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The paper presents results of machine learning approach accuracy applied analysis of cardiac activity. The study evaluates the
diagnostics possibilities of the arterial hypertension by means of the short-term heart rate variability signals. Two groups were
studied: 30 relatively healthy volunteers and 40 patients suffering from the arterial hypertension of II-III degree. The following
machine learning approaches were studied: linear and quadratic discriminant analysis, k-nearest neighbors, support vector
machine with radial basis, decision trees, and naive Bayes classifier. Moreover, in the study, different methods of feature
extraction are analyzed: statistical, spectral, wavelet, and multifractal. All in all, 53 features were investigated. Investigation
results show that discriminant analysis achieves the highest classification accuracy. The suggested approach of noncorrelated
feature set search achieved higher results than data set based on the principal components.

1. Introduction

According to the World Health data, hypertension affects
more than 1 billion people worldwide. Many factors can con-
duce to hypertension, including occipital stress and job strain
[1]. One of the main problems concerning the treatments for
the arterial hypertension conditions is the late detection for
apparently healthy people. Some studies had been shown that
among the individuals with hypertension, more than 35%
were unaware of their condition [2].

The heart rate variability (HRV) is among one of the
widely used biomedical signals, due to ease of record the
electrical heart activity [3]. The HRV analysis can be
applied in the task of arterial hypertension diagnostics,
since it is well known that various features of the HRV
reflect behavior of the different modules of the auto-
nomic nervous system (ANS) [4].

Common HRV analysis implies the application of a vari-
ety of analysis methods: statistical, spectral, and nonlinear

analysis. Generally, in a single study, a limited number
of features are extracted. Such as in [5], 13 nonlinear
features were studied for efficacy of stress state detection.
The current paper comprises a study of 53 different fea-
tures. Usually during one study, feature sets of a particular
method are used. For example in [6], sets of time-domain
features, nonlinear features, and spectral features were
studied separately for automatic sleep staging by means
of HRV signal analyses. In this study, combinations of dif-
ferent methods were analyzed.

The common uses of machine learning approaches
for condition classification based on HRV information
imply usage of several available methods: support vector
machine (SVM), discriminant analysis (DA), and ordi-
nal pattern statistics (OPS) [7–9]. However, the selection
of a particular approach is not always justified. In cur-
rent study, linear and quadratic DA, SVM, k-nearest
neighbors, decision trees, and Naïve Bayes approaches
were investigated.
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In one of the previous works, the investigation of the
linear and quadratic discriminant analysis was carried out,
implying the study of arterial hypertension diagnostic using
single features of short-term HRV signals. In that work,
the evaluation of the features and the evaluation of the
classifier efficacy were carried out by means of an in-
house software produced in MATLAB [10]. In the present
paper, the machine learning methods were implemented in
the python.

In summary, the goal of the present work is to study the
efficacy of different machine learning approaches for
diagnostic of the arterial hypertension by means of the
short-term HRV, using combinations of statistical, spectral
(Fourier and Wavelet transforms), and nonlinear features.
By applying feature combinations of different methods, we
aim to build more robust and accurate classifiers.

2. Materials and Methods

2.1. Recorded Dataset. The clinical part of the study was per-
formed in the Sverdlovsk Clinical Hospital ofMental Diseases
for Military Veterans (Yekaterinburg, Russian Federation).
For the HR signals registration, the electroencephalograph-
analyzer “Encephalan-131-03” (“Medicom-MTD,”Taganrog,
Russian Federation) was used. The rotating table Lojer
(Vammalan Konepaja OY, Finland) performed the spatial
position change of the patient during passive orthostatic
load; the lift of the head end of the table was up to 70° from
the horizontal position. The clinical part of the study was
approved by the local Ethics Committee of the Ural State
Medical University.

