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Abstract

Anopheles mosquitoes transmit malaria, a major public health problem among many African countries. One of the most
effective methods to control malaria is by controlling the Anopheles mosquito vectors that transmit the parasites.
Mathematical models have both predictive and explorative utility to investigate the pros and cons of different malaria
control strategies. We have developed a C++ based, stochastic spatially explicit model (ANOSPEX; Anopheles Spatially-
Explicit) to simulate Anopheles metapopulation dynamics. The model is biologically rich, parameterized by field data, and
driven by field-collected weather data from Macha, Zambia. To preliminarily validate ANOSPEX, simulation results were
compared to field mosquito collection data from Macha; simulated and observed dynamics were similar. The ANOSPEX
model will be useful in a predictive and exploratory manner to develop, evaluate and implement traditional and novel
strategies to control malaria, and for understanding the environmental forces driving Anopheles population dynamics.
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Introduction

Human malaria is one of the most important public health

problems in many African countries, associated with high rates of

mortality and morbidity. The disease presents with a spectrum of

systemic complications ranging from mild and self-limiting illness

to life-threatening pathology. Malaria incidence has increased in

many areas of the African continent due to climate change,

insecticide and drug resistance, and social/economic issues [1–4].

As an infectious disease, malaria is transmitted through the bite

of infected female Anopheles mosquitoes. Thus, one of the most

effective methods to control the disease is by controlling the

mosquito vectors. Despite concerted efforts by governmental

agencies, public and private non-governmental researchers and

other relevant health agencies to offer effective control strategies,

malaria still persists in many endemic regions of the world. Thus,

there is an urgent need for the development and implementation

of existing and novel malaria vector control interventions.

Mathematical models are a crucial part of developing and

optimizing control techniques, since they are one of the only

ways to optimize deployment and conduct risk-assessment prior to

an actual intervention attempt [5–7].

Mathematical modeling is crucial to understanding Anopheles

population and transmission dynamics for developing strategies for

disease control [8]. For over 100 years, models have been

developed and applied towards the control of malaria, mosquitoes

and mosquito-borne related diseases, ranging from simple models

of vectorial capacity to complex predictive models of malaria

epidemiology [9–17].

The most detailed individual-based models of mosquito

populations have been developed for Aedes aegypti. Focks and

colleagues developed the Container Inhabiting Mosquito Simula-

tion Model (CIMSiM), a deterministic simulation model that is

driven by empirical weather data and incorporates very detailed

aspects of mosquito biology [18–19]. Although CIMSiM has

shown utility in predicting mosquito dynamics in nature [20], it

has several limitations: (1) it ignores stocasticity in the data, (2) it

assumes a single panmictic mosquito population, and (3) it is

written in VisualBasic which is not easily compilable on newer

computers [21]. To address these issues, Magori and colleagues

developed the SkeeterBuster model. SkeeterBuster shares many

algorithms with CIMSiM (and in fact can recapitulate it exactly)

but it is written C++, is stochastic and spatially explicit [21].

SkeeterBuster operates at the scale of individual water-filled

containers for immature stages and individual properties (houses)

for adults. SkeeterBuster also incorporates mosquito genetics [21].

Multiple simulation models of Anopheles population dynamics

have been developed [22–28]. However, these models have their

limitations. For instance, the Anopheles model developed by

Depinay and colleagues [23] does not explicitly incorporate

mating between male and female Anopheles gambiae mosquitoes and
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was not validated against field data. The models developed by

Eckhoff [27] and White et al [28] did not present spatially explicit

simulations. Arifin and colleagues [29] developed a detailed spatial

agent-based model to show the influence of resources on mosquito

populations. However, this model was not driven by empirical

weather data, nor was it validated against field observations.

To address some of these issues, we developed a stochastic,

spatially explicit model of Anopheles metapopulation dynamics. We

call this model ANOSPEX, for ‘‘Anopheles Spatially-Explicit’’.

ANOSPEX is biologically rich, driven by empirical weather data,

and parameterized by field data to simulate Anopheles metapopu-

lation dynamics. Simulation results from ANOSPEX were

preliminarily validated post-hoc using empirical Anopheles adult

female collection data from Macha, Zambia.

