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Background: Endoscopy is the optimal choice of diagnosis of gas-
trointestinal (GI) diseases. Following the advancements made in
medical technology, different kinds of novel endoscopy-methods
have emerged. Although the significant progress in the penetration
of endoscopic tools that have markedly improved the diagnostic
rate of GI diseases, there are still some limitations, including
instability of human diagnostic performance caused by intensive
labor burden and high missed diagnosis rate of subtle lesions.
Recently, artificial intelligence (AI) has been applied gradually to
assist endoscopists in addressing these issues.

Methods and Results: In this study, we provide an overview of the
application of the AI technology in the field of endoscopy, as well as
its current limitations and prospects. The result suggested that AI
had a significantly higher diagnostic accuracy compared with
human endoscopists in the diagnosis of GI diseases. With the help
of AI technology, the diagnostic performances of nonexpert endo-
scopists had been improved considerably.

Conclusion: AI technology still has several limitations, and there are
still plenty of opportunities for improvement.
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I n 2018 alone, the global cancer statistics indicated there
were over 3 million new cases and 2 million fatalities of

gastrointestinal (GI) malignancies, including esophageal,
gastric, and colorectal cancers.1 Based on the characteristics
of cavity viscera, endoscopy constitutes the optimal diag-
nostic method for GI diseases.2 Due to the advancements in
medical technology, numerous kinds of novel endoscopy
have emerged, including magnifying narrow-band imaging
endoscopy, magnifying chromoendoscopy, endocytoscopy,
confocal endomicroscopy, laser-induced fluorescence spec-
troscopy, autofluorescence endoscopy, white light endoscopy,
and others.3 Currently, endoscopy has been extensively used

in clinical practice in gastroenterology.4 Earlier diagnosis
results in a better prognosis. Therefore, the incidence of GI
cancer rises, whereas mortality declines.5

Artificial intelligence (AI) was first introduced in 1956.6

AI involves the application of the computer system in the
simulation and expansion of human intelligence. However,
some limitations of traditional machine learning (ML), a
means of achieving AI, including inefficient and incomplete
feature extraction, still exist. Nevertheless, the advent of
deep learning (DL) methods, for instance, convolutional
neural network (CNN), has partially compensated these
disadvantages.7,8 Compared with ML, CNN extract more
details and features from the pixel level and adapt better to
the complex clinical environment.8 The whole development
of AI was shown in Figure 1. Recently, the application of
CNN in endoscopy primarily constitutes computer-assisted
detection (CADe) and diagnosis (CADx) systems used to
assist endoscopists for polyp detection, early neoplasia
detection, and Helicobacter pylori identification.9

Despite the widespread use of endoscopy, the endoscopists
are insufficient in quantity and quality. Poorly conducted
endoscopy could result in missed detection of GI cancer.10 A
considerable number of studies reviewed here revealed that the
CAD system has high sensitivity and specificity in the diagnosis
of GI diseases (Fig. 2). However, controversies still exist
regarding whether the performance of AI is better than that of
human endoscopists, and whether it can really improve the work
efficiency of human endoscopists and alleviate their fatigue.

In this review, we assess the current status of applica-
tion of AI in the field of endoscopy and provide perspectives
of this technology.

SEARCH STRATEGY
Online databases (PubMed, Web of Science, and

EMBASE) were used to search for relevant studies. The date
ranged from 2000 to 2020. The following medical subject
terms were used as keywords: artificial intelligence, com-
puter-aided, machine learning, convolutional neural works,
deep learning, and endoscopy. All included studies were
within last 3 years.

In addition, we briefly listed all relevant studies about
AI technology applied in endoscopy in Table 1.

ESOPHAGUS
The main advantages of AI applied in esophageal

endoscopy mainly constitute increasing the diagnostic
accuracy of dysplasia in Barrett’s esophagus (BE) and
esophageal squamous cell carcinoma (SCC).35

BE
BE is the most significant risk factor of developing

early-stage esophageal adenocarcinoma (ESEA).36 The
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diagnosis of ESEA in BE relies on endoscopic screen and
biopsy. However, it is usually flat and difficult to distinguish
from normal surrounding mucosa.37 Therefore, performing
an accurate diagnosis is challenging, even for the most
experienced endoscopists.38 The diagnostic sensitivity and
specificity for high-grade dysplasia and esophageal adeno-
carcinoma (EA), even when BE experts perform the
endoscopy, are only 80% and 89%, respectively.39 In com-
parison, when endoscopists with less experience perform this
labor-intensive and time-intensive task, the sensitivity is
significantly lower at 64%.40 In 2012, the American Society
of Gastrointestinal Endoscopy set the threshold for optical
diagnosis of high-grade dysplasia and EA at a sensitivity of
90%, a specificity of 80%, and a negative predictive value
(NPV) of 98%.41 However, these thresholds are hardly

reached, even for BE experts. Therefore, CAD systems have
been developed to assist ordinary endoscopists in obtaining
better diagnostic performances in clinical practice.