Participants of this study were 30 healthy volunteers
and 41 patients suffering from the arterial hypertension
of II and III degree. The electrocardiography (ECG) sig-
nals were recorded in two functional states: functional
rest (state F) and passive orthostatic load (state O). The
length of the signal in the mentioned state was about
300 seconds. The HRV signals were consequently derived
from the ECG signals automatically by the “Encephalan-
131-03” software. Figure 1 presents diagram of the func-
tional states.

2.2. Heart Rate Variability Features. Prior to the processing,
the original time series were cleaned from the artifacts. By
artifacts, in this study, we considered values of the R-R

intervals that differed from the HR mean by more than three
standard deviations. NN is the abbreviation for the “normal
to normal” time series, that is, without artifacts. Among all
studied time series, less than 2% of data was removed. For
spectral and multifractal analyses, NN time series were
interpolated using cubic spline interpolation with the 10Hz
sampling frequency.

The feature dataset is the same as used previously [11],
where it was shown that features of the HRV signals
recorded in the state O have better classification accuracy
for arterial hypertension diagnostics. Therefore, in this
study, we analyze data only in the state O. The used features
were separated into statistical, geometric, spectral (Fourier
based), wavelet, nonlinear, and multifractal. Their descrip-
tion will be given below.

2.2.1. Statistical Features. Statistical methods are used for the
direct quantitative evaluation of the HR time series. Main
quantitative features are as follows:

(i) M is the mean value of the R-R intervals after artifact
rejection:

M = 1
N
〠
N

i=1
NNi, 1

where N is the number of elements in the NN and
NNi is the ith element in R-R time series.

(ii) HR, the heart rate, is an inverse ratio to M:

HR =
1
M

2

(iii) SDNN is the standard deviation of the NN intervals:

SDNN = 1
N

− 1〠
i 1

N

NNi −M 2 3

(iv) CV, the coefficient of variation, is defined as ratio of
standard deviation SDNN to the meanM, expressed
in percent;

CV =
SDNN
M

⋅ 100% 4

(v) RMSSD is the square root of mean of squares of
differences between successive elements in NN;

RMSDD =
1
N

〠
N−1

i=1
NNi+1 −NNi

2
0,5

5

(vi) NN50 is the number of pairs of successive elements
in NN that differ by more than 50ms [12].

70∘

State F: [0,300] sec State O: [300,600] sec 

Figure 1: Diagram of the study.
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2.2.2. Geometric Features. The geometric methods analyze
the distribution of the R-R intervals as a random numbers.
The common features of these methods are as follows:

(i) M0, the mode, is the most frequent value in the R-R
interval. In case of the normal distribution, the mode
is close to the mean M.

(ii) VR, the variation range, is the difference between the
lowest R-R interval and the highest R-R interval in
the time series. VR shows variability of the R-R
interval values and reflects activity of the parasym-
pathetic system of the ANS.

(iii) AM0, the amplitude of the mode, is a number of the
R-R intervals that correspond to the mode value.
AM0 shows the stabilizing effect of the heart rate
management, mainly caused by the sympathetic
activity [12].

The following indexes are derived from common geo-
metric features:

(i) SI, the stress index, reflects centralization degree of
the heart rate and mostly characterizes the activity
of the sympathetic department of the ANS:

SI =
AM0

2M0 ⋅VR
6

(ii) IAB, the index of the autonomic balance, depends on
the relation between activities of the sympathetic
and parasympathetic department of the ANS:

IAB =
AM0
VR

7

(iii) ARI, the autonomic rhythm index, shows parasym-
pathetic shifts of the autonomic balance: smaller
values of the ARI correspond to the shift of the auto-
nomic balance to the parasympathetic activity:

ARI =
1

M0 ⋅VR
8

(iv) IARP, the index of adequate regulation processes,
reflects accordance of the autonomic function
changes of the sinus node as a reaction of the sympa-
thetic regulatory effects on the heart:

IARP =
AM0
M0

9

2.2.3. Spectral Features. Spectral analysis is used to quantify
periodic processes in the heart rate by the means of the
Fourier transform (Fr). The main spectral components of
the HRV signal are high frequency—HF (0.4–0.15Hz), low
frequency—LF (0.15–0.04Hz), very low frequency—VLF

(0.04–0.003Hz), and ultralow frequency—ULF (lower than
0.003Hz) [12, 13]. For smaller than 300 seconds, short-
term time series ULF spectral component is not analyzed.