Methods

ANOSPEX Overview
ANOSPEX was written in C++ and Visual C++ programming

languages on an Intel Pentium i5 Computing system running

Windows 7. The ANOSPEX codes are a combination of new

codes and codes implemented from Skeeterbuster. Parameters

used in ANOSPEX were derived from literature whenever

possible (Table S1). We modeled stochasticity in the same way

as SkeeterBuster [18]; ANOSPEX is not deterministic. Also like

SkeeterBuster, ANOSPEX is weather-driven. Hourly weather

data (2009–2011) were obtained from the Malaria Institute at

Macha (MIAM), Zambia. Weather parameters used in the model

were maximum temperature, minimum temperature, average

Figure 1. General ANOSPEX model flowchart.
doi:10.1371/journal.pone.0068040.g001

Figure 2. Simulation run results for Anopheles adult dynamics
over a 10X10 grid. Letters represent the first letter of the months of
the year.
doi:10.1371/journal.pone.0068040.g002
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temperature, precipitation, saturation deficit and relative humid-

ity. ANOSPEX does not include mosquito genetics, only mosquito

metapopulation dynamics. ANOSPEX is implemented as a grid

representation of residential properties, where each property has

one house and two larval habitats for mosquitoes to develop in.

Adult mosquitoes can move from one property to another

property as described below. For simulations, breeding habitats

were initially seeded with 25 eggs. References for parameter values

are available as supplementary material.

Model Development and Metapopulation Dynamics of
Immature and Adult Anopheles Mosquitoes

The diagram in Figure 1 shows the schematic container model

of Anopheles lifecycle and development for ANOSPEX.

Egg Phase
An important aspect of the African Anopheles ecology is the egg

phase [21]. Important factors that affect the hatching and survival

of Anopheles eggs include predation, water and air temperatures,

sun exposure, and water depth of the breeding containers

[21,24,30–32]. The prominent role temperature plays in Anopheles

egg development cannot be over-emphasized [31,37–41]. All

malaria vectors are poikilothermic in nature [33]. In ANOSPEX,

we applied the enzyme kinetics model derived by Sharpe and

DeMichele [34], which is based on the absolute rate of reaction of

enzymes for temperature-dependent developmental rates

[18,21,36,42–43].

In ANOSPEX, for Anopheles eggs to successfully hatch, the

average water temperature has to be above 21uC and eggs have to

be consistently immersed in water [31]. If the water within the

container is below the average hatching temperature or the eggs

are not immersed they will not hatch [44]. If eggs are mature and

immersed, eggs hatch [35] according to the enzyme kinetics model

(eq. 1) [18,21,34,36]. The fundamental assumption is that a single

control enzyme regulates poikilothermic development and the

reaction rate of this enzyme affects and determines the rate of

development of the organism (here, Anopheles) [34,36,45,46].
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r(T) is the rate of development per hour at temperature T(uK).
r25C is the developmental rate per hour at 25uC. DH#

A represents

the enthalpy of activation of the reaction catalyzed by the enzyme

(cal?mol-1); DHLis the low temperature inactivation enthalpy

change associated with the enzyme (cal?mol-1); T1
2
Lrepresents the

temperature in uK where 50% of the enzyme is inactivated by low

temperature. DHH is the high temperature inactivation enthalpy

change associated with the enzyme (cal?mol-1); T1
2
H is the

temperature in uK where 50% of the enzyme is inactivated by

high temperature. R is the universal gas constant, with a value of

(1.987cal?mol-1) [18,21,34,36,47]. The set of parameter values

obtained from [21] was applied to the egg phase modeling within

ANOSPEX: r25C = 0.0413; DH#
A = 1.0000; DHL =2170644;

T1
2
L = 288.8; DHH = 1000000; and T1

2
H = 313.3.

The egg hatch algorithm within sites is shown in Figure S1.

Figure 3. Simulation run results for Anopheles female adult dynamics over a 10610 grid from the onset to the peak of the wet
season. First box represents initial pupal distribution among properties.
doi:10.1371/journal.pone.0068040.g003
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Figure 4. Preliminary ANOSPEX validation. A: Predicted numbers of female adult Anopheles arabiensis mosquitoes were compared to empirical
mosquito collection data from Macha, Zambia [76]. B: Correlation between predicted and empirical results.
doi:10.1371/journal.pone.0068040.g004
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Larval Phase
The development rate and survival of Anopheles larvae is

dependent on water temperature [48], implying that the Anopheles

larvae phase also depends on the enzyme kinetic equation (eq. 1)

for development [21]. The set of parameter values obtained from

[21] was applied to the larval phase modeling within ANOSPEX;

r25C = 0.037; DH#
A = 15684; DHL =2229902; T1

2
L = 286.4;

DHH = 822285; and T1
2
H = 310.3. Other factors within an African

locality context, such as land cover types and topography [49],

habitat types [49–53], predators [53–57], food availability [58],

competition [59–60] and desiccation [61–65] also affect the

development, survival and distribution of Anopheles larvae within

their habitats.

