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ABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak resulted in 5,993,317 
confirmed cases worldwide with 365,394 confirmed deaths (as of May 29th, 2020, WHO). The 
molecular mechanism of virus infection and spread in the body is not yet disclosed, but studies on 
other betacoronaviruses show that, upon cell infection, these viruses inhibit macroautophagy/ 
autophagy flux and cause the accumulation of autophagosomes. No drug has yet been approved 
for the treatment of SARS-CoV-2 infection; however, preclinical investigations suggested repur-
posing of several FDA-approved drugs for clinical trials. Half of these drugs are modulators of the 
autophagy pathway. Unexpectedly, instead of acting by directly antagonizing the effects of 
viruses, these drugs appear to function by suppressing autophagy flux. Based on the established 
cross-talk between autophagy and apoptosis, we speculate that over-accumulation of autophago-
somes activates an apoptotic pathway that results in apoptotic death of the infected cells and 
disrupts the virus replication cycle. However, administration of the suggested drugs are associated 
with severe adverse effects due to their off-target accumulation. Nanoparticle targeting of 
autophagy at the sites of interest could be a powerful tool to efficiently overcome SARS-CoV-2 
infection while avoiding the common adverse effects of these drugs.
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Viruses recruit cellular machinery and pathways, such 
as autophagy, for their replication and spread [1, 2]. 
Autophagy is a part of the cell stress response that 
works as a quality control mechanism for cells by 
removing and degrading malfunctioning proteins, 
damaged organelles, and invasive microbes [1,3]. 
Macroautophagy, hereafter autophagy, is initiated via 
the formation of a double-membrane structure (termed 
a phagophore). The phagophore engulfs the substrates 
that are targeted for ultimate degradation, and seques-
ters them within an autophagosome. The mature 
autophagosome merges with a lysosome to generate 
an autolysosome where the engulfed material will be 
degraded [1,4].

Hijacking of cellular autophagy mechanisms has been 
reported for several viruses. For example, measles virus/ 
MeV induces autophagy through the engagement of 
CD46; human immunodeficiency virus type 1/HIV-1 

envelope glycoproteins gp120 and gp41 induce autophagy 
in uninfected CD4+ T cells and initiate HIV-1 entry with 
subsequent T cell apoptosis and immunodeficiency; 
Chikungunya virus/CHIKV triggers autophagy via an 
endoplasmic reticulum and oxidative stress pathway [5]; 
Macacine alphaherpesvirus 1/MCHV, and murine gam-
maherpesvirus (MHV) 68/MHV-68 inhibit autophagy by 
blocking phagophore formation [5]; Picornaviruses, cox-
sackie virus and coronaviruses utilize autophagy to pro-
mote their replication [5]. Although these viruses hijack 
cellular autophagy pathways in favor of their replication 
and transcription, for other viruses autophagy restricts 
the viral infection by degrading engulfed viruses in 
a process called virophagy [5].

The SARS-CoV-2 global outbreak, responsible for cor-
onavirus disease 2019 (COVID-19) [6,7], belongs to the 
betacoronavirus (βCoV) genus. This genus also includes 
SARS-CoV, Middle East respiratory syndrome- 
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coronavirus (MERS-CoV) and MHV [8]. βCoV are posi-
tive-sense RNA viruses [9]. Among them, MHV has been 
used as a prototype for βCoV in biological investigations. 
βCoV utilize double-membrane vesicles (DMVs), which 
are similar to autophagosomes, for their replication [10]. 
Using MHV-infected delayed brain tumor/DBT cells, 
Prentice, and co-workers were the first to show the replica-
tion of βCoV inside DMVs [11]. They also showed that 
βCoV induce ATG5-dependent autophagy [11]. Another 
study confirmed βCoV induction of ATG5-dependent 
autophagosome formation via their NSP6 (non-structural 
protein 6) in MHV-infected VERO cells [12]. Similarly, 
viral membrane-anchored papain-like protease/PLpro- 
TM polyprotein produced by both SARS-CoV and MERS- 
CoV induces the formation of autophagosomes, but inhi-
bits their maturation, preventing the generation of autoly-
sosomes as shown in three different human cell lines [13]. 
In line with these reports, a recent study, using ATG5 wild- 
type and ATG5 knockout Vero B4 cells, reported that 
MERS-CoV infection suppresses autophagy flux by inhibit-
ing the fusion step [14]. In contrast, few studies reported 
a βCoV infection which is independent of autophagy 
induction mechanisms [15,16]. For example, Reggiori and 
co-workers confirmed that replication and release of βCoV 
are independent of autophagy [15]. However, they showed 
that the virus utilizes DMVs coated with non-lipidated 
microtubule-associated protein 1 light chain 3 (LC3)-I for 
replication. To the best of our knowledge, no similar experi-
ments have been conducted using SARS-CoV-2. However, 
an evolutionary analysis on SARS-CoV-2 genome 
sequences of 351 clinical samples revealed mutations in 
NSP6, a protein that has an inducing effect on autophago-
some formation [17]. This finding infers an interaction of 
SARS-CoV-2 cell infection and autophagy (Figure 1).

