABA. 

3.3. Effect of GABA on Antioxidant Metabolism 
The TAC in leaves of the GABA-pretreated and non-pretreated plants gradually in-

creased from 10 to 20 d of heat stress and then declined on the 30th day of heat stress 
(Figure 5A). The GABA pretreatment did not greatly influence the TAC in leaves under 

Figure 4. Effects of GABA application on electrolyte leakage of leaves (A) or roots (30th day) (B), carbonyl content of leaves
(C) or roots (30th day) (D) of plants under normal-temperature and high-temperature stress. Vertical bars above curves in
(A) or (C) represent the least significant difference (LSD) values at a particular day (n = 4; p ≤ 0.05). The vertical bar above
the column in (B) or (D) represents + SE of the mean (n = 4) and the different letters in the columns indicate significant
differences based on LSD (p ≤ 0.05). C, control (normal); C + GABA, control plants pretreated with GABA; H, heat stress;
H + GABA, heat-stressed plants pretreated with GABA.
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3.3. Effect of GABA on Antioxidant Metabolism

The TAC in leaves of the GABA-pretreated and non-pretreated plants gradually in-
creased from 10 to 20 d of heat stress and then declined on the 30th day of heat stress
(Figure 5A). The GABA pretreatment did not greatly influence the TAC in leaves under
normal condition, but the GABA-pretreated plants exhibited 20.03, 18.39, or 37.75% higher
TAC compared to the non-pretreated plants on the 15th, 20th, or 30th day of heat stress,
respectively (Figure 5A). In the root system, the TAC in the heat-treated plants was signifi-
cantly lower in contrast to the control group “C”, but with the application of GABA, the
TAC in roots increased significantly under heat stress (Figure 5B). Under normal conditions,
the GABA pretreatment also significantly improved the TAC in roots (Figure 5B). For
changes in antioxidant enzyme activities, heat stress significantly improved SOD and POD
activities in leaves and roots, and the GABA-pretreated plants showed significantly higher
SOD and POD activities in leaves and roots compared with the non-pretreated plants under
high temperature (Figure 6A,C). Under heat stress, the GABA-pretreated plants maintained
an 86.81 or 90.14% increase in CAT activity in leaves or roots than non-pretreated plants,
respectively (Figure 6B). Heat stress significantly improved APX activity in leaves and DR
activity in roots, but the GABA pretreatment did not significantly affect APX activity in
leaves and DR activity in roots under normal as well as stressed conditions (Figure 6D,E).
However, the GABA pretreatment effectively alleviated heat-induced declines in AXP
activity in roots, DR activity in leaves, and GR activities in leaves and roots (Figure 6D–F).
The GABA-pretreated plants showed a 217.05% increase in MR activity in leaves com-
pared to non-pretreated white clover plants subjected to heat stress (Figure 6G). In leaves,
ASA content was substantially ameliorated by the exogenous application of GABA under
normal as well as stressed conditions. In roots, the GABA application could also stop
the heat-caused decline in ASA content (Figure 6H). GSH content significantly declined
in leaves and was enhanced in roots under heat stress; however, the GABA application
did not exert its significant effects on GSH content under any of the above-mentioned
treatments (Figure 6I).
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Figure 5. Effects of GABA application on total antioxidant capacity of leaves (A) or roots (30th day) (B). Vertical bars above
curves in (A) represent the least significant difference (LSD) values at a particular day (n = 4; p ≤ 0.05). The vertical bar
above the column in (B) represents + SE of the mean (n = 4) and the different letters in the columns indicate significant
differences based on LSD (p ≤ 0.05). C, control (normal condition); C + GABA, control plants pretreated with GABA (normal
condition); H, heat stress; H + GABA, heat-stressed plants pretreated with GABA.
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Figure 6. Effects of GABA application on SOD content (A), CAT content (B), POD content (C), APX content (D), DR content
(E), GR content (F), MR content (G), ASA content (H), and GSH content (I) of plant leaves (30th day) and roots (30th day)
under normal-temperature and high-temperature stress. The vertical bar above the column in (A–I) represents + SE of the
mean (n = 4) and the different letters in the column indicate significant differences in leaf or root based on LSD (p ≤ 0.05). C,
control (normal condition); C + GABA, control plants pretreated with GABA (normal condition); H, heat stress; H + GABA,
heat-stressed plants pretreated with GABA.

