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Abstract. Translational neuroscience integrates the knowledge derived by basic neuroscience with the development of new
diagnostic and therapeutic tools that may be applied to clinical practice in neurological diseases. This information can be
used to improve clinical trial designs and outcomes that will accelerate drug development, and to discover novel biomarkers
which can be efficiently employed to early recognize neurological disorders and provide information regarding the effects of
drugs on the underlying disease biology. Alzheimer’s disease (AD) and prion disease are two classes of neurodegenerative
disorders characterized by incomplete knowledge of the molecular mechanisms underlying their occurrence and the lack of
valid biomarkers and effective treatments. For these reasons, the design of therapies that prevent or delay the onset, slow
the progression, or improve the symptoms associated to these disorders is urgently needed. During the last few decades,
translational research provided a framework for advancing development of new diagnostic devices and promising disease-
modifying therapies for patients with prion encephalopathies and AD. In this review, we provide present evidence of how
supportive can be the translational approach to the study of dementias and show some results of our preclinical studies which
have been translated to the clinical application following the ‘bed-to-bench-and-back’ research model.
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THE COMPLEXITY OF AD GENETICS
AND THE PHENOTYPIC VARIABILITY
OF FAMILIAL FORMS OF THE DISEASE

Alzheimer’s disease (AD) is a genetically com-
plex and heterogeneous disorder. Whereas most AD
cases are sporadic with late onset by the age of 65
years and older, about 1% are early-onset famil-
ial AD (EOAD) cases [1]. Continued identification
of variants contributing to EOAD is being spear-
headed by multiple groups, including the Dominantly
Inherited Alzheimer Network (DIAN) collaboration
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(http://www.dian-info.org/), among others. A com-
prehensive up-to-date list of mutations associated
with EOAD is continuously reported by the fol-
lowing website: https://www.molgen.ua.ac.be/AD
Mutations/. Fully penetrant causal mutations leading
to predominantly EOAD have been identified in three
genes (APP, PSEN1, PSEN2), while for the more
common late-onset form of the disease (LOAD),
novel partially penetrant genetic risk factors, mainly
apolipoprotein E (APOE), have been established to
date [2]. Several lines of evidence suggest that addi-
tional susceptibility genes exist for both EOAD and
LOAD [3]. These genes may account only for a small
fraction of the attributable AD risk and therefore rare
variants and epistastic gene interactions should be
taken into account to get the full picture of the genetic
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risks associated with AD. Indeed, the discovery of
novel AD genes has great importance for the design
of new prediction/prevention strategies for AD based
on genetic risk profiling of patients [4, 5].

Over the past three decades, genetic research on
AD have unveiled over 30 dominant mutations in the
APP gene, accounting for about 15% of EOAD cases
[6, 7]. These mutations have been shown to cause
AD by altering APP processing, including enhancing
C99 production (Swedish mutation KM670/671NL)
[8], inhibiting non-amyloidogenic �-cleavage of APP
(Arctic mutation E693G) [9], increasing A�42 level
or the A�42/A�40 ratio (London mutation V717I and
Florida mutation I716V) [10, 11], or accelerating
A�40 fibril formation (Dutch mutation E693Q and
Iowa mutation D694N) [12, 13]. In line with these
advances in AD genetics, during the last twenty years,
our research group has identified and/or character-
ized three new APP variants, four PSEN1, and three
PSEN2 causal mutations.

In 2004, our laboratory provided a detailed descrip-
tion of the clinical and neuropathological pictures
associated with the PSEN2 M239V mutation in a
large Italian pedigree indicated as FLO10 [14]. The
M239V mutation presented with some peculiarities
involving not only A� deposition but also neuronal
pathology such as the development of ectopic white
matter neurons. The cognitive profiles of the affected
members in FLO10 family also showed some distinc-
tive features [15].

The A85V mutation in the PSEN2 gene was studied
neuropathologically by our group in 2008. The A85V
carriers developed AD or Lewy body dementia and
the neuropathological most relevant feature was the
presence of diffuse Lewy bodies in the neocortex in
addition to AD hallmark lesions [16].

In 2009, we described an Italian patient with
a novel PSEN2 mutation (Y231C) who showed
behavioral abnormalities and language impairment
as presenting symptoms, with only later involvement
of other cognitive abilities [17]. This observation
provided additional proofs of the variability of the
phenotypes associated with PSEN2 mutations.

