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• Lp(a) levels among patients with path-
ogenic variant FH were significantly 
elevated. 

• Lp(a) and CRP levels were not associ-
ated with MACE by themselves. 

• Lp(a) level was significantly associated 
with MACE only when the CRP level 
was elevated.  
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A B S T R A C T   

Objective: The synergistic effect of lipoprotein (a) [Lp(a)] and C-reactive protein (CRP) on major adverse car-
diovascular events (MACE) among patients with familial hypercholesterolemia (FH) is unknown. This study 
aimed to investigate the relations between Lp(a) and CRP levels and MACE in patients with FH whose Lp(a) 
levels are elevated. 
Methods: We retrospectively investigated associations between genotypes and phenotypes, including low-density 
lipoprotein (LDL) cholesterol level and the occurrence of MACE among patients with FH (N = 786, male/female: 
374/412). A Cox proportional hazard model was used to identify factors associated with MACE, adjusting for 
traditional risk factors. Patients with FH were divided into four groups, based on their Lp(a) and CRP levels, and 
assessed using Kaplan–Meier curves. 
Results: The median follow-up was 12.6 years (interquartile range [IQR], 9.5–17.9 years). During follow-up, 129 
MACE were observed. Median Lp(a) and CRP levels were 21.4 (10.9–38.3) mg/dL and 0.20 (0.11–0.29) mg/dL, 
respectively. Under these conditions, natural log-transformed Lp(a) and CRP were not associated with MACE 
(hazard ratio [HR], 1.08; 95% confidence interval [CI], 0.91–1.25; P = 0.220; and HR, 1.12; CI, 0.96–1.28; P =
0.190, respectively). However, in Group 4, Lp(a) and CRP were significantly associated with MACE (HR, 2.44; CI, 
1.42–3.46; P = 1.8 × 10− 7). 
Conclusions: In patients with FH, Lp(a) was significantly associated with MACE only when the CRP level was 
elevated. Patients with FH whose Lp(a) and CRP levels are elevated should be treated aggressively.  
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1. Introduction 

Familial hypercholesterolemia (FH) is one of the most common 
Mendelian disorders; its prevalence in the general population is believed 
to be 1/300 [1,2]. Patients with FH are often complicated with prema-
ture cardiovascular disease (CVD) due to an extremely high level since 
birth of low-density lipoprotein (LDL) cholesterol level. FH is caused by 
variants of genes associated with LDL metabolism, including LDL re-
ceptor (LDLR), apolipoprotein B (APOB), proprotein convertase sub-
tilisin/kexin type 9 (PCSK9), and LDL receptor adaptor protein 1 
(LDLRAP1) [3]. In past decades, several types of medication have been 
developed to reduce LDL cholesterol, including statins, ezetimibe, and 
PCSK9 inhibitors [4]. However, even with LDL-lowering therapies, there 
remain risks of CVD (“residual risks”), such as lipoprotein (a) [Lp(a)] 
and C-reactive protein (CRP) [5,6]. Among patients with FH, Lp(a) 
levels are significantly higher than in those without FH; the underlying 
mechanism remains unclear. 

CRP level has been established as a residual risk for CVD among 
general populations receiving LDL-lowering therapies [7–10]. Further-
more, several studies conducted in patients without FH have suggested 
that Lp(a) and CRP have synergistic effects on CVD events [11,12]. 
However, there is only sparse data for clarifying Lp(a) and CRP as re-
sidual risk factors for CVD among patients with FH. Here we investigate 
the associations between these residual risk factors, Lp(a) and CRP, and 
the occurrence of major adverse cardiac events (MACEs) among patients 
who fulfill the clinical diagnostic criteria for FH. 

2. Materials and methods 

2.1. Study population 

At Kanazawa University Hospital, from 1990 to 2020, we reviewed 
the information of 2,011 patients who were clinically diagnosed with FH 
using the 2017 Japan Atherosclerosis Society criteria [13]. All of these 
patients fulfilled at least two of the three essential clinical criteria as 
follows: [1] LDL cholesterol ≥ 180 mg/dL; [2] tendon xanthoma on the 
backs of the hands, elbows, knees, or other areas, Achilles tendon hy-
pertrophy, Achilles tendon thickness ≥ 9 mm (as assessed by X-ray), and 
xanthoma tuberosum; and [3] a family history of FH or premature 
coronary artery disease (diagnosed in the patient’s first- or 
second-degree relatives). We excluded 1,225 patients who lacked data 
(e.g., blood lipids, genetic analyses) or because patients were homozy-
gous with compound heterozygous FH. We finally included 786 patients 
(Supplemental Fig. 1). 