With the use of a simple endoscopic classification system
involving ML, nonexpert endoscopists could significantly
improve their dysplasia detection performance (sensitivity, spe-
cificity, and accuracy) in BE.11 Moreover, a CAD system using
DL also improves the detection and diagnosis performance of
BE and ESEA.12 Assessment of still images involving 2 data
bases [Augsburg data and Medical Image Computing and
Computer-Assisted Intervention (MICCAI)] revealed that the
sensitivity/specificity of the CAD-DL is 97%/88%, and 92%/
100%, respectively. Recently, de Groof et al13 conducted a deep-
learning system to detect neoplasia in patients with BE. Their
system received a near-perfect performance (a sensitivity of 88%,

FIGURE 1. The development of artificial intelligence. Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence—
first machine learning, then deep learning, a subset of machine learning–have created ever larger disruptions.

FIGURE 2. The application of artificial intelligence in the field of endoscopy.
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TABLE 1. Relevant Studies About AI Technology Applied in Endoscopy

Field References Country Model Disease
Training
Material

Diagnostic Performance
of AI System

Diagnostic Performance
of Human Endoscopists

Increase of Diagnostic
Accuracy after AI

Training

Esophagus Sehgal et al11 UK ML BE Videos Accuracy: 92%; sensitivity: 97%;
specificity: 88%

Accuracy: 60%; sensitivity: 76%;
specificity: 48%

Accuracy: 66%; sensitivity:
83%; specificity: 54%

Ebigbo et al12 Germany CAD-DL BE Images Database1: sensitivity: 97%;
specificity: 88%. Database2:
sensitivity: 92%; specificity:
100%

Database1: sensitivity: 76%;
specificity: 80%. Database2:
sensitivity: 99%; specificity: 78%

NA

de Groof
et al13

The
Netherland

DL Neoplasia in
BE

Images Database1: accuracy: 89%;
sensitivity: 90%; specificity: 88%.
Database2: accuracy: 88%;
sensitivity: 93%; specificity: 83%.

NA NA

Hashimoto
et al14

Japan CNN Neoplasia in
BE

Images Accuracy: 95.4%; sensitivity: 96.4%;
specificity: 94.2%

NA NA

Ebigbo et al15 Germany CNN Cancer in BE Images Accuracy: 89.9%; sensitivity: 83.7%;
specificity: 100.0%

NA NA

Cai et al16 China CNN ESCC Images Accuracy: 91.4%; sensitivity: 97.8%;
specificity: 85.4%; PPV: 86.4%;
NPV: 97.6%

Accuracy: 81.7%; sensitivity: 74.2%;
specificity: 88.8%; PPV: 87.0%;
NPV: 79.3%

Accuracy: 91.1%;
sensitivity: 89.2%;
specificity: 92.9%; PPV:
92.3%; NPV: 90.4%

Everson
et al17

UK CNN ESCC Images Accuracy: 93.7%; sensitivity: 89.3%;
specificity: 98%

NA NA

Nakagawa
et al18

Japan CNN Invasion depth
of SCC

Images Accuracy: 91.0%; sensitivity: 90.1%;
specificity: 95.8%; PPV: 99.2%;
NPV: 63.9%

Accuracy: 89.6%; sensitivity: 89.8%;
specificity: 88.3%; PPV: 97.9%;
NPV: 65.5%

NA

Tokai et al19 Japan CNN Invasion depth
of SCC

Images Accuracy: 80.9%; sensitivity: 84.1%;
specificity: 73.3%

Accuracy: 73.5%; sensitivity: 78.8%;
specificity: 61.7%

NA

Guo et al20 China CAD ESCC Images/
videos

Images: accuracy: 98.9%; sensitivity:
98.04%; specificity: 95.03%.
Videos: per-frame specificity:
99.9%; per-lesion sensitivity:
90.9%

NA NA

Stomach Shichijo
et al21

Japan CNN HP infection Images HP positive: accuracy: 80%; HP
negative: accuracy: 84%; HP
eradicated: accuracy: 48%

HP positive: accuracy: 88.9%; HP
negative: accuracy: 55.8%; HP
eradicated: accuracy: 62.1%

NA

Yasuda
et al22

Japan CAD HP infection Images Accuracy: 87.6%; sensitivity: 90.4%;
specificity: 85.7%; PPV: 80.9%;
NPV: 93.1%.