Our study of the PSEN1 S169L mutation in 2001
in collaboration with Bernardino Ghetti’s group in
Indianapolis revealed the presence of ectopic neu-
rons in the white matter, which may represent the
substrate for the early-onset seizures often associ-
ated with some PSEN1 mutations [18]. The PSEN1
I143V mutation was identified in a four-generation
family with AD. The peculiarity of the age at onset
(not very early), the long course, and the frontal

involvement, together with the rather complete
absence of A�40 and of amyloid angiopathy, widened
the spectrum of PSEN1-linked phenotypes [19]. More
recently, two novel PSEN1 mutations (H214N and
R220P) associated with familial AD were identified
in our laboratory by targeted exome sequencing. The
findings of this study confirmed the contribution of
PSEN1 genetic variants also to LOAD, underlying the
need of extending the genetic screening of presenilin
mutations to LOAD patients [20].

The results of these studies further sup-
ported the view that differences in the clini-
cal/neuropathological features may be relevant even
among family members with identical mutations of
presenilins, further suggesting a phenotypic modu-
lation by other genetic and/or environmental factors
[21–23].

In 1987, van Duinen et al. [24] found that the
cerebral amyloid angiopathy (CAA) with multiple
hemorrhagic strokes previously described in several
Dutch families [25, 26] is due to A�, and Levy
et al. [27] showed that it is linked to a mutation at
codon 693 of APP causing the E−→Q substitution
at position 22 of the A� sequence. The absence of
neuritic plaques and tangles made it possible to dis-
tinguish the disease from familial AD with CAA and
to call it hereditary cerebral hemorrhage with amy-
loidosis. The peculiar phenotype associated with the
polymorphic 693 APP codon was confirmed by our
observation about several members of four Italian
families which had multiple strokes related to A�-
CAA and a mutation localized to the same codon
that leads to an E−→K substitution [28]. Autoso-
mal dominant dementia and multiple strokes due to a
severe cerebral amyloid angiopathy were recognized
also as distinctive features of the APP A713T muta-
tion that differs from APP E693K mutation for the
coexistence of severe tau pathology [29]. Our find-
ings supported the view that the angiotoxic effects of
A� may be independent of the neurotoxic effects that
progresses to neuritic plaques and tangles, widening
the spectrum of phenotypes linked to mutations in the
APP gene.

A great number of studies have demonstrated
that APP processing leads to the release of A�1-40
and A�1-42 which are the main responsible for the
pathogenic events that, according to the amyloid cas-
cade hypothesis, cause AD. However, a series of
N- and C-terminal truncated A� species are also
generated. The role of these additional A� pep-
tides in the pathogenesis of AD is not yet clear.
We analyzed A�38 in the brains of patients with A�
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deposition linked to sporadic and familial AD, hered-
itary cerebral hemorrhage with amyloidosis, and
Down syndrome, and found that APP mutations
localized in the A� coding region favor A�38 accu-
mulation in the brain. This observation suggested that
the molecular mechanisms of A� deposition in car-
riers of mutations within the A� domain differ from
those occurring in patients with FAD associated with
other genetic defects and in sAD cases [30].

THE DISCOVERY OF AN AUTOSOMAL
RECESSIVE MUTATION IN AD

In 2009, we discovered a novel mutation consist-
ing of an Alanine-to-Valine substitution at codon
673 in APP gene, corresponding to the position 2
in the A� sequence (A673V or A2V) [31]. The
mutation was found in the homozygous state in a
patient with early-onset AD and in his younger sister
who presented with multiple-domain mild cogni-
tive impairment. Neuropathological examination of
the proband revealed a peculiar profile characterized
by large size A� deposits, mostly perivascular and
showing a close correspondence between the pat-
tern elicited by amyloid staining and the labeling
obtained with immunoreagents specific for A�40 or
A�42. This feature was in agreement with in vitro
studies showing that the aggregation kinetic of the
A2V mutant A� species is much faster than that of
wild-type peptides suggesting that, once triggered,
the nucleation of A� species proceeds very rapidly
towards the formation of large amyloid assemblies
[31]. Moreover, A� deposition spared neostriatum
while deeply affecting cerebellum, and therefore was
not in compliance with the hierarchical topographical
sequence of involvement documented in sporadic AD
cases [32].

Genetic screening of the proband’s pedigree
detected several family members from both parental
lineages who had the A673V mutation in the
heterozygous state. Neuropsychological assessment
showed that none of these individuals had signs of
cognitive decline even in advanced age. Furthermore,
clinical information on the expected obligatory het-
erozygous carriers whose DNA was not available for
testing ruled out any dementia in these individuals
even in the ninth decade of life. These data were
consistent with an autosomal recessive pattern of
inheritance of the A673V genetic defect in this fam-
ily, at variance with all the other previously reported
mutations associated with AD [33].

