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Abstract Antibodies are critical components of the human adaptive immune system, providing

versatile scaffolds to display diverse antigen-binding surfaces. Nevertheless, most antibodies have

similar architectures, with the variable immunoglobulin domains of the heavy and light chain each

providing three hypervariable loops, which are varied to generate diversity. The recent

identification of a novel class of antibody in humans from malaria endemic regions of Africa was

therefore surprising as one hypervariable loop contains the entire collagen-binding domain of

human LAIR1. Here, we present the structure of the Fab fragment of such an antibody. We show

that its antigen-binding site has adopted an architecture that positions LAIR1, while itself being

occluded. This therefore represents a novel means of antigen recognition, in which the Fab

fragment of an antibody acts as an adaptor, linking a human protein insert with antigen-binding

potential to the constant antibody regions which mediate immune cell recruitment.

DOI: 10.7554/eLife.27311.001

Introduction
The antigen-binding sites of human antibodies commonly adopt similar structures, with the light and

heavy chains each providing three hypervariable loops that combine to form a surface that is com-

plementary to the epitope. While the sequences of these complementarity determining regions

(CDRs) are highly variable, five of the six CDRs (L1, L2, L3, H1 and H2) can be classified into a num-

ber of relatively small sets, with similar lengths and architectures, and their structures are predictable

from sequence (Chothia et al., 1989; North et al., 2011). In contrast, the third CDR loop of the

heavy chain (CDR H3) is more structurally diverse, most likely due to its location close to the V(D)J

recombination site (Weitzner et al., 2015). Human antibodies typically have CDR H3 lengths of 8–

16 residues (Zemlin et al., 2008) while mouse antibodies have CDR H3 lengths of 5–26 residues

(Zemlin et al., 2003).

However, recent years have seen the discovery of antibodies with major differences from the

norm, in particular due to changes in the length of the third CDR of the heavy chain. A set of anti-

bodies with broadly neutralizing potential against HIV is one such example. Here, the third CDR

loop of the heavy chain is elongated, allowing it to reach through the glycan shield that surrounds

the gp120 protein to bind an otherwise concealed epitope (McLellan et al., 2011; Pancera et al.,

2013; Pejchal et al., 2010). Such antibodies are rare, making the induction of a broadly inhibitory

response against HIV a major challenge (Corti and Lanzavecchia, 2013).

In a more extreme example, while the majority of bovine antibodies have CDR H3 loops of

around 23 residues, around 10% contain a highly elongated third CDR loop of up to 69 residues,

containing a small disulphide rich domain (Saini et al., 1999; Wang et al., 2013). These domains

adopt a conserved b-sheet structure that displays variable loops and are each presented on an elon-

gated, but rigid b-hairpin (Stanfield et al., 2016; Wang et al., 2013). While it is clear that the
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additional domains play an important role in ligand binding, the remaining five CDR loops are also

exposed and further studies are needed to see the contribution that they make (Wang et al., 2013).

A recent study identified a group of even more unusual human antibodies in malaria endemic

regions of Africa (Tan et al., 2016). These antibodies were discovered through their capacity to

agglutinate human erythrocytes infected with different strains of Plasmodium falciparum, and they

bind to a subset of RIFIN proteins. These RIFINs are displayed by the parasite on infected erythro-

cyte surfaces and are of uncertain function (Chan et al., 2014; Gardner et al., 1998; Kyes et al.,

1999). The antibodies show a remarkable adaptation with an intact 96 residue protein, LAIR1,

inserted into the third CDR loop of the antibody heavy chain. Indeed, LAIR1 was shown to be essen-

tial for the antibody to interact with RIFINs (Tan et al., 2016). In this study, we reveal the structure

of the Fab fragment of one of these antibodies, showing how LAIR1 is presented on the antibody

surface and drawing conclusions about how this class of antibody can recognize its ligand.