NA NA

Zheng et al23 China CNN HP infection Images Single image: accuracy: 84.5%
sensitivity: 81.4%; specificity:
90.1%; multiple images: accuracy:
93.8%; sensitivity: 91.6%;
specificity: 98.6%

NA NA

Zhang et al24 China CNN Gastric polyp Images Small polyp: accuracy: 66.67%;
Medium polyp: accuracy: 90.79%.
Large polyp: accuracy: 85.71%

NA NA
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Yoon et al25 Korea CNN EGC and
invasion
depth

Images AUROC: 0.851; sensitivity: 79.2%;
specificity: 77.8%; PPV: 79.3%;
NPV: 77.7%

NA NA

Zhu et al26 China CNN Invasion depth Images Accuracy: 89.16%;
sensitivity: 76.47%; specificity:
95.59%; PPV: 89.66%; NPV:
88.97%

Accuracy: 71.49%;
sensitivity: 87.80%; specificity:
63.31%; PPV: 55.86%; NPV:
91.01%

NA

Small
intestine

Leenhardt
et al27

USA CNN GIA CE images Sensitivity: 100%; specificity: 96%;
PPV: 96%; NPV: 100%

NA NA

Aoki et al28 Japan CNN Erosions and
ulcerations

CE images AUROC: 0.958; accuracy: 90.8%;
sensitivity: 88.2%;
specificity: 90.9%

NA NA

Colorectum Chen et al29 China CNN Diminutive
polyp

Images Accuracy: 90.1%; sensitivity: 96.3%;
specificity: 78.1%; PPV: 89.6%;
NPV: 91.5%

Expert1/2: accuracy: 90.5%/87.0%;
sensitivity: 97.3%/97.9%;
specificity:77.1%/65.6%; PPV:
89.3%/84.8%; NPV: 93.7%/94.0%.
Novice 1/2/3/4: accuracy: 88.0%/
84.2%/80.3%/85.6%; sensitivity:
97.3%/93.6%/81.9%/84.0%;
specificity: 69.8%/65.6%/77.1%/
88.5%; PPV: 86.3%/84.2%/87.5%/
93.5%; NPV: 93.1%/84.0%/68.5%/
73.9%

NA

Gong et al30 China CAD Adenoma Video ADR: 16% ADR: 8%
Su et al31 China CNN Adenoma Video ADR: 28.9% ADR: 16.5%
Wang et al32 China CAD Adenoma Video ADR: 29.1% ADR: 20.3%
Wang et al33 China CAD Adenoma Video ADR: 34% ADR: 28%
Renner et al34 Germany CAOB Polyp Images Accuracy: 78.0%; sensitivity: 92.3%;

specificity: 62.5%; PPV: 72.7%;
NPV: 88.2%

Expert 1/2: zccuracy: 84.0%/77.0%;
sensitivity: 92.3%/73.1%;
specificity: 75.0%/81.3%; PPV:
80.0%/80.9%; NPV: 90.0%/73.6%

NA

ADR indicates adenoma detection rate; AI, artificial intelligence; AUROC, area under receiver operating characteristic curves; BE, Barrett’s esophagus; BLI, blue laser imaging; CAD, computer-aided; CAOB,
computer-assisted optical biopsy; CE, capsule endoscopy; CNN, convolutional neural network; DL, deep-learning; ESCC, early squamous cell carcinoma; GIA, gastrointestinal angiectasia; LCI, linked color imaging; ML,
machine learning; NPV, negative predictive value; PDR, polyp detection rate; PPV, positive predictive value; SCC, squamous cell carcinoma; WLI, white light imaging.
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a specificity of 93%, and an accuracy of 83%), which is much
better than general endoscopists (a sensitivity of 72%, a specif-
icity of 74%, and an accuracy of 73%).

Furthermore, a machine based on the real-time use of
AI has been developed for the evaluation of ESEA in BE.15,42

This equipment significantly improves the diagnostic per-
formances for nonexpert endoscopists in real time. The sen-
sitivity, specificity, and overall accuracy of this equipment are
83.7%, 100%, and 89.9%, respectively. Besides, an AI system
developed by Hashimoto et al14 has a satisfactory perform-
ance of a sensitivity of 96.4%, a specificity of 94.2% and an
accuracy of 95.4% in the diagnosis of ESEA in BE.