These findings enlarged the scenario of AD genet-
ics, suggesting that also autosomal recessive APP
variants, although rarely, may be responsible for
EOAD. In the same years, a further support to this
view came from the discovery of the Osaka (E693�)
intra-A� APP mutation. Either a possible recessive
pattern of inheritance or a dominant pattern with
incomplete penetrance was suggested for this muta-
tion that leads to AD-like dementia despite low brain
amyloid deposition [34].

To gain information on the mechanisms of the
A2V recessive mutation in causing disease, we inves-
tigated the effects of the A673V variant on APP
processing in cellular models and in brain tissue from
the homozygous A673V carrier and found that this
mutation promotes a shift of APP processing toward
the amyloidogenic pathway, resulting in a signifi-
cant increase in the sA�PP�:sA�PP� and C99:C83
ratios, enhances A� production, increases particu-
larly the brain levels of the A2V A�1–40 (A�1–40A2V)
peptide, especially in the insoluble fraction of brain
homogenates (i.e., formic acid extracts) where it is
predominant over A�1–42A2V), suggesting that this
amino acid substitution strongly endorses the engage-
ment of A�1–40 in the aggregation pathway.

We then investigated the effects of the A673V
mutation on the aggregation and amyloidogenic prop-
erties of A� and demonstrated that the A673V
mutation increases the propensity of A� to adopt a
�-sheet structure, modifies its aggregation kinetics
strongly boosting A�’s tendency to form oligomers
and amyloid fibrils, enhances neurotoxicity of A�
peptides bearing the A2V substitution, and produces
specific toxic effects on neuronal cells by interfer-
ing with the cholinergic circuits [31, 35–37]. Similar
conclusions were achieved by in vivo studies on trans-
genic C. elegans expressing human A�A2V showing
that A2V mutation causes a pathologic behavioural
phenotype with abnormalities in locomotor activity,
pharyngeal contraction and a shortening of the lifes-
pan [38]. Other groups showed additional pathogenic
mechanisms for the A2V mutation, mainly involving
effects on Cu2 + coordination [39].

The finding that the A673V mutation strongly
boosts A� production and aggregation explained the
presence of the early-onset dementia in homozygous
carriers but raised the question why heterozygous
carriers do not develop disease. Following the
observation that humans with the mutation in the het-
erozygous state do not develop AD, we carried out in
vitro and in vivo studies in order to simulate what hap-
pens in brains of A673V heterozygous carriers, where
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A�A2V and A�wt are equally expressed [31]. These
studies unveiled the extraordinary ability of A�A2V
to interact with A�wt, interfering with its nucle-
ation and polymerization, leading to the formation
of unstable aggregates, which can be easily removed
by cell scavengers. In particular, circular dichroism
(CD) spectroscopy, SDS-PAGE analysis, electron
and atomic force microscopy (AFM) showed that the
heterologous interaction between A�A2V and A�wt
at equimolar concentration, resulted in a decrease
of �-sheet secondary structure and inhibition of
assembly into oligomers and fibrils [35]. Most inter-
estingly, A�A2V was very efficient in counteracting
A�-dependent neurotoxicity in human neuroblas-
toma cells [31], and rescuing normal phenotype and
restoring dendritic spine density of hippocampal neu-
rons from brainbow mice treated with A�1-42wt [40].

X-ray and neutron diffraction experiments com-
bined with polarized light microscopy, AFM, and
modeling provided a rational basis for the paradoxical
effects of A2V-A� mutation in humans, explaining its
aggressiveness in homozygous carriers and its pro-
tective effect in heterozygotes. Since the N-terminal
A� residues are always located at the outside of the
fibril, this makes high probable that alanine-alanine
interaction in wt and valine-valine interaction in A2V
are involved in inter-fibrillar interactions and dimer-
ization. The higher degree of orientation in the latter
suggests tighter packing or less sterically-hindered
interference between laterally-adjoining protofila-
ments or fibrils, that favors the fibril polymerization.
Conversely, an interaction of alanine2 in the wt
with valine2 in the A2V peptide may interfere with
the fibril interactions owing to a mismatch of the
side chains and steric hindrance that disrupts the
hydrogen-bonding and inter-sheet interactions, and
thereby prevent fibrillogenesis [41].