2.2. Clinical data assessments 

We defined hypertension as systolic blood pressure of ≥140 mmHg, 
diastolic blood pressure of ≥90 mmHg, or by the use of antihypertensive 
agents. We used the definition of diabetes of the Japan Diabetes Society 
[14]. Smoking was defined as current smoking. CVD was defined as the 
presence of angina pectoris, myocardial infarction, or severe stenotic 
region(s) in the coronary artery (≥75% stenosis), identified using either 
angiography or computed tomography. Serum levels of total cholesterol, 
triglycerides, and high-density lipoprotein cholesterol were determined 
enzymatically using automated instrumentation. If triglyceride levels 
were <400 mg/dL LDL, cholesterol levels were calculated using the 
Friedewald formula; otherwise, they were determined enzymatically. 
Throughout the study period, an enzyme-linked immunosorbent assay 
was used to determine Lp(a) concentrations (N-Assay TIA Lp(a) Nittobo; 
Nitto Boseki, Tokyo, Japan) [15]. A previous study found that the co-
efficient of variation for this measurement of Lp(a) was <8%, within and 
between assays [15]. We evaluated high-sensitive CRP (Quoligent CRP 
reagent (Sekisui Medical Co, Ltd) using a Hitachi LABOSPECT-L in-
strument for laboratory measurements). 

2.3. Genetic analyses 

We assessed genotypes using next-generation sequencing for all of 
the study subjects. Briefly, the coding regions of LDLR, APOB, PCSK9, 
and LDLRAP1 were sequenced, as previously described [16]. Copy 
number variations of LDLR were assessed using eXome Hidden Markov 
Model software, as previously described [17]. We assessed the patho-
genicity of the genetic variants according to the standard American 
College of Medical Genetics and Genomics criteria [18]. We classified 
pathogenic variants as protein-truncating variants, including frameshift, 
large deletion/duplication, nonsense, and splice site. 

2.4. Ethical considerations 

This study was approved by the Ethics Committee of Kanazawa 
University. All procedures were conducted in accordance with the 
ethical standards of relevant human research committees (institutional 
and national) and with the Declaration of Helsinki (1975, revised in 
2008). Informed consent for genetic analyses was obtained from all in-
dividuals included in this study. 

2.5. Statistical analyses 

Categorical variables are reported as numbers and percentages; 
comparisons between them were made using Fisher’s exact test or the 
Chi-squared test. Normally distributed continuous variables are re-
ported as means with standard deviations. Nonnormally distributed 
continuous variables are reported as medians with interquartile ranges 
(IQR). Mean values of continuous variables were compared using Stu-
dent’s t-test for independent variables. Median values were compared 
using the nonparametric Mann–Whitney U test (Wilcoxon rank-sum 
test). For categorical variables, Chi-squared or Fisher’s post hoc tests 
were used, as indicated. A Cox proportional hazard model was used to 
assess relationships between all variables. Formal test for interaction 
between Lp(a) and CRP was performed. Comparisons of times to first 
MACE incidents were made using cumulative Kaplan–Meier survival 
curves, starting at baseline. Statistical analyses were performed using R 
software (https://www.r-project.org). A P-value of <0.050 was 
considered to indicate statistical significance. 

3. Results 

3.1. Clinical characteristics 

Table 1 shows the study patients’ clinical characteristics. Their mean 
age was 49 years; almost half were male. At baseline, their median LDL 
cholesterol level was 241 mg/dL; this reduced to 106 mg/dL during 
follow-up. A family history of FH and/or premature CVD was found in 
620 patients (78.9%). A history of CVD was present in 230 patients 
(29.3%). When we divided the patients into two groups, based on the 
occurrence of MACE, we noted significant differences in all variables 
between the groups, except for family history of FH and/or premature 
CVD. Medical treatments at the end of follow-up period are summarized 
in Supplemental Table 1. Most of the patients used statins, most 
frequently ezetimibe and colestimide. We identified 84 different types of 
pathogenic variant FH among 582 patients (67.2%) (Supplemental 
Table 2). 