Esophageal SCC
The incidence of EA is rapidly increasing worldwide.1

However, SCC is still the most common type of cancer in all
esophageal malignancies, accounting for ~80%.1 It is often
confirmed histologically as obvious an evident mass-like features.
However, due to inadequately experienced endoscopists, low-
quality equipment, or other relevant factors, there are still
unsatisfactory rates of missed diagnosis of SCC.43 Therefore,
there is an urgent need for types of equipment, which can assist
endoscopists in achieving better diagnostic performance.

The findings of 2 studies showed that the CAD system
based on DL techniques has satisfactory diagnosis performance
with a sensitivity of between 89.3% and 97.8%, and a specificity
of between 85.4% and 98%.16,17 By training with CAD-DL
system, the average diagnostic ability of nonexperienced endo-
scopists has been improved (sensitivity: 74.2% vs. 89.2%, accu-
racy: 81.7% vs. 91.1%, NPV: 79.3% vs. 90.4%).16

Among SCC characteristics, tumor invasion depth is the
most important risk factor, believed to be closely associated
with the risk of metastasis and curability of endoscopic
resection.44 A CAD-DL system based on Single Shot Mul-
tiBox Detector architecture successfully classified superficial
SCC into pathologic mucosa, submucosal microinvasive
(SM1), and deep submucosal invasive (SM2/3) cancer with a
sensitivity of 90.1%, a specificity of 95.8%, positive predictive
value (PPV) of 99.2%, NPV of 63.9%, and overall accuracy of
90.1%, respectively.18 On the contrary, the diagnoses per-
formed by sixteen experienced endoscopists yielded relatively
poorer performance (sensitivity: 89.8%, specificity: 88.3%,
PPV: 97.9%, NPV: 65.5%, and accuracy: 89.6%). Similar
findings were reported in a second study, which revealed that
the accuracy score of the CAD-DL system exceeds that of 12
of 13 experienced endoscopists.19 Moreover, the area under
receiver operation characteristic curve (AUROC) of the
CAD-DL system is better than that of all endoscopists.

Moreover, Guo et al20 developed a CAD-DL system,
which performs real-time automated diagnosis of precancerous
lesions and early SCC. This system has high sensitivity and
specificity for both images and video databases. The sensitivity
and specificity based on image databases are 98.04% and
95.03%, respecitively. Besides, the diagnostic performances
based on video databases for the precancerous lesions or early
SCC includes 27 nonmagnifying videos (per-frame sensitivity
60.8%, per lesion sensitivity 100%) and 20 magnifying videos
(per-frame sensitivity 96.1%, per lesion sensitivity 100%). The
unaltered full-range normal esophagus video includes 33 vid-
eos (per frame specificity 99.9%, per-case specificity 90.9%).

STOMACH
Gastric cancer (GC) is the fifth most frequently diag-

nosed malignancy worldwide, which had ~1 million new

cases and caused 800,000 deaths in 2018 alone.1 The com-
mon risk factors of GC constitute infection of H. pylori,
obesity, consumption of food preserved by high-dose salt,
low fruit intake, and use of alcohol and tobacco.1 GC is
most frequently diagnosed using gastroscopy. Gastroscopy
offers invaluable assistance in the management of GC
through: (1) Prediction of H. pylori infection. (2) Detection
of precancerous lesions. (3) Diagnosis of early gastric cancer
(EGC). (4) Assessment of tumor metastasis and invasion
depth. (5) Assistance of application of endoscopic sub-
mucosal dissection (ESD). Recently, with the advancements
made in medical technology, the AI system has been
incorporated into endoscopy and plays a vital role in help-
ing endoscopists in achieving better diagnostic performance.

H. pylori Infection
Among the risk factors of the pathogenesis of cancer,

H. pylori infection is the most important one, which is
responsible for ~90% of new cases of noncardia GC.45 In
addition, research evidence shows that the treatment of
H. pylori infection decreases the incidence of GC.46,47

Therefore, H. pylori infection is categorized as a definite
carcinogen by various international agencies, and H. pylori
eradication therapy has become more prevalent recently.48

The typical features of the white-light endoscopic images of
different gastric mucosa status include (1) H. pylori-positive
gastric mucosa: atrophy, diffuse redness, mucosal swelling,
enlarged folds, and nodularity. (2) H. pylori-negative gastric
mucosa: a regular arrangement of collecting venules and
fundic gland polyps. (3)H. pylori-eradicated gastric mucosa:
map-like redness.49 However, the diagnosis based on these
representative endoscopic images is subjective and
inaccurate.50 There is still a high rate of false-positives and
false-negatives, even for expert endoscopists. However,
better diagnostic accuracy has been achieved recently with
the incorporation of AI technology in endoscopy.