HF spectral component characterizes activity of the
parasympathetic system of the ANS and activity of the
autonomic regulation loop. High frequencies of the heart
rate in HRV spectrum are associated with the breathing
and determined by the connection and influences of the
vagus with the sinus node.

LF spectral component mainly characterizes activity of
the sympathetic vascular tone regulation center. Low
frequencies reflect modulation of the heart rate by the
sympathetic nervous system [4].

VLF spectral component is defined by the suprasegmen-
tal regulation of the heart rate, as the amplitude of the VLF
waves and is related to the psycho-emotional strain and
functional state of the cortex. The genesis of the very low
frequencies is still the matter of debates. Most likely, it is
influenced by the suprasegmental centers of the autonomic
regulation that generates slow rhythms. These rhythms are
directed to the heart by the sympathetic nervous system,
humoral factors on the sinus node. Biologic rhythms in
the same frequency band are connected with the mecha-
nisms of the thermoregulation, fluctuations of the vascular
tone, the renin activity, and the secretion of the leptin
[14]. The similarity of the frequencies implies the participa-
tion of these mechanisms in the genesis of the VLF spectral
component. There are evidences of the increase of the VLF
activity in case of the central nervous system damage, anx-
iety, and depression disorders [15].

The studied quantitative features of spectral analysis are

(i) spectral power of the HF, LF, and VLF
components,

(ii) total power of the spectrum—TP,

(iii) normalized values of the spectral components by
the total power—HFn, LFn, and VLFn,

HFn =
HF
TP

,

LFn =
LF
TP

,

VLFn =
VLF
TP

,

10

(iv) the LF/HF ratio, also known as the autonomic
balance exponent,

(v) IC, the index of centralization,

IC =
HF + LF
VLF

, 11

(vi) IAS, the index of the subcortical nervous centers
activation,

IAS =
LF
VLF

, 12
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(vii) HFmax, the maximal power of the HF spectral
components,

(viii) RF, the respiration frequency, frequency that
corresponds to the HFmax [16].

2.2.4. Wavelet Transform. For nonstationary time series, one
can also use the wavelet transform (wt), to simultaneously
study time-frequency patterns. The general equation for
continuous wavelet transform is as follows:

W a, b =
1
a

s t ⋅ ψ
t − b
a

dt, 13

where a is the scale, b is the shift, ψ is the wavelet basis, and
s t is the analyzed signal [17].

Moreover, the connection between the scale and the
analyzed frequency is in accordance with the following:

a =
f c ∗ f s

f
, 14

where f c is the central frequency of the wavelet basis, called
by the centfrq function, f s is the sampling frequency of the
analyzed signal, and f is the analyzed frequency. For wavelet
transform computation in this work, we used wavelet Coiflet
of the fifth order [18].

It is possible to acquire same spectral features by means
of the wavelet transform:

(i) Spectral power of the HF, LF, and VLF components

(ii) Normalized values of the spectral components by
the total power—HFn, LFn, and VLFn

(iii) The LF/HF ratio.

Additionally, standard deviations SDHF(wt), SDLF(wt),
and SDVLF(wt) of the HFwt(t), LFwt(t), and VLFwt(t) time

series were tested as features. HFwt(t), LFwt(t), and VLFwt(t)
are time series of the HF, LF, and VLF spectral components,
respectively, acquired by means of the wavelet transform.

