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The entire nucleotide sequences of the spike glycoprotein (S) genes of the highly virulent bovine coronavirus (BCV)
strain BCV-LY 138, the avirulent BCV-L9 and related Norden Vaccine (BCV-Vaccine) strains were determined using the
polymerase chain reaction (PCR) to amplify cDNAs obtained by reverse transcription of viral RNA, and to produce
single strand cDNAs for DNA sequencing. The S gene sequences of these viral strains were compared with those of
recently published strains BCV-Mebus, BCV-Quebec, and BCV-F15. An open reading frame of 4092 nucleotides,
encoding a protein of 1363 amino acid residues, was found in all six strains. Frameshifts and insertions or deletions
were not observed except for the BCV-F15. The S gene sequences were more than 98% conserved overall inspite of
different origins of the six viruses. There were 45 to 56 nt differences between the virulent and avirulent groups while
there were 6 to 14 nt differences among four avirulent strains. Comparison of the deduced amino acid sequences
indicated that the S proteins had typical properties of membrane glycoproteins. Nineteen N-linked glycosylation sites
were predicted in five strains, and 18 of them were conserved in the avirulent strain BCV-L9. The sequence KRRSRR at
the predicted proteolytic cleavage site was identified in five strains while the sequence KRRSVR was found in BCV-F15.
Substitutions of few amino acids in the putative fusogenic domains and two prolines at 507 and 567 in the antigenic
domains may cause altered immunogenic and other functional properties of the S proteins specified by the virulent and
avirulent BCV strains. Nine amino acid substitutions between the virulent and avirulent groups may correlate with BCV

virulence. ® 1991 Academic Press, Inc.

Bovine coronavirus (BCV) is a member of coronaviri-
dae, causing severe diarrhea in newborn calves and
winter dysentery in adult cattle (7, 2). It possesses a
single-stranded, nonsegmented RNA genome with
positive polarity (3). The virion contains four major
structural proteins: the nucleocapsid protein {(N), the
transmembrane protein (M), the hemagglutinin/
esterase protein (HE) and the spike protein (S) (4).
The S glycoprotein is a predominant peplomeric struc-
ture forming the typical coronavirus morphology. It is
synthesized as a high molecular weight {mol. wt.) pre-
cursor {gp190) which is cleaved to yield two comigrat-
ing subunit polypeptides: the N-terminal half (S1) and
the C-terminal half (S2) with an approximate mol. wt. of
100 kDa (3, 5). The S glycoprotein functions in virus
attachment to permissive cells, virus-induced cell fu-
sion, elicitation of neutralizing antibodies and cell-me-
diated immunity (6). Two antigenic domains responsi-
ble for neutralization of BCV-Quebec and BCV-L9 have
been identified on the S protein (Ref. (7); Hussain et
al., submitted). However, the location of the neutraliz-
ing epitopes on the BCV S protein has not yet been
determined. Comparison of the S proteins with S-spe-
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cific monoclonal antibodies (MADbs) revealed that dif-
ferent neutralizing and non-neutralizing epitopes as
well as conformational epitopes were present in the S
glycoproteins specified by the virulent and avirulent
strains (Hussain et al., submitted). In order to under-
stand the molecular basis of the observed antigenic
diversity of the S glycoproteins we successfully ampli-
fied, directly sequenced, and cloned the entire S genes
of different BCV strains using the polymerase chain
reaction (PCR). We report here the sequence charac-
teristics of one virulent and two avirulent BCV strains
and their comparison with the recently published se-
qguences of three other BCV strains.