3.2. Lp(a) levels according to FH mutation status 

The distribution of serum Lp(a) levels was skewed to the right, as 
previously shown (Fig. 1). When we divided the patients into two 
groups, based on the presence of pathogenic variant FH, those with 
pathogenic variants exhibited significantly higher Lp(a) levels (26.0 
mg/dL [12.2–46.5]), compared with those without pathogenic variants 
(17.0 mg/dL [8.8–25.3]) (Fig. 2). 
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3.3. Factors associated with MACE 

During a median follow-up period of 12.6 years, MACEs were 
experienced by 129 patients, which included myocardial infarction, 
unstable angina, staged revascularization, and death associated with 
CVD (Table 2). We used a multivariate Cox proportional hazard model to 
assess factors associated with MACE (Table 3). We found that the 
following were significantly associated with MACE: age (hazard ratio 
[HR], 1.08; 95% confidence interval [CI], 1.03–1.13; P = 1.2 × 10− 12), 
male sex (HR, 1.59; CI, 1.09–2.09; P = 0.006), hypertension (HR, 3.04; 
CI, 2.04–4.04; P = 2.2 × 10− 6), diabetes (HR, 1.92; CI, 1.40–2.54; P =
0.011), smoking (HR,.22; CI, 1.44–3.00; P = 2.2 × 10− 4), LDL choles-
terol (per 10 mg/dL) (HR, 1.01; CI, 1.00–1.02; P = 0.0034), prior CVD 
(HR, 3.03; CI, 2.00–4.06; P < 2.2 × 10− 16), and the presence of patho-
genic variant FH (HR, 1.88; CI, 1.08–2.68; P = 0.003). Under these 
conditions, natural log-transformed Lp(a) (HR, 1.08; CI, 0.91–1.25; P =
0.220) and CRP (HR, 1.12; CI, 0.96–1.28; P = 0.190) were not associated 
with MACE. 

3.3.1. Prognosis according to risk groups classified by Lp(a) and CRP 
When we divided the patients into four groups, according to Lp(a) 

and CRP levels, we found that the Lp(a) and CRP levels of patients in 
Group 4 were significantly associated with MACE (HR, 2.44; CI, 
1.42–3.46; P = 1.8 × 10− 7, Table 4). A significant interaction was 
observed between Lp(a) and CRP (P = 0.021). We assessed the groups’ 
survival curves and found that patients in Group 4 exhibited the worst 
outcomes (Fig. 3). 

3.4. Discussion 

Our study aimed to determine whether Lp(a) and CRP levels were 
associated with MACE among patients with FH. We found that [1] Lp(a) 
levels among patients with pathogenic variant FH were significantly 
higher than in those among without pathogenic variants, [2] Lp(a) and 
CRP levels were not associated with MACE by themselves, and [3] the Lp 
(a) level was significantly associated with MACE only when the CRP 
level was elevated. 

Table 1 
Baseline characteristics.  

Variables All MACE No MACE P-value  
(N = 786) (N = 129) (N = 657)  

Age (years) 49 ± 18 60 ± 20 46 ± 16 <2.2 ×
10− 16 

Male (%) 374 (47.6%) 88 (68.2%) 286 (43.5%) 4.7 ×
10− 7 

Hypertension (%) 211 (26.8%) 86 (66.7%) 125 (19.0%) <2.2 ×
10− 16 

Diabetes (%) 69 (8.8%) 25 (19.4%) 44 (6.7%) 7.3 ×
10− 6 

Smoking (%) 206 (26.2%) 71 (55.0%) 135 (20.5%) 9.4 ×
10− 16 

Total cholesterol 
(mg/dL) 

318 
[288–350] 

341 
[279–381] 

321 
[259–360] 

6.8 ×
10− 5 

Triglyceride (mg/ 
dL) 

126 
[84–168] 

154 
[96–188] 

114 
[79–170] 

0.0032 

HDL cholesterol 
(mg/dL) 

47 [40–57] 45 [40–49] 48 [43–53] 0.00019 

Lp(a) (mg/dL) 21.4 
[10.9–38.3] 

26.8 
[12.3–41.4] 

20.4 
[10.5–36.3] 

1.9 ×
10− 5 

CRP (mg/dL) 0.20 
[0.11–0.29] 

0.27 
[0.15–0.36] 

0.18 
[0.09–0.26] 

6.7 ×
10− 5 

LDL cholesterol (at 
baseline, mg/dL) 