Results
We expressed the two chains that make up the Fab fragment of antibody MGD21 (Tan et al., 2016)

in a secreted form from HEK293 cells. This antibody has a kappa light chain (VK1-8/JK5) and a heavy

chain in which LAIR1 has been inserted into CDR H3. This fragment was purified and crystallised,

allowing a dataset to be collected to 2.52 Å resolution. The structure was determined by molecular

replacement using LAIR1 (Brondijk et al., 2010) and the Fab fragment of antibody OX117

(Nettleship et al., 2008) as search models. This identified two copies of the MGD21 Fab fragment

in the asymmetric unit of the crystal. A model was built for residues 2–211 of the light chain and 1–

351 (with 214–219 and 264–270 disordered) of the heavy chain (Figure 1, Figure 1—figure supple-

ment 1, Figure 1—figure supplement 2, Table 1). The two Fab fragments adopt the same structure

with a root mean square deviation of 0.26 Å (calculated over 475 Ca atoms) suggesting a highly

ordered linkage between the variable domains of the antibody and the LAIR1 insert (Figure 1—fig-

ure supplement 3). The antibody sequence has three putative N-linked glycosylation sites, but of

eLife digest When bacteria, viruses or parasites invade the human body, the immune system

responds by producing proteins called antibodies. Antibodies recognize and bind to molecules

(known as antigens) on the surface of the invaders. This binding can either neutralize the invader

directly or trigger signals that cause other parts of the immune system to destroy it.

Our blood contains a huge range of different antibody molecules that each bind to a different

antigen. This is despite most human antibodies having the same basic shape and structure. Six

loops, known as complementarity determining regions (CDRs), emerge from the surface of the

antibody to form the surface that recognizes the antigen. However, variations in the structure of the

loops alter this surface enough to allow different antibodies to recognize completely different

molecules.

In 2016, a new class of antibodies was identified. Unlike previously identified antibodies, these

molecules had an entire human protein, called LAIR1, inserted into one of their CDR loops.

Members of this group of antibodies bind to a molecule, known as a RIFIN, that is found on the

surface of human red blood cells that are infected with the parasite that causes malaria.

How do LAIR1-containing antibodies bind to their RIFIN targets? Hsieh and Higgins investigated

this question by using a technique called X-ray crystallography to determine the structure of the

antibody. This revealed that instead of binding directly to an antigen, all of the six CDR loops in the

LAIR1-containing antibody bind to the LAIR1 insert. By doing so, LAIR1 is oriented in a manner that

enables it to bind to the RIFIN molecule from the parasite.

This is the first known example of an antibody that recruits another protein to bind to an antigen

rather than binding directly to the pathogen itself. A future challenge will be to see if other

antibodies exist that use this mechanism and whether it can be employed to design new therapeutic

antibodies.

DOI: 10.7554/eLife.27311.002
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Figure 1. Structure of a LAIR1-containing antibody Fab fragment. (A) The structure of the Fab fragment. LAIR1

(red) is inserted into the third CDR loop of the heavy chain (yellow) through two extended linkers (orange). The

light chain is blue. The dashed orange link represents protein disordered in the structure. (B) The organization of

the CDRs. The three CDR loops of the light chain and remaining two CDR loops of the heavy chain directly

contact the LAIR1 insert or the linkers. Each of the CDR loops and its corresponding label is a shown in a different

colour. (C) A disulphide bond between C93 of the light chain and C223 of the heavy chain stabilizes the interface

(cysteine residues are shown as sticks).

DOI: 10.7554/eLife.27311.003

The following figure supplements are available for figure 1:

Figure supplement 1. Annotated sequence of antibody MGD21 and its alignment to germ line LAIR1.

DOI: 10.7554/eLife.27311.004

Figure supplement 2. Electron density.

DOI: 10.7554/eLife.27311.005

Figure supplement 3. Crystal packing and order.

DOI: 10.7554/eLife.27311.006
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Table 1. Data collection and refinement statistics. The structure was determined from a single

crystal. Values in parentheses are for highest-resolution shell. Rfree was determined using 1968 reflec-

tions (4.8%) The structure is deposited with pdb code 5NST.