Shichijo et al21 constructed a CNN to classify different
gastric mucosa status. On the basis of the nonmagnified
endoscopic images, the CNN system achieves a comparable
diagnostic result to the expert endoscopists (diagnostic
accuracy of H. pylori-positive cases: 80% vs. 88.9%, H.
pylori-negative cases: 84% vs. 55.8%, H. pylori-eradicated
cases: 48% vs. 62.1%). Among them, the accuracy of H.
pylori-eradicated cases is low because the gastric mucosa
presents gastritis-like appearance after H. pylori eradication
therapy.

Yasuda et al22 developed the AI system using linked
color imaging technique to ascertain the H. pylori infection
status. The sensitivity, specificity, accuracy, PPV, and NPV
of this system constitute 90.4%, 85.8%, 87.6%, 80.9%, and
93.1%, respectively. Its diagnostic performance significantly
higher compared with inadequately experienced endo-
scopists. However, there is no significant difference in the
diagnostic performance between this system and experi-
enced endoscopists.

Moreover, Zheng et al23 developed a CAD support
system with an incorporated CNN model based on endo-
scopic images for the diagnosis of H. pylori infection. The
novelty of this system constitutes the use of multiple images
instead of a conventional single one providing diagnostic
results; hence, significantly increasing accuracy. The sensi-
tivity, specificity, and accuracy of the CAD system with
single image are 81.4%, 90.1%, and 84.5%, respectively. On
the contrary, the sensitivity, specificity, and accuracy of the
CAD system with multiple images are 91.6%, 98.6%, and
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93.8%, respectively. Moreover, the CAD-multiple image
system has a significantly higher specificity and sensitivity
compared with other direct H. pylori testing methods, that
is, sensitivity: histology 88% to 92%, breath test 96%, stool
antigen 94%; specificity: histology 89% to 98%, breath test
93%, stool antigen 97%. Therefore, this system has the
potential to be a readily, efficient, and noninvasive tool for
the diagnosis of H. pylori infection, which could popularize
it in clinical practice.

Gastric Polyps
Zhang et al24 designed a CNN system based on Single

Shot MultiBox Detector (SSD) for gastric polyps detection.
The novelty for the SSD of the Gastric polyps (SSD-GPNet)
system allows real-time detection of gastric ploys. Regard-
ing its diagnostic accuracy, compared with conventional
SSD, the SSD-GPNet has a little time-performance dis-
advantage (8.05 s vs. 6.48 s). However, the SSD-GPNet has
a better diagnostic precision (for small polyps: 66.67% vs.
54.55%, for medium ploys: 90.79% vs. 80.26%, and for large
polyps: 85.71% vs. 85.71%). Thus, this has significant
potential in considerably assisting endoscopists to avoid
misdiagnosis.

GC
EGC, defined as tumor invasive depth, is no more than

a submucosa and accounts for ~20% of all gastric cancer
cases with better prognosis than advanced gastric cancer.51

Due to the advancements in endoscopic therapeutic tech-
niques, most of EGC cases are treated using ESD. It has
minimal invasion and quite short hospital-length; hence,
well accepted by the endoscopists and patients.52 However,
according to guidelines, ESD is only recommended for EGC
patients whose tumor invasion depth restricted to the
mucosa (M) or the superficial portion of the submucosa
(SM1).53 Therefore, precise detection of tumor invasion
depth is critical since it is closely associated with the ther-
apeutic strategy and cancer-related prognosis. Currently,
endoscopic ultrasonography (EUS) constitutes the most
preferred method for the detection of invasion depth. The
EUS method has a moderate diagnostic value for the
determination of the invasion depth of EGC.54 However,
this method has 2 limitations, namely, difficulty in providing
high-quality images of some parts of the stomach since it
uses a microprobe. Second, the approach is highly operator-
dependent. Therefore, the diagnostic performance of EUS is
not always satisfactory. In some cases, the method is inferior
to conventional endoscopy performed by experienced
endoscopists.55 Some macroscopic features, including
remarkable redness, stiffness of the gastric mucosa, dis-
appearance of the mucosal layer and abrupt cutting of
converging folds, are closely related to the submucosal or
deeper invasion.56 However, diagnosis by conventional
endoscopy is subjective and highly experience-dependent,
which is additionally unstable. Hence, it is crucial to develop
appropriate equipment or techniques to increase the diag-
nostic accuracy of determining tumor invasion depth.