Moreover, one can study informational characteristics of
the wavelet transform by analyzing the F LFwt/HFwt t
function (Figure 2). F LFwt/HFwt t is the continuous
function of the LF/HF ratio. This function was not a smooth
morphology. Its “excursions” (local dysfunctions) varies in
case of functional loads, as the features of F LFwt/HFwt t
is possible to use the number of dysfunctions Nd, the maxi-
mal value of dysfunction (LF/HF)max, and the intensity of
dysfunction (LF/HF)int. By the dysfunction, we consider
values of function that suppress decision threshold Δ accord-
ing to previous studies of our research group Δ=10 [19].

2.2.5. Nonlinear Feature. As the nonlinear feature in this
study, we have used the Hurst exponent calculated by
the aggregated variance method. The variance can be
written as follows:

Var X t2 − X t1
2 = σ2 t2 − t1

2H , 15

where H is the Hurst exponent and X is a time-series vector.
H can be defined as the slope exponent in the following

equation:

logσrms ΔX = c +Hlog s , 16

where σrms ΔX is the standard deviation of the ΔX incre-
ments, corresponding to the time period s, and с is a
constant [20].

Note that H> 0.5 corresponds to the process with trend,
so-called persistent process, contrary H< 0.5 corresponds to
antipersistent processes that have a tendency for trend
change, and H=0.5 is the random process [21].

2.2.6. Multifractal Features. As nonlinear methods, we
adopted the multifractal detrended fluctuation analysis
(MFDFA) [22]. The algorithm and application features of
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Figure 2: Example of F LFwt/HFwt t with the decision threshold.
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the MFDFA method to estimation of short-term time series
are described in details in [23].

The main steps of the method include the following:

(i) The detrending procedure with second degree poly-
nomial on nonoverlapping segments where the length
of the segments corresponds to the studied time scale
boundaries.

In current study, we investigated time scale boundaries
that correspond to the LF and VLF frequency bands: 6–
25 sec and 25–300 sec, respectively. In our earlier works
and by other authors, it was noted that multifractal analy-
sis of the HF component is not informative because of the
noising [24].

(ii) Determination of the fluctuation functions for q in
range q= [−5, 5]:

Fx q, s =
1
Ns

〠
Ns

v=1

1
s
〠
s

k=1
NN k −NNv k 2

q/2 1/q

, 17

where NNv is the local trend in the segment ν, Ns is
the number of segments, and s is the scale.

(iii) Estimation of the slope exponent Hx in log-log
plot of the fluctuation function against scale s for
each q:

Fx q,s ≈ sHx q 18

(iv) Calculation of the scaling exponent τ q :

τ q = q ⋅Hx q − 1 19

(v) The Legendre transform application for the proba-
bility distribution of the spectrum estimation:

D α = q ⋅ α− τ 20

Figure 3 represents the main features of the multifrac-
tal spectrum estimated by the MFDFA method. Here, H0
is the height of the spectrum and represents the most
probable fluctuations in the investigated time scale
boundary of the signal; H2 is the generalized Hurst expo-
nent (also known as correlation degree); αmin represents
behavior of the smallest fluctuations in the spectrum;
αmax represents behavior of the greatest fluctuations in
the spectrum; and W = αmax − αmin is the width of multi-
fractal spectrum that shows the variability of fluctuations
in the spectrum. Multifractal characteristics are quantita-
tive measures of the self-similarity and may characterize
functional changes in the regulatory processes of the
organism. In addition, we also tested the so-called 1/2-
width measure of the spectrum, which is defined as

W1/2 = ∣H2 −H0∣ [25]. Table 1 presents summary of all
features used in this study.

2.3. Machine Learning Approaches. For the machine learning
evaluation, the respective functions of the sklearn library
were used [26]. The current paper describes supervised
machine learning methods used. At first, the classifiers are
trained using a training dataset. For that dataset, the class
labels are known. After that, the efficacy of the classification
is evaluated using test set of data. The efficacy is evaluated
by comparing true labels of test set with those predicted by
the model.