Fab-MGD21

Data collection

Space group C121

Cell dimensions

a, b, c (Å) 169.8, 86.5, 104.0

a b g (˚) 90.0, 126.7, 90.0

Wavelength 0.92819

Resolution (Å) 81.90–2.52 (2.56–2.52)

Total Observations 131833 (5451)

Total Unique 40946 (2031)

Rpim (%) 5.4 (67.8)

Rmerge (%) 8.3 (88.5)

Rmeas (%) 9.9 (112.1)

CC1/2 0.992 (0.571)

I/s(I) 7.4 (1.0)

Completeness (%) 99.8 (98.3)

Multiplicity 3.2 (2.7)

Wilson B factor 55.216

Refinement

Number of reflections 40946

Rwork / Rfree 21.9/26.7

Number of residues

Protein 1076

R.m.s deviations

Bond lengths (Å) 0.01

Bond angles (˚) 1.25

All Atom clash score 5

B factors

All atoms 71.53

Solvent 63.12

Variable domains 65.17

Constant domains 74.29

LAIR1 insert 73.70

Linkers 94.71

Ramachandran plot

Favored (%) 95.2%

Allowed (%) 4.8%

Disallowed (%) 0.0%

DOI: 10.7554/eLife.27311.007
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these (light chain N30; heavy chain N61 and N242) only N242 shows electron density corresponding

to an Asn-linked N-acetyl glucosamine, in a position distant from the LAIR1 insert.

The structure shows LAIR1 emerging from the CDR3 loop of the heavy chain and lying across the

antigen-binding surface of the variable domains of the Fab fragment (Figure 1A). The long axis of

the LAIR1 insert is positioned with the b-strands aligned approximately perpendicular to the groove

between the heavy and light chain CDRs and the insertion and linkers interact with, and occlude all

five of the remaining CDR loops. The N- and C-termini of LAIR1 lie at opposite ends of its structure,

necessitating long linkers between the sites from which CDR3 emerges from the antibody heavy

chain and each terminus of the LAIR1 insert (Figure 1A). The N-terminal linker (linker 1) is 10 resi-

dues long and adopts a simple loop structure that joins the antibody variable domain to the N-termi-

nus of the LAIR1 insert. The C-terminal linker (linker 2) is longer at 34 residues and is more complex

in structure. It extends out from the C-terminus of the LAIR1 insert before zigzagging back towards

the insertion site in the heavy chain variable domain. It is stabilized by hydrogen bonds to the LAIR1

insert and to the antibody heavy chain as well as by a disulphide bond to C93 of the antibody light

chain. The linkers of the LAIR1-containing antibodies sequenced to date are variable both in length

and content, involving different parts of the intronic regions of the LAIR1 gene, or intergenic

sequences of chromosome 13 (Tan et al., 2016). The arrangement of these linkers, which radiate

away from the remainder of the antibody, will in theory accommodate almost limitless variation in

both length and sequence without disturbing the packing of LAIR1 against the variable domains of

the antibody.

The five CDR loops lacking the LAIR1 insertion are representatives of previously identified canoni-

cal classes (Figure 1—figure supplement 2) (Martin and Thornton, 1996). However, a search using

the Abcheck server (Martin, 1996) identified seven unusual residues within the antibody structure;

C91, C93, D97 and I106 from the light chain and Y28, R34 and Q54 from the heavy chain, all within

the CDR loops. In particular, C91, C93 and D97 all lie in CDR3 of the light chain, perhaps facilitating

its interaction with linker 2. Indeed, the most unusual residue is C93, which is found in only 0.096%

of light chains, and is the residue that forms a disulphide bond with linker 2 (Figure 1B). The heavy

chain CDR H3 loop has a base that adopts the ‘kinked’ conformation (Shirai et al., 1999), with the

loop rapidly spreading to the two termini of LAIR1.