The strain BCV-L9 was derived from BCV-Mebus
and passaged through different nonpolarized and
highly polarized cells over 80 passages {8). The Nor-
den Vaccine strain (BCV-Vaccine) was also derived
from BCV-Mebus and used as vaccine by Norden Labo-
ratories (Omaha, NE) (7, 9). The highly virulent wild-
type strain BCV-LY 138 was isolated from diarrheal fluid
of a diseased calf in 1965 in Utah/USA (70}, and main-
tained in calves through oral inoculation since then (8,
11). This strain replicates only in HRT-18 cells but not
in numerous bovine cells (8). All strains were propa-
gated in HRT-18 cells as described previously (8).
After 24 h.p.i., cells were washed twice with phos-
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phate buffered saline (PBS), and RNA was isolated us-
ing isothiocyanate/cesium chloride gradients accord-
ing to the method described previously (72). As con-
trol, RNA was isolated from uninfected cells.

The first-strand cDNA synthesis was carried out in a
volume of 25 ul containing 50 mM Tris—HCI (pH 8.3),
50 mMKCI, 3mM MgCl,, 10 mM DTT, 1 mM each of
the four dNTPs, 25 U RNAsin (Bethesda Research Lab-
oratories (BRL)), 2’ uM 3’ primer, 1 ug total RNA, 200 U
Moioney murine leukemia virus reverse transcriptase
(M-MLV RT)(BRL) for 1 hrat 42°, and the reaction was
stopped by heating samples to 95° for 10 min and then
cooled on ice. The RNA was denatured after adding 20
m M methylmercuric hydroxide (MeHgOH) and 70 mM
2-mercaptoethanol for 7 and 5 min at room tempera-
ture, respectively, incubated with oligonucieotide
primer at 65° for 2 min, and then chilled on ice before
adding other reagents. Two S gene specific primers
were designed both for cDNA synthesis and PCR am-
plification according to the published sequence (73)}.
The A3’ primer is antisense representing the sequence
at the positions 2165-2187 (5-TTTGGATCCAGG-
TTGCAGCTGTCGTGAAAGA-3’). The B3’ primer
corresponds to the sequence downstream of the S
gene (5-AACGGATCCAATATATCGTCAGGAGCC-
AATA-3’). Both primers contain an extra BamHI linker
in the 5’ end for cloning purposes. The primers were
synthesized in the Gene Assembler (Pharmacia-LKB,
Piscataway, NJ) in our laboratory according to the man-
ufacturer's instructions, and purified using Poly-PAK
(Glen Research, Herndon, VA) or Oligo-PAK column
(Millipore, Burlington, MA).

The reaction of second strand cDNA synthesis and
amplification was carried out in PCR (MicroCycler, Ep-
pendorf Inc., Fremont, CA) with 5 ul of the reverse tran-
scription reaction in a total volume of 100 ul containing
20 mM Tris-HCI(pH 8.3), 26 mM KCl, 1.5 mM MgCl,,
0.1% Tween 20, 10 ug of bovine serum albumin (BSA),
2.5 U of Tag DNA polymerase (BRL), 200 uM each of
the four dNTPs, and 20 pmol each of the primers. The
sense Ab' primer corresponds to the sequence up-
stream of the S gene (5-GCTGAATTCGATAATGGT-
ACTAGGCTGCATGAT-3’), and the B5’ primer repre-
sents the sequence at the positions 2165-2187 (5'-
GCTGAATTCTCTTTCACGACAGCTGCAACCT-3").
These primers contain an extra EcoRl linker on the 5’
end as indicated. Each cycle consisted of a 1-sec dena-
turation at 96°, foilowed by 30-sec annealing (at 59°)
and 2-min extention (at 72°) steps. After 30 to 35 cy-
cles, the final products were extended for 7 min at 72°.
Single-strand cDNA fragments: were generated in a
second PCR for sequencing. Briefly, one-tenth of the
double stranded PCR product and a single primer with
40 pmol were used. Other reagents were the same as

in the previous PCR. The cycle profile of 20 to 25 cy-
cles was: 1-sec at 96°, 30-sec at 50°, 1-sec at 60°,
2-min at 72° (Fig. 1).