2.3.1. Discriminant Analysis (DA). In this work, two variants
of the discriminant analysis were tested—linear and qua-
dratic discriminant analyses (LDA and QDA). The LDA aims
to find the best linear combination of the input features to
properly separate studied classes. In the case of the QDA,
the studied classes are separated by a quadratic function [27].

2.3.2. k-Nearest Neighbors (kNN). The k-nearest neighbors is
one of the nonparametric machine learning approaches. In
order to predict the class of the object, method chose the
class, which is the most common among k “neighbors” of
the object. Examples of the “neighbors” are picked from the
training dataset. In the present study, different values of the
k are tested—3, 4, and 5 [28].

2.3.3. Support Vector Machine (SVM). The base idea of the
support vector machine methods is creation of the deci-
sion hyperplane which would separate different classes.
In that case, the margin between two nearest points on
the different sides of the hyperplane is maximal. In present
study, the radial basis function (RBF) is used. For imple-
mentation in python, one have to specify the following:
SVC gamma = 2, C = 1 [29].

2.3.4. Decision Trees (DT). The decision trees classification
model is built around a sequence of the Boolean queries.
The sequence of such queries forms the “trees” structure.
In the present work, variations of the classifier were
analyzed—with fixed value of the maximal tree depth
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Figure 3: The features of multifractal analysis.
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(max_depth=5). The maximal depth feature points the
maximal number of queries that is allowed to use before
reaching leaf. The leaf node is the node that has no “chil-
dren” [30].

2.3.5. Naive Bayes (NB). This method is based on the applica-
tion of the Bayes’ theorem with assumptions that data has

strong (or naive) independence. In current study, the
Gaussian distribution of data is assumed [31].

2.4. Semioptimal Search of the Noncorrelated Feature Space

2.4.1. Feature Set Selection. In the current investigation, all
possible combinations of all features were analyzed. How-
ever, it is well known that using combined correlated features

Table 1: List of studied features.

Feature Description Equation

M Mean value of the R-R (1)

HR Heart rate (2)

SDNN Standard deviation of the R-R (3)

CV Coefficient of the variation (4)

RMSSD Square root of mean of squares of differences between successive R-R (5)

NN50 Variation higher than 50ms in R-R signal —

M0 Mode of the R-R signal —

VR Variation range of the R-R signal —

AM0 Amplitude of the mode —

SI Stress index (6)

IAB Index of autonomic balance (7)

ARI Autonomic rhythm index (8)

IARP Index of adequate regulation processes (9)

HF(Fr) High frequency Fourier spectral power —

LF(Fr) Low frequency Fourier spectral power —

VLF(Fr) Very low frequency Fourier spectral power —

TP(Fr) Total power of the Fourier spectrum —

LF/HF(Fr) Autonomic balance exponent of the Fourier spectrum —

HFmax(Fr) Maximum power of the HF —

HFn(Fr), LFn(Fr), and VLFn(Fr) Normalized power of the HF, LF, and VLF Fourier spectrum (10)

IC Index of centralization (11)

IAS Index of the subcortical nervous center’s activation (12)

RF Respiration frequency —

HF(wt) High frequency wavelet spectral power —

LF(wt) Low frequency wavelet spectral power —

VLF(wt) Very low frequency wavelet spectral power —

HFn(wt), LFn(wt), and VLFn(wt) Normalized power of the HF, LF, and VLF wavelet spectrum —

SDHF(wt), SDLF(wt), and SDVLF(wt) Standard deviations of the HF(t), LF(t), and VLF(t) wavelet time series —

TP(wt) Total power of the wavelet spectrum —

LF/HF(wt) Autonomic balance exponent of the wavelet spectrum —

(LF/HF)max Maximal value of dysfunctions —

(LF/HF)int Intensity of dysfunctions —

Nd Number of dysfunctions —

H Hurst exponent (13)