In previous structures of antibodies with extended heavy chain CDR3 loops, the remaining five

CDRs of the antibody are exposed, with the potential to engage in antigen binding (McLellan et al.,

2011; Stanfield et al., 2016, Wang et al., 2013). One of the remarkable features of the LAIR1-con-

taining antibody is therefore the occlusion of large parts of each of the remaining five CDRs, with

these loops each interacting directly with the LAIR1 insert and/or linkers (Figure 1B, Table 2). The

degree of occlusion of the CDRs by LAIR1 was determined by accessibility to a 1.4 Å probe in the

presence and absence of LAIR1 and the linkers. Each of these five CDR loops was partly occluded by

the presence of LAIR1 or the linkers (occluding 12.7% of the accessible surface area of CDR L1,

18.3% of CDR L2, 47.3% of CDR L3, 34.7% of CDR H1 and 16.0% of CDR H2). Indeed, both the first

and second CDRs of the heavy chain directly contact the LAIR1 insert (Table 2). In addition, each of

the three CDR loops of the light chain interacts with one of the two linkers, with interactions

Table 2. A list of interactions between the LAIR1 insert and linkers that occupies the heavy chain CDR3 loop and the other five CDR

loops of the antibody.

CDR loop Residue Group LAIR1 region Residue Group Interaction

Light chain CDR1 Q27 Side chain Linker 2 A222 Main Chain Hydrogen Bond

Light chain CDR2 Y49 Side chain Linker 1 L102 Side chain Hydrophobic Packing

Light chain CDR2 N53 Side chain Linker 1 S104 Side chain Hydrogen Bond

Light chain CDR3 C93 Side chain Linker 2 C223 Side chain Disulphide Bond

Light chain CDR3 F94 Main Chain Linker 2 E227 Side Chain Hydrogen Bond

Heavy chain CDR1 N32 Side chain LAIR1 R134 Side chain Hydrogen Bond

Heavy chain CDR2 R57 Side Chain LAIR1 P109 Main Chain Hydrogen Bond

DOI: 10.7554/eLife.27311.008
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including a disulphide bond between C93 of the light chain and C223 of linker 2 (Figure 1C,

Table 2). These interactions are replicated in both copies of the molecule in the asymmetric unit of

the crystal.

The structure of MGD21 argues for a rigid association of the LAIR1 insert with the remainder of

the antibody. Firstly, the structures of the two molecules of the antibody in the asymmetric unit of

the crystal superimpose closely (Figure 1—figure supplement 2). It is unlikely that this is due solely

to constraints from crystal packing as LAIR1 is anchored to the variable domains of the antibody

through three fixed positions: the attachment sites of the two linkers, and the disulphide bond

between light chain C93 and heavy chain C223 (Figure 1C). In addition, each of the five CDR loops

not baring a LAIR1 insertion makes direct interactions with either LAIR1 or the linker, through con-

tacts found in both copies of the antibody in the asymmetric unit of the crystal. This will stabilize a

tight association between LAIR1 and the antibody variable domains. As these antibodies can include

multiple different light chains, and very different linkers (Tan et al., 2016), these interaction will not

be replicated precisely across the antibody family, but some variant of interaction between light

chain CDRs and the linkers is likely.

A comparison of the LAIR1 insert with that of the chromosomal copy of LAIR1 (referred to below

as germ line) (Brondijk et al., 2010) reveals that no global structural changes have taken place (root

mean square deviation 0.43 Å for the 82 Ca residues) (Figure 2A,F). Indeed, the LAIR1 insertion in

the MDG21 antibody differs in only 13 positions relative to the germ line sequence. Mapping these

sites onto the structure reveals that they do not alter residues through which the LAIR1 insert inter-

acts with the rest of the antibody (Figure 2B). Presumably, the stable interaction between LAIR1 and

the antibody has therefore come instead from adaptations to the CDR loops. In contrast, polymor-

phisms are mostly located on the surface of LAIR1 distal to the rest of the antibody and have the

potential to alter its interaction with its original ligand, collagen, and with the RIFIN proteins which

are the target of these antibodies.

The normal function of LAIR1 is to interact with collagen (Meyaard, 2008). The structure of germ

line LAIR1, together with NMR analysis and mutagenesis, allowed the mapping of residues critical

for the collagen interaction onto a LAIR1 crystal structure (Brondijk et al., 2010). In particular, muta-

tions in residues R59, E61 and R65 have a significant impact on collagen binding (Brondijk et al.,

2010). These residues map onto the surface of LAIR1 (Figure 2C) that is most exposed in the con-

text of the antibody (Figure 2D). Indeed, mapping of the polymorphisms found in the 27 LAIR1-con-

taining antibodies sequenced to date shows that large parts of this surface are mutable (Figure 2E).