Yoon et al25 developed a visual geometry group
(VGG)-16 model based on the CNN system for the diag-
nosis of tumor invasion depth of EGC. The diagnostic
performance of this system includes a sensitivity of 79.2%, a
specificity of 77.8%, PPV of 79.3%, NPV of 77.7%, and
AUROC of 0.851. This moderate diagnostic performance is
accepted as a satisfactory result, considering the difficulties
of identifying tumor invasion depth of EGC. In addition,

this diagnostic accuracy is better compared with EUS
reported previously.57

Moreover, Zhu et al26 developed a CNN-CAD system
for determining tumor invasion depth of GC. The diagnostic
performances between the CNN-CAD system and 17
endoscopists compares as follows: sensitivity (79.47% vs.
87.80%), specificity (95.56% vs. 63.31%), PPV (89.66% vs.
55.86%), NPV (88.97% vs. 91.01%), and accuracy (89.16%
vs. 71.49%). The specificity and accuracy of the CNN-CAD
system is significantly higher compared with endoscopists
regardless of the level of experience.

SMALL INTESTINE (SI)
The detection of the abnormalities of the SI, including

erosions, ulcerations, angiodysplasias, erythema, edema,
and change of the villi, is difficult, because of the anatomic
characteristics of the small bowel and limitations of diag-
nostic equipment. However, recently, the development of
the capsule endoscopy (CE), a diagnostic, monitoring, and
managing tool, provides a solution to this problem.58

Moreover, the European guidelines recommended the use of
CE for suspected Crohn’s disease with negative colonoscopy
detection, suspected SI tumors and inherited polyposis
syndrome.59 However, CE still has some drawbacks. First,
pathologic changes exist in only several frames, sometimes
even in one frame, which constitutes the main limitation.
Second, the length of the whole CE video varies from 8 to
10 hours; As a result, the endoscopist should take 1 to
2 hours to browse through and report the examination
result. Therefore, the approach is time-consuming as well as
labor-intensive. Thus, abnormalities are easily missed due to
oversight or inexperience. However, recently, AI has been
integrated into the CE to improve the diagnostic efficiency
and accuracy, and significantly reduce the burden on the
endoscopist.

Gastrointestinal Angiectasia (GIA)
GIA, defined as bright-red, flat-lesion, consisting of

tortuous and clustered capillary dilatations, is the most
common small-bowel vascular abnormality.60 It is closely
related to the occurrence of GI hemorrhage.61 To increase
labor efficiency and diagnostic accuracy of GIA, Leenhardt
et al27 developed a CAD system, which shows satisfactory
diagnostic performance with a sensitivity of 100%, a spe-
cificity of 96%, a PPV of 96%, and a NPV of 100%. In
addition, the browsing period of the entire CE video the
endoscopist takes is significantly reduced from more than
one hour to an average of 39 minutes in the CAD system.

Erosions and Ulcerations
The small-bowel CE video mostly reveals mucosal

breaks that represents the abuse of nonsteroidal non-
inflammatory drugs (NSAIDs), Crohn’s disease or
malignancy.62 The mucosal breaks are, however, difficult to
detect through CE due to the small difference in color
between the mucosal breaks and the surrounding normal
mucosa.63 Aoki et al28 designed a deep neural network
architecture called the Single Shot MultiBox Detector,
which is a CNN system that consists of 16 or more layers for
the diagnosis of the mucosa breaks. The diagnostic per-
formance of this system constitutes AUROC of 0.958, a
sensitivity of 88.2%, a specificity of 90.9%, and an accuracy
of 90.8%.
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COLORECTUM
Colorectal cancer is the third most common malignancy

worldwide, which had ~1,800,000 new cases and 881,000 deaths,
implying 1 in 10 cancer cases and deaths in 2018 alone.1 Colo-
noscopy is effective and essential in the early diagnosis and
prevention of colorectal cancer through detection and removal of
the neoplastic lesion.64 However, it is far from being perfect. The
method has several limitations. First, the method has a relatively-
high missed diagnosis rate of precancerous lesions.65 Second,
some neoplastic lesions are challenging to detect, even for expert
endoscopists.66 Lastly, the task of the endoscopist is time-inten-
sive and labor-intensive. Because of high energy consumption,
the endoscopists are prone to inattention, leading to missed
diagnosis. At the same time, the diagnostic performance of
colonoscopy highly depends on the experience of the endo-
scopists, which varies among individuals. This implies that the
diagnostic accuracy of colonoscopy is unstable.