αmin LF, αmin VLF Smallest fluctuations of the LF and VLF spectral band —

αmax LF, αmax VLF Greatest fluctuations of the LF and VLF spectral band —

WLF, WVLF Spectrum width of the LF and VLF spectral band —

H2LF, H2VLF Correlation degree of the LF and VLF spectral band —

H0LF, H0VLF Spectrum height of the LF and VLF spectral band —

W1/2LF, W1/2VLF 1/2-width measure of the LF and VLF spectral band —
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in machine learning may lead to misleading results. There-
fore, the first step in this investigation is to sort uncorrelated
combinations. For this task, we compute the correlation coef-
ficient. The whole flowchart of the script for noncorrelated
feature combination selection is presented in Figure 4.

The threshold correlation value was set to 0.25. Usually,
correlation more than 0.75 is considered to be high. There-
fore, a value lower than 0.25 is a good benchmark for low
correlation. In the current work, two to five feature combina-
tions were made. In case of more than two feature combina-
tions, the correlation was checked pairwise. When all
calculation was finished, the noncorrelated features were
saved to a file for future purposes.

Table 2 presents the total number of n-combinations for
53 features in case of n= [2, 3, 4, 5] and number of selected
noncorrelated combinations. Table 2 shows that application
of such selection leads to both, more appropriate results
and significant reduction of the analyzed combinations set.

2.4.2. Cross-Validation. Figure 5 presents a complete flow-
chart of the implemented algorithm for classifier efficacy
evaluation.

Cross-validation implies division of the original datasets
into m subsets, when m-1 subsets are used for the classifier
training. The remaining part is used for the classifier test.
The procedure is repeated m times. Such approach allows
one to use dataset evenly [32].

In the current investigation, the number of random
folds l was set to be 5. For the implementation of 5-
fold cross-validation, we randomly divide the original
dataset into 5 subsets. The division is implemented for
both groups simultaneously. As the result, each subset
included 6 healthy volunteers and 8 patients diagnosed
with hypertension.

Many machine learning methods are sensitive to train
set selection, so, in order to remove such influence, the
cross-validation procedure was repeated 100 times with
different folds. The repeated cross-validation allows to
increase number of classification accuracy estimates [33].

Table 3 presents calculation times spent for each
machine learning approach for different number of
features in combinations. Calculation times are presented
for all noncorrelated combinations. In accordance with
Table 3, the fastest approach is the decision trees. The k-
nearest neighbors approach is the slowest one.

3. Results

The classifier performance was averaged over 5 cross-
validations and over 100 implementations. Figures 6–9 show
overview of the classifier performance for all combinations
for different numbers of features in combination. All color
bars on Figures 5–8 have the same range—from 50 to 100%.

Figure 10 presents maximal accuracy achieved by each
classifier for different number of features in set.

According to the data presented in Figures 5–9, the
highest classification is achieved by the discriminant

Start Correlation
evaluation

For each
combination

Correlation
< 0.25?

End

Save
combination 

Import
dataset

Yes

No

All combination
studied? 

Next combination

No

Yes

Figure 4: Flowchart of the noncorrelated combination selection.

Table 2: Noncorrelated combination selection data.

n
Total

n-combination
number

Selected
n-combinations

Calculation
time, sec

2 1378 586 0.027

3 23,426 1669 0.477

4 292,825 1339 11.559

5 2,869,685 295 228.267
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Start
Import dataset and non-
correlated features
combinations

For each machine
learning approach 

For each
combination

End

Next machine
learning approach

Next combination

All combinations
studied? 

All approaches
studied?

No

No

Yes

Yes

100 repeated
5-fold cross-validation 

Figure 5: Flowchart of classifier efficacy evaluation algorithm.

Table 3: Calculation times of classifier efficacy evaluation, sec.