Heat stress significantly upregulated the expression level of Cu/ZnSOD, POD, and
DR in leaves treated with or without GABA (Figure 7A). A 30.34, 32.50, or 81.14% increase
in Cu/ZnSOD, POD, or DR expression was observed in leaves of the “H + GABA” as
compared to that of the “H”. The MnSOD expression in leaves was only significantly
improved in the GABA-pretreated plants by heat stress. The FeSOD and APX expression
significantly decreased in leaves under heat stress, and there were no significant differences
in FeSOD expression between the GABA-treated and untreated plants under control as
well as stressed conditions (Figure 7A). CAT and MR expression in leaves showed similar
results in response to the GABA pretreatment and heat stress, as reflected by a significant
decline in the non-pretreated plants and a significant increase in the GABA-pretreated
plants under heat stress. The GABA pretreatment significantly enhanced GR expression
in leaves under control and stressed conditions (Figure 7A). For gene expression in roots,
the GABA-treated plants exhibited significantly higher Cu/ZnSOD, MnSOD, CAT, APX,
DR, and MR than the non-pretreated plants under heat stress (Figure 7B). In addition, heat
stress significantly inhibited the FeSOD and GR expression and improved POD expression
in roots of the GABA-pretreated and non-pretreated plants, but the GABA pretreatment
did not show any significant impact on the expression of these genes under control as well
as heat-stress conditions (Figure 7B).
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Figure 7. Effect of GABA on relative expression of Cu/ZnSOD, MnSOD, FeSOD, CAT, POD, APX, DR, MR, and GR genes in
leaves (15th day) (A) and roots (15th day) (B). The vertical bar above the column in (A) and (B) represents + SE of the mean
(n = 4) and the different letters in the columns indicate significant differences based on LSD (p ≤ 0.05). C, control (normal
condition); C + GABA, control plants pretreated with GABA (normal condition); H, heat stress; H + GABA, heat-stressed
plants pretreated with GABA.

3.4. Effects of GABA on Photosynthesis and Water Status

Chl a, Chl b, total Chl content, Fv/Fm, PIABS, Pn, and WUE significantly decreased
under heat stress, but the application of GABA significantly alleviated their declines under
heat stress (Figure 8A–C,G,H). Upon exposure to high temperature, Gs and Tr increased
significantly on the 15th day, but decreased on the 30th day. GABA induced significant
increases in Gs on the 15th and 30th days of heat stress and Tr on the 15th day of heat stress
(Figure 8D,F). The Ci was not changed significantly by heat stress and the GABA application
(Figure 8E). WUE and Tr showed a significant downward trend during heat stress, but the
downward trend was significantly alleviated by GABA application (Figure 8G,H). Leaf
RWC, root activity, and OP in leaf and root did not show any significant difference by foliar
application of GABA under controlled conditions (Figure 9A–D). Under heat stress, the
leaf RWC and root activity declined markedly in GABA treated and untreated white clover
plants, but the GABA-pretreated plants exhibited a 17.23% or 22.73% greater increase
in leaf RWC or root activity than non-pretreated plants on the 30th day of heat stress,
respectively (Figure 9A,B). High-temperature stress significantly reduced OP in leaves,
while it increased OP in roots (Figure 9C,D). The GABA pretreatment further decreased
heat-induced decline in OP in leaves on the 20th and 30th days of heat stress (Figure 9C).
In addition, the GABA-pretreated plants also demonstrated a 15.32% or 15.22% greater
decline in OP in roots than the non-pretreated plants on the 20th and 30th days of heat
stress, respectively (Figure 9D).
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Figure 8. Effects of GABA application on chlorophyll a, b, or total content (A), chorophyll fluorescence parameter (B), photo-
chemical index (C), stomatal conductance (D), intercellular CO2 concentration (E), transpiration rate (F), net photosynthesis
rate (G), or water use efficiency (H) of plants under normal-temperature and high-temperature stress. The vertical bar above
the column in (A) to (H) represents + SE of the mean (n = 4) and the different letters in the columns indicate significant
differences at a given day of treatment based on LSD (p ≤ 0.05). C, control (normal condition); C + GABA, control plants
pretreated with GABA (normal condition); H, heat stress; H + GABA, heat-stressed plants pretreated with GABA.
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Figure 9. Effects of GABA application on leaf relative water content (A), root activity (30th day) (B), and osmotic potential
of leaves (C) or of roots (D) of plants under normal-temperature and high-temperature stress. Vertical bars above curves in
(A), (C), or (D) represent the least significant difference (LSD) values at a particular day (n = 4; p ≤ 0.05). The vertical bar
above the column in (B) represents + SE of the mean (n = 4) and the different letters in the columns indicate significant
differences based on LSD (p ≤ 0.05). C, control (normal condition); C + GABA, control plants pretreated with GABA; H,
heat stress (normal condition); H + GABA, heat-stressed plants pretreated with GABA.