COVID-19 is associated with common symptoms such 
as fever and shortness of breath. These symptoms could 
progress to an acute respiratory distress syndrome/ARDS 
that leads to lung failure, the most common reason of 
death [18]. To date, there is no clinically approved drug to 
prevent or cure COVID-19. Repurposing of FDA- 
approved drugs was associated with promising outcomes 
and resulted in ongoing clinical trials for 12 drugs tested 
against COVID-19, based on a recent WHO report [19]. 
Several potential drug candidates are autophagy modula-
tors (Table 1). Surprisingly, almost all of these autophagy 
modulators do not appear to act by directly antagonizing 
the effect of βCoVs. Instead, they inhibit autophagy flux 
in a similar fashion to the effect of βCoVs (Figure 1). 
Therefore, we suggest that the beneficial effect of these 
drugs is possibly due to the over-accumulation of autopha-
gosomes that can potentially induce apoptotic cell death of 
virally infected cells and disrupt the virus replication cycle, 
similar to what we observed in our recent study [20].

It is very important to consider the unfolded protein 
response (UPR), an important intracellular pathway 
that is activated as a response to the accumulation of 
unfolded proteins in the endoplasmic reticulum (ER) 
with regard to viral infection. The UPR is usually acti-
vated during coronavirus infection because virus repli-
cation requires excessive protein biosynthesis and 
folding to provide sources for viral proteins, and use 
of the ER membrane for the formation of DMVs 
[21,22]. Furthermore, the UPR and autophagy are 
interconnected, and induction of the UPR could poten-
tially facilitate or promote autophagy [4,23,24]. 
Therefore, SARS-CoV-2 infection could possibly 
induce autophagy via UPR induction in the cells.

As depicted in Table 1, all of the indicated drugs 
have severe adverse effects and limited patient toler-
ance. This is attributed to the off-target effects of these 
drugs upon systemic administration [25]. For instance, 
chloroquine/CQ has some potential as an effective ther-
apy for COVID-19 based on preliminary clinical trial 
findings [26], but is associated with retinopathy, neu-
romyopathy, nephropathy, and cardiomyopathy that 
makes it difficult to tolerate [27,28].

The body of literature pointing to the mutual effect of 
SARS-CoV-2 infection and autophagy, in addition to the 
fact that 58% of the drugs under clinical trials for COVID- 
19 are autophagy modulators [26], emphasize the need for 
research in the area of autophagy for the fight against 
COVID-19. It is very important to consider that the 
drugs in Table 1 modulate other mechanisms than auto- 
phagy to decrease SARS-CoV-2 infection. As an example, 
chloroquine/hydroxychloroquine has anti-inflammatory 
effects and might be involved in controlling a SARS-CoV 
-2-induced cytokine storm [29], endocytosis of the virus 
[30], and regulation of the SARS-COV-2 receptor, ACE2 
(angiotensin I converting enzyme 2) [29]. Some of these 
effects, including regulation of the cytokine storm, and 
endocytosis of the virus are indirectly regulated by auto- 
phagy [30].