Features in combinations LDA QDA NN3 NN4 NN5 RBF SVM DT Naive Bayes

2 165 113 281 281 281 139 89 130

3 482 346 917 860 806 403 269 375

4 397 288 640 643 642 325 222 300

5 88 64 141 140 140 71 50 66
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Figure 6: Classifier score for 2-feature combinations.
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analysis. Moreover, in Figures 5–8, it can be clearly seen
that approaches of discriminant analysis have more com-
binations with relatively high score than any other
approach. Furthermore, for the support vector machine
approach, only few combinations have acceptable classifi-
cation score level.

It is worthy to mention that generally classification
accuracy rises as the number of features in the feature
set increases. For 4-feature sets, the maximum is achieve-
d—accuracy for 5-feature sets is lower for all machine

learning approaches. It drops significantly in case of sup-
port vector machine approach.

Table 4 presents best results achieved by all machine
learning approaches for 4-feature set.

Data in Table 4 shows that linear and quadratic DA not
only achieve higher classification score but also have better
stability of the results. Naïve Bayes classifier also has rela-
tively high classification score and low deviation.

Among 53 studied features, 36 form combinations that
have the classification score higher than 85. Table 5 presents
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Figure 7: Classifier score for 3-feature combinations.
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Figure 8: Classifier score for 4-feature combinations.
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occurrences of the features among the combinations. The
highest occurrences are noted for different spectral features,
associated with VLF spectral band, LF/HF ratio, and statisti-
cal feature heart rate.

Table 6 presents 7 features that form combinations with
accuracy higher than 90%. All these combinations consist
of heart rate, one feature associated with LF/HF ratio, and
two features associated with VLF spectral band.

4. Discussion

For discussion purposes, a comparison of the results of the
current study with results of one of the commonly used pro-
cedure, principal components analysis (PCA), was executed.

The PCA is a statistical procedure used to reveal the internal
structure of the dataset [34]. In our case, features of different
amplitude are used; PCA is known to be sensitive to the rel-
ative scaling of the feature dataset. Therefore, prior to the
PCA application, the standardization procedure was imple-
mented for each of 53 different features—subtraction of the
mean value and after that division by the standard deviation.

Table 7 presents explained variance as well as the cumu-
lative variance for the first 15 principal components. First 10
principal components explain 93% of the variance. Conse-
quent principal components add 1% of the variance or less.

In order to compare results of the semioptimal search of
the noncorrelated feature space with PCA, combinations of
the first 10 components were consequently tested for all
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Figure 9: Classifier score for 5-feature combinations.
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Figure 10: Maximal scores achieved by each learning machine approach.
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machine learning approaches using 100 repeated 5-fold
cross-validation. Figure 11 presents the maximal results of
classification accuracy achieved by each machine learning
approach using combinations of the principal components.

Comparing the results of Figures 10 and 11, one can
note that features found by the semioptimal search of
the noncorrelated feature space reach higher classification
accuracies than combinations of the principal components
for all tested machine learning approaches.

5. Conclusions

In this work, various machine learning approaches were
tested in task of the arterial hypertension diagnostics. In
earlier works, the same datasets were used for investigation
of the linear and quadratic DA methods [11]. The present
work implies comparison of the DA methods with other
machine learning approaches, like support vector machine,
k-nearest neighbors, Naive Bayes, and decision trees.

The results of the current investigation showed that for
the studied task, the application of the discriminant

Table 4: Best classification scores.