Recently, CAD system based on AI technology has
been shown to have a potential regarding boosting the
efficiency and accuracy, as well as an almost instantaneous
supportive tool, for the endoscopists. The American Society
of Gastrointestinal Endoscopy published Preservation and
Incorporation of Valuable Endoscopic Innovations (PIVI)
in 2015.67 The threshold of a diagnose-and-leave strategy for
small colorectal polyps is NPV≥ 90%. At the same time, the
threshold of a resect-and-discard strategy is above 90% of
agreement with histopathology for postpolypectomy sur-
veillance intervals. Some CAD systems already have or
exceed this standard. Moreover, this novel technology has
not only been applied in the field of colorectal polyps
detection but also been used in assisting diagnosis of other
colorectal diseases (early-stage colorectal cancer, ulcerative
colitis, invasive depth of cancer and iron deficiency anemia).

Computer-Aided Detection for Colorectal Polyps
The detection and diagnosis of colorectal polyps is the

most extensive field in which AI technology has been
applied to assist the endoscopist. A prospective study
involving 1100 patients conducted to compare the diag-
nostic performance of colonoscopy with or without CAD
system assistance.68 Notably, the colonoscopy without CAD
assistance detected 248 polyps, whereas colonoscopy with
CAD assistance detected 486 polyps. Following careful
evaluation, it was observed that the colonoscopy with CAD
assistance did not miss any polyp missed. As a result, the
findings of this study revealed that the CAD system sig-
nificantly increases the diagnostic accuracy regardless of the
bowel preparation results.

The detection and diagnosis of colorectal polyps is the most
extensive field in which AI technology has been applied to assist
the endoscopists. A prospective study involving 1100 patients
conducted to compare the diagnostic performance of colono-
scopy with or without CAD system assistance. Notably, the
colonoscopy without CAD assistance detected 248 polyps,
whereas colonoscopy with CAD assistance detected 486 polyps.
Following careful evaluation, it was observed that the colono-
scopy with CAD assistance did not miss any polyp. As a result,
the findings of this study revealed that the CAD system sig-
nificantly increases the diagnostic accuracy regardless of the
bowel preparation results.69

Narrow-band imaging is a type of image-enhanced
technique that is prevalent among endoscopists for the
detection of microstructures and microvascular abnormal-
ities of the mucosal epithelium.70 However, an optical
diagnosis of hyperplastic and adenomatous polyps based on

narrow band imaging highly depends on the experience of
the endoscopists, whereas the result is not satisfactory.71,72

Chen et al29 designed a CNN-CAD system to overcome this
challenge. This system has a sensitivity of 96.3%, a specif-
icity of 78.1%, a PPV of 89.6%, and an NPV of 91.5%.
Moreover, the diagnostic time of the CNN-CAD system is
significantly shorter (0.45± 0.07s vs. 1.54 ± 1.30s experts/
1.77 ± 1.37s nonexperts) compared with endoscopists. In
addition, this system has a perfect intraobserver agreement
(κ score of 1 vs. 0.67 experts/0.48 to 0.77 nonexperts).

Computer-aided Diagnosis of Colorectal Polyps
Renner et al34 developed a computer-assisted optical

biopsy (CAOB) approach based on CNN to distinguish
neoplastic polyps from non-neoplastic polyps with patho-
logic diagnosis as the golden standard. This system is
trained using unmagnified white-light and narrow band
imaging endoscopic pictures. The CAOB system has a sen-
sitivity of 92.3% and a specificity of 88.2%. At the same
time, 2 expert endoscopists had a sensitivity and specificity
of 84.0% and 77.0%, respectively. Therefore, the diagnostic
performance of the CAOB approach is better compared
with human-experts, although not statistically significant.
However, a discrepancy often occurs between high-con-
fidence optical diagnosis of expert endoscopists and sub-
sequent pathologic diagnosis, especially for diminutive
adenoma.73 Shahidi et al74 developed a real-time clinical
decision support solution (CDSS) based on AI technology to
evaluate the discrepancy between endoscopic and pathologic
diagnoses of diminutive lesions (diameter smaller than
3 mm). A study involving 644 lesions indicated that only 458
(71.7%) had concordant pathologic diagnoses and 186,
28.9% had differing results. Among the differing results,
CDSS and endoscopists had the same diagnoses in 168
(90.3%) lesions. This reveals that pathology may not be used
as the golden standard in diagnosing diminutive colorectal
lesions (diameter smaller than 3 mm).