We sequenced the entire S genes of one virulent and
two avirulent BCV strains which display distinct biologi-
cal properties and epitopes as defined by MAbs to the
reference strain BCV-L9. With the exception of 40 nt on
the 5-end and 50 nt on the 3’-end, the S gene se-
quences were determined in both directions at least
once, as illustrated in Fig. 1. These sequences were
compared with the recently published sequences for
the strains BCV-Mebus (74), BCV-Quebec (75), and
BCV-F15 (13), and their alignment is presented in Fig.
2 (origins of these strains are described in the legend).
All of the S genes contained an ORF of 4092 nucleo-
tides. The only variations among these sequences
consisted of nucleotide substitutions. Frameshift, de-
letion, or insertion, and nonsense mutations were not
observed except for BCV-F15. The few nucleotide sub-
stitutions (91 nt) represented approximately 2% of the
sequence, and they seemed to be distributed ran-
domly. By comparison with other strains, the following
differences were detected in two regions in BCV-F15:
The deletion of a base (T) at nucleotide 2316 resulted
in a frameshift for 2 aa followed by the insertion of an A
at nucleotide 2320 which returned the amino acid se-
quence to a homologous alignment (at aa position 772
within the cleavage site; also see Fig. 3); at the posi-
tions 3271-3272, the sequence GC was converted to
CG. The intergenic and internal consensus sequence
CYAAAC was conserved in all BCV strains. The two
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FiG. 1. Strategies of cDNA synthesis and DNA sequencing. The
relative locations of S, M and N genes in the BCV genome (a); primer
design and first-strand cDNA synthesis by reverse transcription {b);
second-strand, PCR-mediated DNA synthesis (c}; double-stranded
DNA amplification by PCR (d); single-stranded DNA synthesis by
PCR using an excess of 5' primer {e) and 3' primer (f); DNA se-
quencing strategies (g). A5’ and B5' indicate two 5’ primers contain-
ing an extra EcoRl linker; A3’ and B3’ indicate two 3 primers con-
taining an extra BamH| linker.



B
BCV-F15

BCV-L9
BCV-VACC

TTAGACCATA
ATGTTGACAC
GTTGTTGCIT
TTTCITICTG
GTAGTACTIT
GTATACTATG
TATAAGCGTA
TTGTTACTAA
GGTTACACCT
AAGTGTAAAA
TTCCCGATTG
CTGCCTGATG