Score, % Features

Linear discriminant analysis

91.33± 1.75 HR VLFn(Fr) LF/HF(Fr) VLF(wt)

90.30± 1.37 HR VLFn(Fr) VLF(wt) (LF/HF)int
90.04± 1.85 HR LF/HF(Fr) VLF(wt) VLFn(wt)

90.44± 1.60 HR VLFn(Fr) LF/HF(Fr) SDVLF

90.11± 1.80 HR LF/HF(Fr) SDVLF VLFn(wt)

90.16± 1.61 HR SDVLF VLFn(wt) (LF/HF)int
Quadratic discriminant analysis

90.31± 1.71 HR VLFn(Fr) LF/HF(Fr) VLF(wt)

3-nearest neighbors

87.14± 2.12 LF/HF(Fr) SDVLF VLFn(wt) W1/2VLF

4-nearest neighbors

85.56± 2.40 SDVLF VLFn(wt) LF/HF(wt) W1/2VLF

5-nearest neighbors

86.63± 1.30 HR HF(Fr) LFn(Fr) W1/2VLF

Support vector machine, radial base function

86.73± 2.24 IAS RF a2LF WVLF

Decision trees, max depth 5

87.10± 3.40 IARP LF/HF(Fr) IAS WLF

Decision trees, no max depth

87.34± 3.08 IARP LF/HF(Fr) IAS WLF

Naïve Bayes classifier

88.17± 1.07 VLF(Fr) VLFn(Fr) LF/HF(Fr) W1/2LF

Table 5: Features occurrences for classification score higher
than 85%.

Features Occurrences, % Features Occurrences, %

VLFn(Fr) 50.89 Nd 4.73

VLF(Fr) 50.89 M0 4.73

VLFn(wt) 47.93 WLF 4.73

W1/2VLF 34.91 IARP 3.55

LF/HF(Fr) 34.32 IC 2.96

HR 33.73 HF(Fr) 2.96

SDVLF 30.18 α2 LF 2.96

(LF/HF)max 24.26 LFn(wt) 2.37

LF/HF(wt) 18.34 SI 2.37

(LF/HF)int 18.34 LFn(Fr) 1.78

W1/2LF 17.75 αmin LF 1.78

H 13.61 ARI 1.78

WVLF 13.02 HFn(Fr) 1.78

IAS 10.65 SDHF 1.18

VLF(wt) 7.69 IAB 0.59

RF 6.51 NN50 0.59

αmax LF 5.92 α0 LF 0.59

M 5.33 αmax VLF 0.59

Table 6: Feature occurrences for classification score higher
than 90%.

Features Occurrences, %

HR 100.00

LF/HF(Fr) 62.50

VLF(wt) 62.50

VLFn(wt) 50.00

VLFn(Fr) 50.00

SDVLF 37.50

(LF/HF)int 37.50

Table 7: Dataset analysis by PCA.

Principal
component

Explained variance,
%

Cumulative variance,
%

1 34.88 34.88

2 17.65 52.54

3 13.03 65.57

4 8.87 74.45

5 5.38 79.83

6 4.10 83.93

7 3.55 87.47

8 2.42 89.89

9 1.78 91.67

10 1.36 93.03

11 1.01 94.04

12 0.95 94.98

13 0.84 95.82

14 0.74 96.56

15 0.61 97.17
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analysis (linear and quadratic) revealed to be the most
appropriate classifiers. These approaches have high classifi-
cation score and low deviations over different realizations.
A set of four features in combination seems to be the opti-
mal number, as the classification accuracy score is higher
and more consistent than those for two, three, and five
features in combination.

Prevalence of the VLF and LF/HF spectral features
among best combinations might indicate that sympathetic
nervous system takes an important part in the initialization
of the arterial hypertension and maintenance of the increased
vascular tone as well as increased cardiac output. These
results are in accordance with scientists’ interpretation of
the arterial hypertension development [35, 36].

The results of the suggested approach were compared
with data set prepared by the commonly used procedure of
principal component analysis. Results of the n-feature
noncorrelated sets have achieved higher classification accu-
racies than ones based on the dataset of the selected prin-
cipal components.

In future works, our research group will continue to
improve results on this problem. One of the investiga-
tions that are planned is to analyze robustness of the
classifiers based on multiple signals recorded simulta-
neously. Among the other perspective directions of
future investigation is usage of the advanced neural net-
works [37] and genetic algorithms [38] for feature
extraction and classification.
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