Application in the Field of Adenoma Detection
Adenoma detection rate (ADR) is adversely associated

with the risk of developing a CRC: each 1.0% increase in
ADR will trigger 3.0% decrease in the risk of interval
CRC.75 Though considerable methods have been taken to
improve ADR, including new colonoscopy equipment,
minimal withdrawal time, retroflexion, and split-dose bowel
preparation, some diminutive adenoma will still be missed.
The following hypotheses may contribute to this phenom-
enon: lack of experience and training, differences in tracking
patterns, and distraction caused by fatigue or emotional
factors.76 Several studies suggested that the AI system could
effectively assist human endoscopists to overcome the dis-
advantages of unstable performance, thus improving the
ADR. Gong et al30 found the performance of ADR of their
CAD system (16%) was better that of the control group
(8%). Meanwhile, similar findings were also published in
other articles.31–33 Most importantly, these studies are all
randomized control trails, and the real-time application of
AI system means it is valuable in clinical practice.

LIMITATIONS AND PERSPECTIVE OF AI
TECHNOLOGY APPLIED IN THE FIELD OF

ENDOSCOPY
Recently, several commercially available AI systems

have been introduced in public, including GI genius
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(Medtronic), CAD EYE (Fuji), DISCOVERY (Hoya), and
EndoBRAIN (Cybernet and Olympus). This means it is not
far from application in clinical practice. Although the inte-
gration of AI technology into endoscopy has shown its
potential in assisting the endoscopists in achieving high
diagnostic performance, it still has several limitations.

First, most of the images and videos extracted from data-
bases to train AI system are highly qualified. These ideal images
usually result in selection bias. The AI systems are often unable
to distinguish lesions in low-quality images or videos. Their
performances are excellent in the training set but weak in the
clinical practice, which is defined as overfitting. Therefore, fur-
ther studies should be conducted to address this shortcoming and
adapt to the unsatisfactory bowel preparation condition,
including the residual or bubble existing in the colon, which is
common in a real-world scenario.

Second, most studies focusing on AI technology
applied in endoscopy are retrospective, leading to selection
bias. Therefore, studies should be conducted using different
study designs, such as randomized controlled trial and sin-
gle-arm study.

Third, a small sample size results in class imbalance or
poor diagnostic accuracy. For instance, images used for AI
training are usually challenging to find, such as subtle flat
colonic lesions or morphology types that are insufficient in
quantity in the endoscopy image database. Besides, sub-
stantial learning material is vital to increase the diagnostic
accuracy of the AI system. AI system should be trained with
images of a balanced proportion of neoplastic and non-
neoplastic, polyp and nonpolyp, and high-quality and low-
quality. However, this big-data problem for AI training
remains a challenge and an obstacle to the prevalence of this
novel technology.

Finally, additional information, such as gender, age,
family history, and laboratory test results, is a crucial
resource for clinicians in performing accurate diagnosis.
However, most recent AI algorithms focus on images only.
Nevertheless, in some studies, this issue has been identified.
Hornbrook et al77 and Hilsden et al78 conducted ML
algorithms based on the basic information and laboratory
test results of the patients to perform early prediction of
colorectal cancer. If these ML algorithms are associated
with endoscopy images, their diagnostic performance would
be significantly higher.

With the advancements in AI technology, an ideal AI
system should be developed to overcome these limitations. It
may precisely distinguish different lesions from normal
surrounding mucosa, including those rare lesions. Mean-
while, it may assist endoscopists simultaneously during
endoscopy with almost undetectable latency. Furthermore,
it may provide type, location, size, depth, and other relevant
information of lesions.

CONCLUSION
The integration of AI into endoscopy has dramatically

improved the diagnostic performance of GI diseases. AI can
provide immediate assistance to inadequately experienced
endoscopists. Meanwhile, AI compensates for unsteady per-
formance, as well as alleviates fatigue and increases the working
efficacy of human endoscopists; therefore, significantly reducing
the missed diagnosis rate of subtle lesions. Although there are
still some limitations of the AI system, robust clinical trials,
increasing industry involvement, and governmental incentives
will open the door to the continuous evolution of the AI system,

thus providing support to lesion detection, as well as technical
quality assessment and therapeutic decision-making processes.
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