The polymorphisms in LAIR1 include R149N, which is in the position equivalent to R65 in germ line

LAIR1 and this change may impact collagen binding. A second polymorphism, found in 7/27 of the

antibodies (including MGD21) alters the N-linked glycosyation site at residue 69 of LAIR1

(Wollscheid et al., 2009), which may alter collagen binding and/or increase RIFIN binding, but is not

conserved across the antibody family. Indeed 11 of the 27 sequenced antibodies have mutations in

at least one of the residues implicated in collagen binding, or other polymorphisms that reduce the

interaction (Tan et al., 2016).

Discussion
The LAIR1-containing antibodies are a remarkable variant of the standard immunoglobulin fold.

While the majority of mammalian antibodies have predicable and short CDRs, the third CDR of the

heavy chain can accommodate usual diversity (Figure 3) (McLellan et al., 2011; Wang et al., 2013;

Weitzner et al., 2015). This is seen in the elongated CDR3 of the broadly neutralizing antibodies

that interact with HIV surface proteins and in the insertion of a b-hairpin and disulphide-rich domain

in a fraction of bovine antibodies. However, in both of these cases, only the heavy chain CDR3 is

altered and the remaining CDR loops remain exposed for antigen binding. The LAIR1-containing

antibodies are an exception to this, with the LAIR1-insert interacting with, and partly occluding, all

five of the remaining CDR loops. In many ways, the structure resembles an antibody with CDR loops

adapted for LAIR1 binding, into which LAIR1 has also been inserted.

This occlusion of large parts of the CDR loops by the LAIR1 insert has major consequences for its

role in antigen recognition, as the majority of the antigen-binding surface will be contributed by

LAIR1. Indeed, it has been shown that the LAIR1 insert alone can bind to infected erythrocytes, as

can a LAIR1-containing antibody with the heavy and light chain regions exchanged (Tan et al.,

Hsieh and Higgins. eLife 2017;6:e27311. DOI: 10.7554/eLife.27311 6 of 11
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Figure 2. Structure and polymorphism in the LAIR1 insertion. (A) An alignment of germ line LAIR1 (cyan) with the

antibody LAIR1 insertion (red). (B) The residues that differ between the LAIR1 insertion in antibody MGD21 and

germ line LAIR1 are shown as red sticks. (C) A surface representation of the structure of LAIR1 (grey) with residues

whose mutation has a major (red) or minor (yellow) effect on collagen binding highlighted (Brondijk et al., 2010).

(D) A surface view of the LAIR1 insert in antibody MGD21 (grey) with residues that differ from germ line LAIR1

highlighted (red). (E) A surface view of the LAIR1 insert (grey) with residues that differ from germ line LAIR1 in all

27 antibodies tested to date (Tan et al., 2016) highlighted (red). (F) A sequence alignment of germ line LAIR1 and

the LAIR1 insert in the MGD21 antibody. Yellow circles are sites residues shown to play a role in collagen binding

while a red hexagon represents a potential N-linked glycosylation site mutated in the LAIR1 insert.

DOI: 10.7554/eLife.27311.009
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2016). Surprisingly an antibody in which the LAIR1 insert has been exchanged for the unaltered

germ line LAIR1 did not bind to erythrocytes, although the folding of this chimera was not tested

(Tan et al., 2016). In addition, the capacity of RIFINs to bind to unaltered LAIR1 alone has not yet

been reported. Indeed, it seems most likely that LAIR1, or a highly related homologue, is the physio-

logical ligand of the group of RIFINs that are recognized by these antibodies and that its insertion

into the Fab fragment of an antibody allows it to be affinity matured to mobilise it for immune rec-

ognition and recruitment of immune cells. This remarkable LAIR1-containing antibody therefore uses

the classical hypervariable loops for a novel function: to position an inserted auxillary domain for

antigen recognition. The classical Fab fragment therefore now acts as a link between a ligand for a

pathogen surface receptor and the Fc region of the antibody with its immune recruitment capability.