A

A

A

A

A
TTTGCTATAC

AGTTGTATTA

GCCTCAACCT

ATCTAAACAT
—

CGGTGCTCCT

AATGGTTACT

ATTTTATTAA

TGTAAATACA

TGCGAGTACC

ATTTCACATA

GTTTCIGTIT

gTTTTTGATA

TCTATTAGCA

G

ACCCTACTTC

TGGTATTTIT

TCCTATAGTG

CACATACGAT

TGATGTGAAT

AATGTTTATT

AACAATATTT

CTCACTTCTA

CACTATCTAT

TARTATAGAG

TCITTTATTC

CCAATGGTAG

TAATTTACCT

GTAGGTGTTT

AGCACCATCT

GCTTGGCTTA

AGGCAGACTC

GANGGTTGAC

GCTGCTAATG

TTACTCATCA

G
G

SHORT COMMUNICATIONS
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Fic. 2. Nucleotide sequence comparisons of the S genes of six BCV strains. DNA sequencing was carried out with the modified dideoxynu-
cleotide chain termination procedure (24) using Sequenase (U.S.B., Cleveland, OH). Sequences were analyzed with the aid of the Sequence
Analysis Software Package of the Genetics Computer Group of the University of Wisconsin and the MacVector Software (18I, New Haven, CT).
The S gene sequences of BCV-Mebus, BCV-Quebec, and BCV-F15 are obtained from Refs. (74), (75), and (13), respectively. The origins and
properties of these strains are as follows: The strain BCV-Mebus was isolated from a calf with enteritis, and adapted to bovine fetal kidney cells
described previously (25). The strain BCV-Quebec was isolated from a calf with enteritis by cultivation in Vero and MDBK cells in Quebec in
1979. lts biological properties were similar to BCV-Mebus (26). The wild-type strain BCV-F15 was isolated in HRT cells from a calf with enteritis
in France in 1979 (27). The consensus sequences are underlined, and the start and stop codes are marked by asterisks.
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BCV-L9  AATGTTCAGT ATCGTATTAA TGGGATTGGT GTTACCATGG ATGTGTTAAG TCAAAATCAA AAGCTTATTG CTAATGCATT TAACAATGCT CTTGATGCTA 3100
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most similar sequences were those of BCV-L9 and
BCV-Vaccine (6 nt differences) in paired comparisons,
and the most distant were those of BCV-Quebec and
BCV-F15 (74 nt differences). The virulent wild-type
strain BCV-LY138 was evolutionally distant from the
avirulent strains {total number of differences between
45 10 56 nt). The French strain BCV-F15 aiso differed
from the avirulent strains (total number of differences
between 55 to 74 nt). Although there were 55 nt differ-
ences between BCV-LY138 and BCV-F15, the same
nucleotide substitutions occurred in 29 nt.

An alignment of the deduced amino acid sequences

of the S proteins of the six BCV strains is shown in Fig.
3. All six S genes encoded a predicted protein of 1363
aa residues, having a mol. wt. of approximately 150
kDa. Nineteen potential N-linked glycosylation sites
were predicted in 5 strains while 18 of them were con-
served in BCV-L9. Fifty-seven cysteine residues were
found in BCV-L9 while 56 of them were conserved in
the other 5 strains. The BCV-F15 had an additional
cysteine at position 840. The glycosylated protein had
an estimated mol. wt. of approximately 190 kDa. All six
S proteins possessed at least 98% sequence identity
in paired comparisons. As with the nucleotide se-
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FiG. 3. Amino acid sequence comparisons of the predicted S proteins of six BCV strains. The predicted signal peptide and intramembrane

anchoring sequences are underlined. The predicted cleavage site is indicated by an arrow, and its sequence is marked by asterisks underneath.
The 19 predicted N-linked glycosylation sites are double underlined. The conserved sequence is marked by (~). The putative hydrophobic
domains are indicated by (.), and the adjacent heptad repeat sequences by (:}. Two proline substitutions are indicated by asterisks on the top.

quences, the most related proteins were those of BCV-
Mebus and BCV-Quebec (4 aa differences) or BCV-L9
and BCV-Vaccine (6 aa differences); the most diver-

gent proteins were those of BCV-Mebus and BCV-F15
or BCV-Quebec and BCV-F15 (26 aa differences, re-
spectively). The alignment reveals that the strain BCV-
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Quebec is closely related to the avirulent strains BCV-
Mebus, BCV-L9, and BCV-Vaccine (6 to 14 ntand 4 to
11 aa differences, respectively), suggesting that this
strain is a variant of the prototype BCV-Mebus. In con-
trast to the nucleotide sequences, the amino acid se-
quences of BCV-LY138 and BCV-F15 were more ho-
mologous (13 aa differences). As shown in Fig. 3, 9
amino acids in the avirulent strains were substituted in
both BCV-LY138 and BCV-F15: Ato V(38), Rto T
(94), KtoN(121), Lto M (254), Hto D (476), Vio A
(749),Vto E(980), AtoV(1106),Hto P(1247),and |
to K (1347). This suggests that the wild-type strain
BCV-F15 is possibly a virulent strain, and that the 9
amino acids, especially the proline (at 1247) and lysine
{(at 1347) on the carboxy-terminal, may relate to BCV
virulence. Amino acid differences between the virulent
and avirulent groups varied from 16 to 26 aa. Appar-
ently, most of these substitutions occurred in the S1
peptide (Fig. 3).