In ANOSPEX, there are two conditions that Anopheles larvae

must meet before pupating. First, larvae must attain complete

physiological maturity. In ANOSPEX, larvae attain physiological

maturity if their cumulative development exceeds a threshold

value (eq. 2). The second condition is that developed Anopheles

larvae attain pupation only if they have attained a sufficient weight

worthy of them pupating. Anopheles larvae undergo a developmen-

tal cycle based on the enzyme kinetic equation as illustrated in eq.1

until they attain 4th instar [18,21].

The algorithm governing the development of Anopheles larvae

within containers is depicted in the flowchart in Figure S2. For a

given cohort of age n at time t, the cumulative physiological

development CDt is given by equation 2 [15,16,18]:

CDt~
Xt

t~t{n

r(Tt) ð2Þ

In ANOSPEX, we assumed that the probability of larval

development is a function of the total physiological development.

Thus, no larvae matured below a total physiological development

of 0.92 and above 1.20 respectively [18]. Setting these conditions

allows certain portions of the Anopheles larval cohort to achieve

maturity at a lower cumulative development, while rest achieve

higher than the mean date of physiological maturation before

being developed.

In ANOSPEX, food intake by Anopheles larvae contributes to the

increase in individual and collective larval weight. Food intake was

based on an average of 3-day food intake plus random food intake

by the Anopheles larvae [66–67]. The dynamics of the amount of

Anopheles larval food in a breeding site and the larvae cohort weight

are governed by equations adapted from CIMSiM [15,68].

Daily survival rates for Anopheles eggs, larvae, pupae and adults

were determined and estimated from the literature (Table S1).

Larvae that die are converted into biomass as larval food. We

estimated the value of this parameter with a 0.40 conversion factor

[58,69].

Pupation Phase
Anopheles pupation was modeled as in CIMSiM and SkeeterBus-

ter [15–16,18]. Developing Anopheles larvae have to achieve a

specific weight at maturation to successfully transit into the pupae

phase. Temperature and the cumulative physiological develop-

ment of Anopheles larvae are two factors that affect the transit into

the pupae phase. The set of parameter values obtained from [21]

was applied to the pupae phase modeling within ANOSPEX; the

values of r25C = 0.034; DH#
A = 1.0000; DHL =2154394;

T1
2
L = 313.8; DHH = 554707; and T1

2
H = 313.8.

The model flowchart for the pupae phase is shown in Figure S3.

Completion of the Anopheles pupae developmental phase occurs as

soon as Anopheles pupae attain complete maturation. We assumed

that the maturation probability for an Anopheles pupa was a

function of its total physiological development. We assumed that

no pupa attains maturity below a total physiological development

value of 0.92 while all pupae above 1.20 attain maturity. The

survival of Anopheles pupae in ANOSPEX model depends on

temperature. Dead Anopheles pupae are converted into biomass for

food, with a conversion rate of 0.40 [58,69].

Adult Phase
The emergence of adult Anopheles from their pupal case leads

into the adult phase of the Anopheles life cycle. Anopheles pupae that

successfully enter into this phase further develop into male and

female Anopheles adults. Both male and female Anopheles adult

mosquitoes can undergo mortality due to extreme conditions from

the local environment.

Female adult Anopheles mosquitoes’ gonotrophic development

was also modeled based on the enzyme kinetics equation outlined

above [18,21,34,36]. The set of parameter values obtained from

[21] was applied to the female adult gonotrophic phase modeling

within ANOSPEX; the values of r25C = 0.02; DH#
A = 1000;

DHL =275371; T1
2
L = 293.1; DHH = 388691; and T1

2
H = 313.4.

The algorithm governing the development of Anopheles male and

female adult development within containers is depicted in the

flowcharts of Figures S4 and S5 respectively. We assumed

unrestricted access of female adult Anopheles to blood, and the

availability and homogeneity of hosts. Female Anopheles adults were

assumed to oviposit after the completion of their gonotrophic

cycle.

Adult Mosquito Movement
Anopheles mosquito movements were modeled by adapting

knowledge gained from cellular automata, by using the Von

Neumann neighborhood algorithm [70–72], where for each

dispersing adult Anopheles mosquito there is a random selection of

one of the possible four directions. Each residential property on

the grid is represented by the coordinates (pi,qi). Distance between

one residential property (pi,qi) and the other (pj ,qj) is represented

by d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj{pi
� �2

z qj{qi
� �2q

. In ANOSPEX, we estimated that

each adult Anopheles has a short-range dispersal probability of 0.35

[73–75]. We also applied the boundary assumptions adopted in

the SkeeterBuster model [18].

Field Survey and Preliminary Model Validation
We validated ANOSPEX by comparing predicted numbers of

female Anopheles against mosquito capture data from Macha,

Zambia. The choice of Macha, Zambia as a study location for our

experiment was made because of the availability of hourly weather

data from MIAM (Johns Hopkins Malaria Institute at Macha) that

was coincident with previously published mosquito collection data

(February–April 2009) (CDC traps, cattle-baited traps, and human

landing captures [76].