It will be fascinating to see if this is a paradigm that is repeated in other novel antibodies, as yet

undiscovered.

Materials and methods

Construction, protein expression and purification
Two synthetic complementary DNA clones based on MGD21 (Tan et al., 2016) were obtained from

GeneArt (ThermoFisher, UK). The heavy chain variable region was amplified using primers VH-F: 5’-

GATGGGTTGCGTAGCTGAAGTGCAGCTGGTGGAAACAGGC-3’ and VH-R: 5’-GGGTGTCG

TTTTGGCGCTAGACACTGTCACGGTGGTGCC-3’. The light chain variable region was amplified

using primers VL-F: 5’-GATGGGTTGCGTAGCTGCCATCAGAATGACCCAGAGCCCC-3’ and VL-R:

5’-GTGCAGCATCAGCCCGCTTGATTTCCAGCCGGGTGCCC-3’. The resulting PCR products were

cloned into pOPINVH (heavy chain variable region) and pOPINVL (light chain variable region) by In-

Fusion cloning (Clontech, Mountain View, CA) (Nettleship et al., 2008). Therefore the variable

domains from MGD21 were fused to the constant domains derived from the pOPINVH and

pOPINVL vectors.

DNA constructs expressing heavy and light chains were mixed into a 1 to 1 ratio and co-trans-

fected in HEK293T cells (ThermoFisher Scientific, UK) with polyethyleneimine in the presence of 5

mM kifunensine (Aricescu et al., 2006). After five days, conditioned media was dialysed against

phosphate-buffered saline and purified by immobilised metal ion affinity chromatography using

Figure 3. Comparison of the LAIR1-containing antibody with other unusual antibodies. The structure of the LAIR1-containing monoclonal antibody is

compared with a classical mouse monoclonal antibody (9AD4; PDB code 4U0R), a human monoclonal antibody with broadly neutralizing potential

against HIV (PG16; PDB code 4DQ0) and a bovine monoclonal antibody (BLV5B8; PDB code 4K3E). In each case, the light chain is blue and the two

immunoglobulin domains of the heavy chain are yellow. Inserted domains are shown in red with linker regions in orange.

DOI: 10.7554/eLife.27311.010
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TALON resin (Clontech, Mountain View, CA). The Fab heterodimer was further purified by size-exclu-

sion chromatography using a Superdex 200 16/600 column (GE Healthcare Life Sciences) in 10 mM

HEPES, pH 7.5 and 150 mM NaCl.

Crystallisation, data collection and structure determination
Concentrated protein (10 mg/ml) was incubated with Flavobacterium meningosepticum endoglycosi-

dase-F1 for in situ deglycosylation (Hsieh et al., 2016). The protein samples were then subjected to

sitting drop vapour diffusion crystallisation trials in SwisSci 96-well plates by mixing 100 nl protein

with 100 nl reservoir solution. The protein crystals were obtained in 20% (w/v) PEG4000, 0.1 M

sodium citrate, pH 4.5 at 18˚C. Crystals were transferred into mother liquor containing 25% (w/v)

glycerol and were then cryo-cooled in liquid nitrogen for storage and data collection. Data were col-

lected on beamline I04-1 at the Diamond Light Source and were indexed and scaled using XDS

(Kabsch, 2010). Phaser (McCoy et al., 2007) was used to determine a molecular replacement

model, using the known structures of LAIR1 (pdb: 3KGR (Brondijk et al., 2010)) and a human mono-

clonal antibody Fab fragment similar to MGD21 (pdb: 3DIF, (Nettleship et al., 2008)) separated

into two files containing the variable and the constant regions, as search models. This identified two

copies of the LAIR1-containing Fab fragment in the asymmetric unit of the antibody. Refinement and

rebuilding was completed using Buster (Blanc et al., 2004) and Coot (Emsley et al., 2010) respec-

tively. To determine the effect of the LAIR1 insert on the accessible surface area of the CDR loops,

we used AREAIMOL from the CCP4 suite (Winn et al., 2011) to determine the accessible surface

area of each CDR loop both in the presence and absence of LAIR1 and the linkers.
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