3.5. Effect of GABA on AQP Gene Expression

For the transcription level of genes encoding AQPs, heat stress significantly upreg-
ulated the transcript level of PIP1-1, PIP2-7, TIP1-1, and TIP2-1 in leaves of the GABA-
pretreated and untreated plants (Figure 10A). As compared with the “H” treatment, the
transcript level of PIP1-1, PIP2-7, or TIP2-1 in the “H + GABA” treatment increased by
10.81, 74.28, or 35.48%, respectively. Under heat stress, the expression of NIP1-2 and NIP2-1
in leaves decreased significantly, and no significant difference between the GABA-treated
and untreated plants was observed. As compared to the “C” treatment, the expression of
SIP1-1 did not change significantly in the “H” treatment under heat stress, but increased
by 52.41% in the “H + GABA” treatment (Figure 10A). For AQP gene expression in roots,
heat stress significantly inhibited the expression of PIP1-1, PIP2-2, SIP1-1, TIP2-2, NIP1-2,
and NIP2-1 in plants without the GABA pretreatment. However, the GABA-pretreated
plants maintained a significantly higher expression of PIP1-1, PIP1-2, PIP2-1, SIP1-1, TIP2-1,
TIP2-2, and NIP2-1 when compared with non-pretreated plants under high-temperature
stress (Figure 10B). The GABA application further upregulated the heat-induced increase
in TIP2-1 expression in roots (Figure 10B).
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High temperature caused a large amount of ROS accumulation which caused dam-
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Figure 10. Effect of GABA on relative expression of PIP1-1, PIP2-2, PIP2-7, SIP1-1, TIP1-1, TIP2-1, TIP2-2, NIP1-2, and
NIP2-1 genes in leaves (15th day) (A) and roots (15th day) (B). The vertical bar above the column in (A,B) represents +
SE of the mean (n = 4) and the different letters in the column indicate significant differences based on LSD (p ≤ 0.05). C,
control (normal condition); C + GABA, control plants pretreated with GABA (normal condition); H, heat stress; H + GABA,
heat-stressed plants pretreated with GABA.

4. Discussion

When plants are exposed to high temperatures, GABA as a metabolite or signal molecule
regulates intracellular pH environment, carbon (C)–nitrogen (N) nutrient metabolism, oxidative
and osmotic balance, and signal transmission [49]. In this study, the GABA pretreatment not
only further enhanced the heat-induced GABA content in roots and leaves of white clover,
but also significantly alleviated Chl loss and declines in Pn and Fv/Fm under high temper-
ature. A previous study proved that the increase in endogenous GABA could improve the
heat resistance of plants such as creeping bentgrass, perennial ryegrass (Lolium perenne),
and vegetable soybean (Glycine max) [50–52]. Under unfavorable environmental conditions,
changes in endogenous hormones are critical modulatory factors of stress tolerance in
plants [53]. The study of Lancien and Roberts indicated that potential interactions be-
tween GABA, ABA, and ethylene modulated key genes involved in C–N metabolism in
Arabidopsis thaliana under normal conditions [54]. Enhanced GABA accumulation induced
by exogenous GABA application in roots of maize (Zea mays) were accompanied by a
substantial reduction in ABA content and increment in GA, IAA, and CTK content during
saline conditions [55]. Our present findings demonstrate that exogenous GABA signif-
icantly inhibited ABA accumulation in leaves and roots, and improved IAA content in
leaves and roots and CTK content in leaves of white clover, which implied that the GABA-
mediated tolerance under extreme temperature was linked with changes in ABA, GA,
and IAA. Stress-induced increase in ABA content activates defensive responses, including
stomatal closure, defensive gene expression, and protein accumulation [56,57]. However,
stomatal closure is unfavorable for transpiration and thermolysis. The IAA accumulation
in roots promotes the development of lateral roots, thus enhancing the water absorption
performance of Arabidopsis thaliana [58], and can also improve the heat tolerance of rice [12].
Among the most pivotal roles of CTK in leaves is to delay leaf senescence by inhibiting Chl
loss, membrane deterioration, and protein degradation [59]. Maintenance of higher CTK
levels was proved to be of importance for heat tolerance [60].