Comparisons of the amino acid sequences in the
antigenic region {74, 16) suggested that two proline
substitutions may cause the antigenic differences: at
amino acid position 507, a proline in the avirulent strain
BCV-L9 was substituted by a serine in the virulent
strain BCV-LY 138, and another proline {at 567) was
substituted by a threonine in all other strains. Proline is
considered a helix-breaking residue, which may influ-
ence significantly the conformation and secondary
structure of peptide molecules (77). The proline sub-
stitutions resulted in decreased hydrophilicity, surface
probability, and antigenicity, but increased flexibility of
the peptide in this region (data not shown). Our
previous study indicated that one neutralizing epitope
of BCV-L9 was present in BCV-Vaccine but absent in
the virulent strain BCV-LY 138, and one non-neutraliz-
ing epitope was present only in the avirulent strain
BCV-L9 (Hussain et al., submitted). The number of
proline substitutions in this region coincides with the
number of conformational epitopes absent in BCV-
LY 138 and BCV-Vaccine lead us to conclude that sub-
stitutions of these prolines to other amino acids may
alter the conformation of the S protein, and cause the
loss of conformation-dependent epitopes in BCV-
LY 138 and BVC-Vaccine. This hypothesis is currently
under investigation. It is unclear whether substitutions
of these prolines and other amino acids in this region
also correlate with BCV virulence.

Our previous studies revealed that the biological
properties of fusion, plaque formation and host cell
range were evidently different between the virulent and
avirulent groups of BCV strains (8). The fusion activity
of BCV is believed to be associated with the S polypep-
tide and the cleavage of the S into S1 and S2 subunits
(5, 18). The sequence KRRSRR at the predicted proteo-

lytic cleavage site was conserved in the virulent strain
BCV-LY138 and in the avirulent strains while the se-
qguence KRRSVR occurred in the wild-type BCV-F15
(Fig. 3). The cleavage site of BCV S protein is located
in a hydrophilic area, in contrast to paramyxoviruses
and myxoviruses, in which the cleavage site is located
in hydrophobic domains (20-30 aa) of the fusion pro-
teins (19, 20). These observations imply that there
might be a different mechanism involved in BCV-in-
duced cell fusion. Parker et al. (74) indicated that a
sequence VLGCLGSAC (905-913) on the S protein of
BCV-Quebec may constitute a portion of the fusogenic
domain within the BCV S2 subunit. This stretch is simi-
lar to the sequence LLGCIGSTC of MHV-A59, which
contains a neutralizing epitope (25). By comparing
with paramyxovirus and retrovirus, Chambers et a/.
(26) proposed that the hydrophobic region adjacent to
heptad repeat sequences may be the potentially fu-
sion-related domain in the S proteins of mouse hepati-
tis virus, infectious bronchitis virus, and transmissible
gastroenteritis virus. After multiple alignments it is
found that the heptad repeat sequences are located in
the S2 at positions 999-1038 which are conserved in
all strains, and the hydrophabic regions are located at
961-998 (see Fig. 3). However, a direct involvement
of these sequences in BCV fusion has yet to be demon-
strated. Similarly, the E1 protein of Semliki Forest virus
(SFV) does not contain a hydrophobic N-terminal re-
gion. It has been proposed, however, that in E1 an
internal uncharged stretch of 17 residues, located
about 80 aa from the N-terminal, might act as the puta-
tive fusogenic domain (27). Interestingly, we found
three patterns of amino acid substitution in the putative
fusogenic domain: at position 971, V in the avirulent
strains was substituted by E in the virulent strains; W
(898) and A (993) were substituted by | and V in BCV-
Mebus and BCV-Quebec, respectively. It is unclear,
however, whether these amino acid changes in the
predicted cleavage sites and the putative fusogenic
domains reflect any functional differences, such as fu-
sion activities among different BCV strains.
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