Results

Mosquito Population Dynamics
The total number of adult mosquitoes (males, nulliparous

females and parous females) over a 10610 grid was simulated over

a one-year period to evaluate the role of weather in governing

mosquito population dynamics. ANOSPEX captures the weather-

driven dynamics and shows, unsurprisingly, that mosquito

Modeling Anopheles Metapopulation Dynamics
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population numbers peak during the rainy season, reach an

approximate equilibrium level, then crash during the dry season

(Figure 2).

Mosquito Dispersal
ANOSPEX simulates mosquito population dynamics across a

grid of residential properties. Mosquito numbers within a property

are a product of local production (driven by weather) and dispersal

of adults into and out of the property. Figure 3 shows an example

of this dynamic for female adult Anopheles in a 100-property grid

(10610) from the onset to the peak of the wet season (November –

March). Mosquito numbers within and between properties change

due to reproduction, death and migration.

Preliminary Model Validation
Model validation is critical to ascertaining the utility of a

predictive model. In order to validate ANOSPEX, we compared

model predictions from a 25-property grid (565) to empirical adult

female Anopheles mosquito collection numbers from the Johns

Hopkins Malaria Institute at Macha during the time period of

February 1 to April 10, 2009 [76]. ANOSPEX was driven by

empirical weather data for this same time period. Since

ANOSPEX simulates adult numbers but does not distinguish

particular habitats, we pooled data from CDC light traps, cattle-

baited traps, and human landing catches (both inside and outside

houses).

While the overall number of mosquitoes differed significantly

between predicted and empirical results, the trends were similar

(Figure 4A). This is to be expected, since ANOSPEX simulates

total mosquito numbers, while the collection data represented that

fraction of the mosquito population that was captured, and

simulations were carried out over a 565 grid that may not

accurately reflect the geographic size of the natural habitat.

Nevertheless, ANOSPEX performed well at capturing the overall

mosquito population dynamics, as both the predicted and

empirical mosquito numbers change by approximately the same

magnitude (Figure 4). The correlation between model predicted

and empirical results was highly significant (P,0.0001), with an R2

of 0.53 (Figure 4B).

Discussion

From an applied standpoint, many novel vector control

strategies (such as release of genetically modified mosquitoes)

cannot be empirically tested under true field conditions before an

actual intervention attempt. Mathematical models are a crucial

first step to assess control strategies for safety and efficacy prior to

implementation. Models are also useful for improving the

implementation of traditional control measures. From a basic

standpoint, models are useful for investigating the environmental

factors that govern mosquito population dynamics.

The most detailed models of mosquito population dynamics

have been previously developed for Aedes aegypti. Similar models for

Anopheles mosquitoes are needed, especially in light of recent

interest in novel strategies for control of malaria. ANOSPEX is a

flexible model that can be customized to fit any area of interest, by

modifying the underlying property setup and weather files. As

currently coded, ANOSPEX simulations will be exceeding useful

for examining the control strategies based on population

suppression, such as insecticide usage [77–81], RIDL (Release of

Insects carrying a Dominant Lethal) [82–87] habitat modification

[88–89], or lethal densovirus [90–92]. ANOSPEX will also be

useful to examine the impact of environmental change on

mosquito population dynamics. ANOSPEX currently lacks a

mosquito genetics component, but this could easily be added to

investigate population replacement strategies based on genetic

modification or Wolbachia symbionts [93–95].

Model Limitations
It has been said, ‘‘all models are wrong, but some are useful’’

[96]. ANOSPEX is no exception. ANOSPEX results are based on

the complex interaction of many parameters, all with varying

degrees of uncertainty. It is likely that we have overemphasized the

impact of some parameters, while possibly missing others that are

important. Sensitivity analysis of model parameters will help to

refine model results. Nevertheless, our preliminary validation

results indicate that ANOSPEX can provide a reasonable

description of the dynamics of Anopheles populations. As ANOS-

PEX is further developed and refined, it will be a useful tool to

understand Anopheles population dynamics and develop malaria

control strategies.

Supporting Information

Figure S1 Daily egg hatching flowchart for hatch probabilities

within containers.

(PDF)

Figure S2 Anopheles larvae development flowchart.

(PDF)

Figure S3 Flowchart for emergence probabilities of Anopheles

pupae within a container.

(PDF)

Figure S4 Flowchart for Anopheles male adult development.

(PDF)

Figure S5 Flowchart for Anopheles female adult development.

(PDF)

Table S1 References for parameter values used in simulations.

(XLS)
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