Overall these data suggested that the interaction
between mutant and wt A� is able to hinder amy-
loidogenesis and neurotoxicity, thus protecting the
A673V heterozygous carriers. The results of our stud-
ies leaded also to a reconsideration of the relevance
of the N-terminal sequence of A� in misfolding and
disease, since it was underestimated by the previ-
ous scientific literature [42]. Our data reinforced the
hypothesis that the N-terminal domain of A� is selec-
tively perturbed in amyloidogenesis and that changes
in its primary sequence my deeply affect peptide
assembly and fibril formation [43]. The importance
of this domain is further supported by the finding
that antibodies against it are optimal for plaque clear-
ance in animal models [44] and, most intriguingly, are

under evaluation in human clinical trial as disease-
modifying drugs for AD [45].

Interestingly, evidence for a natural protection
against AD was shown in human carriers of the
A2T A� mutation—another human A� variant char-
acterized by an alanine-to-threonine substitution at
the same APP codon of the A2V-A� mutation
(APP-A673T or A�A2T variant) [46, 47]. Additional
studies tried to clarify the molecular basis of the
A2T-induced protection for AD, suggesting a likely
composite mechanism including effects on APP pro-
cessing, with consequent decrease of A� production,
and on A� structure, aggregation and neurotoxicity
[48–50].

The discovery of protective genetic variants like
A�A2V and A�A2T, although rare, should prompt
a novel vision of genetic studies, until now lim-
ited to the identification of pathogenic variants,
expanding the genetic research into the detection of
‘protective’ DNA variations as useful grounds for
the design of efficient disease-modifying therapies in
medicine [51].

THE DEVELOPMENT OF A POTENTIAL
DISEASE-MODIFYING THERAPY
FOR AD

The finding that the interaction between A�A2V
and A�wt hinders amyloidogenesis offers grounds for
the development of a therapeutic approach based on
the use of modified A�A2V peptides for AD.

In collaboration with the Mario Negri Pharmaco-
logical Institute in Milan, we envisaged an integrated
A2V-based strategy for treatment of AD by design-
ing a short peptide homologous to residues 1–6 of
A�A2V (A�1-6A2V) that retains in vitro the anti-
amyloidogenic properties of the parental full-length
mutated A�. The correspondent D-isomer [A�1-
6A2V(D)] was then designed because predicted to
be resistant to degradation by endogenous proteases,
and resulted even more effective than the L-isomer
in hindering A� aggregation. Molecular dynamics
simulations showed that the native peptide is char-
acterized by a “closed” configuration in which the N-
and C- termini are strongly interacting. Conversely,
the structure of the mutated peptide is marked by
higher flexibility, which facilitates the heterotypic
interaction with A� and hinders A� assembly
[35, 51].

CD spectroscopy, SPR, and AFM showed that
A�1-6A2V inhibits acquisition of �-sheet sec-
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ondary structure by full-length wt A�, elongation
of wt A� amyloid fibrils and assembly of A�
into amyloid fibrils, dramatically reducing the for-
mation of protofibrils and filamentous structures
[35, 51]. Moreover, toxicity studies on cellular
models showed that A�1-6A2V is not toxic on SY-
SH5Y neuroblastoma cells even at high concentra-
tions (20 �M) and hampers the toxicity induced by
A�1-42wt on these cells [51]. Finally, to improve the
translocation across the blood-brain barrier (BBB),
we linked an amino acid sequence highly rich in
basic residues (TAT) to the six-mer peptide so gener-
ating the A�1-6A2V-TAT(D) compound. The in vitro
studies were largely replicated by our groups with
A�1-6A2V-TAT(D) confirming that this peptide hin-
ders (1) production of fibrils and amyloid structures
by A�1-42wt, (2) toxicity induced by A�1-42wt pep-
tide on SYSH-5Y cells, and (3) synaptopathy caused
by A�wt in hippocampal neurons [40, 51]. All these
findings elected A�1-6A2V-TAT(D) as our lead com-
pound for in vivo studies.

We first demonstrated that A�1-6A2V-TAT(D)
prevents A� oligomer formation and protects trans-
genic C. elegans from A� toxicity. The compound
was indeed effective in protecting CL4176 worms
(expressing human oligomeric A�1-42 in the body
wall muscles) from the paralysis induced by the
A�1-42wt expression, was able to protect against the
motility defect in a dose-dependent manner and was
successful in reducing A� fibril formation and amy-
loid deposition in CL2120 transgenic worms [52].