High temperature caused a large amount of ROS accumulation which caused damage
to proteins and membrane lipids [61]. Beneficial effects of GABA in antioxidant enzyme
activities and ROS scavenging have been exhibited in leaves of different plant species
under water-deficient conditions, salt, and high-temperature stress [62–64], but relatively
little research has been conducted to discuss the effects of GABA in antioxidant metabolism
in roots under abiotic stress. The current findings show that high-temperature stress
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results in ROS (O2
•− and H2O2) accumulation and oxidative damage to membrane lipids

or proteins, as shown by the considerable upsurge in MDA content or protein carbonyl
content in roots and leaves of white clover. For comparing the difference in oxidative
damage between leaves and roots, it can be seen that the leaves suffered more severe
oxidative damage than roots after the same duration of heat stress, which is consistent with
the earlier research on bermudagrass (Cynodon dactylon) [65]. In order to minimize ROS
damage, the antioxidant defense was comprehensively elevated during heat stress [66].
After 30 d of heat stress, white clover plants pretreated with GABA exhibited significantly
higher TAC, SOD, CAT, and POD activities in roots and leaves than untreated plants. For
the ASA–GSH cycle, exogenous GABA promoted APX and GR activities as well as ASA
content in roots and leaves during high-temperature stress. The ASA is one of the most
crucial non-enzymatic antioxidants for ROS scavenging and the maintenance of its content
also plays a key role in the ASA–GSH cycle [67,68]. The study of Li et al. reported that
GABA ameliorated the ASA–GSH cycle in favor of thermotolerance in creeping bentgrass,
which is a heat-sensitive perennial grass [62]. Interestingly, DR and MR activities were only
significantly improved by the GABA in leaves, but not in roots of white clover under heat
stress. This could indicate that the GABA-regulated differential antioxidant enzymes might
be dependent on the severity of stress, since the leaves suffered from more severe oxidative
damage. In terms of genes involved in antioxidant metabolism, the Cu/ZnSOD expression
in leaves and roots was extremely enhanced by heat stress and the GABA application,
reflecting its more imperative function in white clover under heat stress as compared to
MnSOD and FeSOD. It was found that Cu/ZnSOD dominates the main function in higher
plants [69]. The GABA-regulated genes encoding antioxidant enzymes were consistent
with the enzyme activities under heat stress. These findings indicate that GABA helped to
maintain antioxidant metabolism in leaves and roots of white clover through regulating
enzyme activities and gene expression under heat stress.

In addition to oxidative damage and photosynthetic damage, plants also suffer physi-
ological drought, which often appears in the later period of heat stress due to increased
transpiration and root death, leading to a decline in water uptake, even if the water supply
is adequate in soil [20]. This could explain why the leaves RWC in white clover slightly
decreased with the development of heat stress and then declined sharply after 20 d of
heat stress. Different from drought stress, ABA was not significantly induced in the early
stage of heat stress [70], which means that stomata will remain open to increase heat
dissipation in creeping bentgrass. At the later stage of heat stress, the plants synthesized
ABA to regulate stomatal closure in order to decrease the transpiration rate [71]. Our
results demonstrate that white clover plants pretreated with GABA exhibited significantly
higher stomatal conductance and transpiration rate, which could be contributed to better
thermolysis of white clover under heat stress. This might be linked with inhibition of ABA
accumulation induced by the GABA in white clover. In addition, the maintenance of higher
root activity, Pn, and leaf WUE was observed in the GABA-pretreated white clover. The
WUE reflects the homeostasis between transpiration and Pn, which is good for adaptation
under water-deficient conditions. Kumar et al. reported that the GABA-promoted WUE
helped to keep water homeostasis in plants under abiotic stress [72]. Higher root activity
is propitious to water and nutrient transport in plants upon exposure to harsh environ-
ments [73]. Heat stress also induced continual decline in OP in leaves, but an increase
in OP in roots in both GABA-pretreated and non-pretreated white clover, demonstrating
different responses to heat stress between leaves and roots. However, the GABA-pretreated
white clover exhibited significantly lower OP in leaves and roots than untreated plants
during the late stage of heat stress (20 and 30 d) associated with higher RWC in leaves of the
GABA-pretreated white clover. Our earlier findings in creeping bentgrass demonstrate that
GABA enhanced organic metabolites accumulation (amino acids and sugars) leading to
the decline in OP, thereby improving water balance in leaves under elevated temperatures,
salinity, and water-deficient conditions [74].
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The GABA application further upregulated heat-induced increases in PIP1-1 and
PIP2-7 expression in leaves and TIP2-1 expression in leaves and roots of white clover
under high-temperature stress. According to previous studies, the main function of PIP
and TIP was to transport water molecules through cell or vacuole membranes, which is
very important to maintain water uptake and homeostasis of cells [75–77]. Forrest and
Bhave also proved that PIP and TIP as key AQPs had a strong function of water regula-
tion against osmotic stress in wheat [76]. The spermine increased the PIP2-7 expression
and PIP2-7 accumulation was associated with better water transportation and balance in
white clover and Arabidopsis during water shortage [77]. TIP2-1 is considered to be an
important pressure-gated water channel in grapevine (Vitis vinifera) subjected to various
abiotic stresses [78]. Moreover, heat stress did not significantly affect PIP2-2 and SIP1-1
expression in leaves of white clover, but the GABA transcripts for these two genes under
heat stress. Interestingly, the GABA effectively alleviated heat-induced inhibition of PIP1-1,
PIP2-2, TIP2-2, and NIP1-2 expression in roots of white clover. In the previous study
of Grondin et al., the expression of PIP1-1 and PIP2-2 was correlated with water flux in
roots [79]. The study of Liu et al. also proved that the overexpression of PIP2-2 in roots
could increase the osmotic adjustment ability of plants under salt stress [80]. Na+ induced
PIP1 and TIP1 accumulation and gene expression in roots and leaves of white clover, which
could enhance water transport under drought stress [81]. These findings indicated that
the GABA-regulated tolerance in white clover might be related with increases in water
transport and homeostasis through activating AQPs expression in leaves and roots under
heat stress.