241 
[206–275] 

255 
[214–296] 

238 
[202–268] 

0.0018 

LDL cholesterol (at 
follow-up mg/dL) 

106 
[90–118] 

101 
[88–112] 

111 
[94–120] 

0.0044 

Family history of FH 
and/or premature 
CVD (%) 

620 (78.9%) 103 (79.8%) 517 (78.7%) 0.86 

FH pathogenic 
variants (%) 

528 (67.2%) 114 (88.4%) 414 (63.0%) 3.7 ×
10− 8 

History of prior CVD 
(%) 

230 (29.3%) 105 (81.4%) 125 (19.0%) < 2.2 ×
10− 16 

Abbreviations: MACE, major adverse cardiac event; FH, familial hypercholes-
terolemia; CVD, cardiovascular disease; Lp(a), lipoprotein (a); CRP, C-reactive 
protein; LDL, low-density lipoprotein; HDL, high-density lipoprotein. 

Fig. 1. Histogram of Lp(a). 
X-axis represents Lp(a) (mg/dL). Y-axis represents density. 
Abbreviations: Lp(a), lipoprotein (a). 
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Over recent decades, the prognosis of patients with familial FH has 
greatly improved due to early diagnosis, based on universal and cascade 
screening, and initiation of LDL cholesterol-lowering therapies, 
including statins, ezetimibe, and PCSK9 inhibitors [19–22]. However, in 
this LDL-lowering era, there remain so-called residual risk factors for 
CVD, such as Lp(a) and CRP. Although Lp(a) and LDL have common 
structures, statins have been shown to be neutral in terms of their effect 

on Lp(a) levels, the reason for which remains unclear [23,24]. There are 
no available agents that can effectively reduce Lp(a) levels. 

Lp(a) has been suggested to be a causal factor for CVD, based on 
Mendelian randomization studies [25]. In this context, new Lp 
(a)-lowering drugs are being developed, such as antisense oligonucleo-
tide- and siRNA-based drugs [26,27]. 

When there is an innately elevated serum Lp(a) level, the association 
between Lp(a) and CVD events among patients with FH produces 
controversial results [28,29]. Several studies among general populations 
have suggested that Lp(a) and CRP appear to have synergistic effects in 
the development of CVD events [11,12]. However, there are few data 
regarding this issue among patients with FH who have extremely high 
risk for CVD. We found that the serum Lp(a) level was significantly 
associated with MACE only when the CRP level was elevated among 
patients with FH. 

In vivo and in vitro studies have shown that Lp(a) has proin-
flammatory properties [30,31]. A post hoc analysis of the ACCELERATE 
trial of evacetrapib also suggested that Lp(a) was significantly associated 
with MACE only when CRP was elevated [11]. 

In our situation, among patients with FH (who are mostly under 
intensive LDL-lowering therapies), the serum Lp(a) could be considered 

Fig. 2. Lp(a) according to FH mutation status. 
(A) Histogram of Lp(a): X-axis represents Lp(a) (mg/dL). Y-axis represents density. Red indicates patients without pathogenic variants. Green indicates patients with 
pathogenic variants. (B) Box plots of Lp(a): Y-axis represents Lp(a) (mg/dL). Red indicates patients without pathogenic variants. Green indicates patients with 
pathogenic variants. 
Abbreviations: Lp(a), lipoprotein (a); FH, familial hypercholesterolemia. 

Table 2 
Type of MACE.  

Type of MACE All (N = 786) 
Death associated with CVD 46 (5.9%) 
Myocardial infarction 19 (2.4%) 
Unstable angina 23 (2.9%) 
Staged revascularization 41 (5.2%) 
Total 129 (16.4%) 

Abbreviations: MACE, major adverse cardiac event; CVD, cardio-
vascular disease. 

Table 3 
Factors associated with MACE.  