Therefore, we recommend two main research targets 
for scientists who are investigating the interconnection 
of viral infection and autophagy:

● Mechanistic understanding of the intracellular 
trafficking and replication of SARS-CoV-2.

● Developing effective therapies that are specific to 
SARS-CoV-2 and the autophagy pathway.

Successful implementation of an autophagy modulator 
as a safe and efficacious therapy for COVID-19 requires 
a carrier to deliver it to the site of action (infected cells) and 
mitigate off-target effects. Applications of nanotechnology 
in medicine (called nanomedicine), have introduced the 
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use of nanoparticles for targeting active sites and avoiding 
off-target accumulation. This is based on the unique phy-
sical properties of nanoparticles, which affect their bioavail-
ability and circulation time. Decorating the nanoparticles 
with ligands directed to specific cell targets amplifies nano-
particle specificity [31,32]. Other advantages offered by 
nanoparticles include their ability to cross biological bar-
riers [33], improved bioavailability of poorly soluble drugs 
(based on the large surface-area-to-volume ratio of nano-
particles compared to large particles) [34] and tunability of 
nanoparticle surface charge and chemistry to further con-
trol interactions with cells and barriers [33,35]. Recently, 
nanoparticles were shown to modulate auto-phagy, and 
have been exploited for overcoming obstacles encountered 
with autophagy modulators [36]. Several nanoparticle- 
based products are approved or under evaluation for the 

treatment of viral infections, including Inflexal V® (Crucell, 
Berna Biotech), and PegIntron® (Merck) [37]. Therefore, 
nanotechnology has a great potential for contributing sig-
nificantly to the fight against COVID-19 by developing 
effective therapies that can selectively block the replication 
of the virus in target cells [38].

Further, SARS-CoV-2 could be considered as natural 
spherical nanoparticles (60- to 140-nm size range). 
Therefore, mechanisms established for nanoparticle 
interaction with target cells and subcellular organelles, 
could be used to enhance our understanding of cell 
binding and intracellular trafficking mechanisms of 
the virus [39]. We strongly recommend cross- 
disciplinary collaborations between autophagy and 
nanotechnology communities in order to accelerate the 
discovery of potential drug candidates and the 

Figure 1. Modulation of the autophagy pathway by coronaviruses and proposal of novel smart drug-loaded nanoparticles to target 
this pathway to combat COVID-19. Schematic shows how coronaviruses interact with autophagy. The NSP6 protein of SARS and MHV 
induces the formation of autophagosomes but confines their expansion and blocks their maturation into autolysosomes. A similar 
effect is observed by PLpro-TM of SARS. Human CoVs (HCoVs) via their NSPs, and MHV induce the formation of LC3-I-coated DMVs 
needed for viral RNA transcription and replication. MERS decreases the level of BECN1 (beclin 1) and blocks fusion of autophago-
somes with lysosomes. Chloroquine/hydroxychloroquine, emtricitabine/tenofovir, interferon alfa-2b, lopinavir/ritonavir and ruxoliti-
nib, which are all under clinical trial for treatment of SARS-CoV-2, induce autophagosome accumulation by blocking their maturation 
into autolysosomes. Thus, designing nanoparticles for the targeted delivery of these drug to avoid their off-target effects will provide 
safe and effective powerful tools to combat COVID-19. ATG14: autophagy related 14; DMV: double-membrane vesicles; EDEMosome: 
LC3-I-positive endoplasmic reticulum-derived vesicles exporting short-lived ERAD regulators; ER: endoplasmic reticulum; LC3-I: 
processed MAP1LC3; LC3-II: lipidated MAP1LC3; MERS: Middle East respiratory syndrome; MHV: murine gammaherpes virus; NSP6: 
non-structural protein 6; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4/VPS15: phosphoinositide- 
3-kinase regulatory subunit 4; PtdIns3 K: class III phosphatidylinositol 3-kinase; PLpro-TM: membrane-anchored papain-like protease; 
SARS: severe acute respiratory syndrome; ULK1 complex: unc-51 like autophagy activating kinase 1.
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translation of these discoveries into clinically-approved 
COVID-19 therapies that are both effective and safe.
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