Apart from the main function of AQPs for transporting H2O or various molecules,
including CO2, H2O2, and (NH2)2CO, across cells, AQPs also play a vital role in the reg-
ulation of stomatal conductance and transpiration in plants [82–84]. The study of Lin
et al. found that Arabidopsis plants overexpressing PgTIP1 showed significantly higher
stomatal conductance and transpiration rate in contrast to the wild type [85]. Plant vigor
and transpiration rate were also significantly improved due to the overexpression of a
PIP1b in transgenic tobacco (Nicotiana tabacum) under normal conditions [86]. In addition,
constitutive expression of a TIP2-2 in transgenic tomato (Lycopersicon esculentum) plants
increased water mobility and transpiration under well-watered as well as drastic envi-
ronmental conditions [87]. On the contrary, the stomatal conductance and transpiration
could be inhibited significantly due to the downregulation of AQP expression in various
plant species [88–90]. Our current findings show that white clover increased transpiration
through increasing stomatal conductance in favor of the improvement in heat dissipation
on the 15th day of high-temperature stress. Interestingly, stomatal conductance and tran-
spiration were further increased in leaves of white clover because of the further increase
in endogenous GABA level by the exogenous GABA application. The variation tendency
of stomatal conductance and transpiration was consistent with the AQP gene expression
regulated by GABA in white clover under heat stress. Our findings could indicate that
the GABA-upregulated AQP gene expression could contribute to better heat dissipation
performance related to stomatal opening and transpiration under high-temperature stress.

5. Conclusions

The improvement in endogenous GABA in leaf and root by GABA pretreatment
could significantly alleviate the damage to white clover during high-temperature stress, as
demonstrated by enhancements in cell membrane stability, photosynthetic capacity, and
osmotic adjustment ability, as well as lower oxidative damage and Chl loss. The GABA
significantly upregulated the transcript levels of antioxidant enzyme genes, and improved
antioxidant enzyme activity (SOD, CAT, and POD) and key enzymes involved in the ASA–
GSH cycle, thus reducing the oxidative damage to membrane lipids and proteins. In terms
of plant hormones, GABA increased IAA content in roots and leaves and CTK content in
leaves, associated with growth maintenance and reduced leaf senescence under heat stress.
GABA upregulated the expression of PIP1-1 and PIP2-7 in leaves and TIP2-1 expression in
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leaves and roots under high temperatures, and also alleviated the heat-induced inhibition
of the expression of PIP1-1, PIP2-2, TIP2-2, and NIP1-2 in roots. This could help to improve
the water transportation and homeostasis under heat stress. In addition, GABA induced
AQP expression and a decline in endogenous ABA levels, which could enhance the heat
dissipation capacity through maintaining higher stomatal opening and transpiration in
white clovers under high-temperature stress.
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