Variable HR 95% CI P-value 

Age (per year) 1.08 1.03–1.13 1.2 × 10− 12 

Male (yes vs. no) 1.59 1.09–2.09 0.0057 
Hypertension (yes vs. no) 3.04 2.04–4.04 2.2 × 10− 6 

Diabetes (yes vs. no) 1.92 1.40–2.54 0.011 
Smoking (yes vs. no) 2.22 1.44–3.00 0.00022 
LDL cholesterol (per 10 mg/dl) 1.01 1.00–1.02 0.0034 
Prior CVD (yes vs. no) 3.03 2.00–4.06 <2.2 × 10− 16 

FH pathogenic variants 1.88 1.08–2.68 0.0033 
ln (CRP) 1.12 0.96–1.28 0.19 
ln [Lp(a)] 1.08 0.91–1.25 0.22 

Abbreviations: MACE, major adverse cardiac events; HR, hazard ratio; CI, 
confidence interval; CVD, cardiovascular disease; Lp(a), lipoprotein (a); CRP, C- 
reactive protein; LDL, low-density lipoprotein; FH, familial 
hypercholesterolemia. 

Table 4 
Prognosis according to risk groups classified by Lp(a) and CRP.  

Risk groups MACE/total 
(%) 

HR (95% CI) P-value 

Group 1 (Lp(a) < 30 mg/dL, CRP <
0.2 mg/dL) 

28/268 
(10.4%) 

1.00 
(reference) 

NA 

Group 2 (Lp(a) ≥ 30 mg/dL, CRP <
0.2 mg/dL) 

16/120 
(13.3%) 

1.21 
(0.97–1.45) 

0.11 

Group 3 (Lp(a) < 30 mg/dL, CRP ≥
0.2 mg/dL) 

44/246 
(17.9%) 

1.32 
(1.04–1.60) 

0.033 

Group 4 (Lp(a) ≥ 30 mg/dL, CRP ≥
0.2 mg/dL) 

41/152 
(27.0%) 

2.44 
(1.42–3.46) 

1.8 ×
10− 7 

Abbreviations: MACE, major adverse cardiac event; HR, hazard ratio; CI, 
confidence interval; Lp(a), lipoprotein (a); CRP, C-reactive protein. 

H. Tada et al.                                                                                                                                                                                                                                    



American Journal of Preventive Cardiology 12 (2022) 100428

5

as a residual risk for CVD when the CRP level is elevated. New agents 
that can greatly reduce Lp(a), in addition to antiinflammatory agents (e. 
g., canakinumab, colchicine), should be considered [32,33]. 

Interestingly, we found that Lp(a) levels in patients with pathogenic 
variant FH were significantly higher than in those without pathogenic 
variants. However, there is a controversy regarding whether the Lp(a) 
level in FH is actually elevated or not. It was previously reported that an 
elevated Lp(a) level increases the likelihood of diagnosis of FH based on 
increased LDL cholesterol and a family history of CVD [34]. Our study 
clearly suggests that LDL receptor is likely to play an important role in 
Lp(a) metabolism. Further studies with sufficient data regarding path-
ogenic variant FH are needed in order to clarify this important issue. 

This study has several limitations. First, it is a retrospective study 
conducted at a single center. Thus, the observations may not be gener-
alizable. However, our institute, with a long history of treating patients 
with FH, has one of the largest datasets in Japan. Second, we could not 
account for treatments during the follow-up, which might affect our 
results. Third, many patients were excluded from analysis due to a lack 
of data or were lost to follow-up, which may affect our results. Fourth, 
we did not perform functional analyses to validate the pathogenicity of 
genetic variants. Fifth, a proportion of patients were treated with PCSK9 
inhibitor, which might reduce Lp(a) levels. In addition, statins which has 
been shown to reduce CRP level might have impacted our results [35, 
36], although we used CRP level at baseline where no medication, 
including statins, was given to patients. Sixth, 1 in 3 patients in this 
study do not have FH-mutation who could have hypercholesterolemia 
with other cause rather than FH, although they met clinical criteria of 
FH in Japan. In this regard, the proportion of mutation positive among 
patients with clinical-FH looks like to be similar to other reports [37,38]. 
Seventh, among 556 patients under the primary prevention settings, 
only 24 MACEs were observed during the follow-up period of 12.6 years. 
So, it is impossible to investigate the associations focusing on these 
population due to lack of statistical power. Accordingly, it should be 
noted that our results may only be applicable to the patients under the 
secondary prevention settings. Finally, we could not identify concomi-
tant inflammatory diseases and associated therapies, which might affect 
CRP levels. 

In conclusion, we found that, among patients with FH, the Lp(a) level 
was significantly associated with MACE only when the CRP level was 
elevated. Patients with FH whose Lp(a) and CRP levels are elevated 
should be treated aggressively for modifiable risk factors. 
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