Then, we used murine models of AD to assess
the efficacy of our approach. We showed that
A�1-6A2VTAT(D) is able to cross the BBB after
intraperitoneal administration in the double trans-
genic APPswexPS1dE9 mice. Short-term treatment
(2.5 months) resulted in the exciting prevention of
cognitive deterioration, A� production/aggregation
and amyloid deposition in the brain. However, the
final outcome (5 months after the beginning of
treatment) consisted of an unexpected increase of
amyloid burden and attenuation of the effects on
A� production, while the prevention of cognitive
impairment was maintained and even more evident
[51]. Concomitant studies performed in our labs
revealed a great propensity of TAT(D) to target amy-
loid deposits. These data – together with the results
of previous reports showing that the co-expression of
TAT and human APP carrying the Swedish mutation
in mice results in an acceleration of amyloidogenesis
[53] and that TAT increases A� levels by inhibiting
neprilysin [54] or enhancing �-secretase cleavage of

APP [55] – suggested that the anti-amyloidogenic
effects of A�1-6A2V(D) were undermined in the
chronic treatment by the TAT intrinsic amyloidogenic
activities.

So, regardless its optimal BBB delivery abilities
and cell penetrating activity [56], the design of ther-
apeutic strategies for AD [57] should, in our opinion,
take in account some intrinsic properties of TAT
sequence, which can promote or worsen amyloido-
genesis in long treatment schedules [51].

New studies are ongoing in our laboratories
to design new brain delivery strategies for A�1-
6A2V(D), such as the intranasal administration of the
peptide, or to develop novel A�A2V-containing com-
pounds, incorporating different peptide “shuttles” to
efficiently drive the drug to the brain, without inter-
fering with its anti-amyloidogenic ability.

MECHANISTIC AND
NEUROPATHOLOGICAL STUDIES IN
PRION DISEASES

Prion diseases are fatal, rapidly progressive,
neurodegenerative disorders of humans and ani-
mals. They are also called transmissible spongiform
encephalopathies (TSEs), a term that underlines their
infectious character and their main neuropathologi-
cal hallmark, i.e., neuropil vacuolation [58, 59]. The
transmissible agent, the prion, is devoid of infor-
mational nucleic acid and consists only of protein
[60]. Several lines of evidence indicate that prions are
composed of an abnormal isoform of the prion pro-
tein (PrP). The normal form of PrP (PrPC) is widely
expressed in the central nervous system but little is
known about its function(s) [61]. The human cellular
gene which encodes PrPC has been called PRNP. The
pathogenic isoform (PrPSc) results when the normal
form undergoes a conformational change, converting
�-helical regions to �-sheet motifs, and has abnormal
physicochemical properties such as detergent insolu-
bility and protease resistance (PrPres) [62–65].

Human TSEs include four main groups of patho-
logic conditions: Creutzfeldt-Jakob disease (CJD),
Gerstmann-Sträussler-Scheinker disease (GSS), fatal
familial insomnia (FFI), and kuru. CJD has diverse
phenotypes and can be familial (fCJD), acquired
[iatrogenic (iCJD) and variant CJD (vCJD)] or spo-
radic (sCJD) when it arises for no obvious reasons
[58, 66]. Possible causes of sCJD include sponta-
neous formation of PrPSc as a rare stochastic event,
somatic mutations of PRNP, or unrecognized prion
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exposure [67]. Kuru is an acquired prion disease
confined to Papua New Guinea and related to can-
nibalistic mourning rituals. GSS, fCJD, and FFI are
genetically determined by mutations within the open
reading frame of PRNP and inherited as autoso-
mal dominant traits [68]. Several reports by our
group provided evidence that the spectrum of phe-
notypes associated with PRNP mutations is wide
[69–78].

Over the last decades, huge data consolidated the
concept that phenotypic diversity of human prion
diseases is mainly dependent on the existence of
distinct PrP conformers, which, together with other
genetic and unknown environmental factors, gen-
erate different clinic-pathological profiles of TSEs.
Regarding sCJD, two main types of the unglycosi-
lated isoforms of PrPres were found in sCJD cases:
type 1 (21 kDa) and type 2 (19 kDa). Our group
was the first to report that the two different types of
PrPres may be present in the same sCJD brain [79,
80]. During the last few years, these observations led
to a classification of sCJD cases based on the type
of PrPres and the Methione/Valine polymorphism at
codon 129 of PRNP gene [66, 81].

Moreover, our group contributed actively to the
definition of neuropathological diagnostic criteria for
CJD and other human prion diseases [82–85], as well
as to pathogenic studies on prion encephalopathies.
In 1991, we demonstrated that the GSS amyloid
is mainly composed of an 11 kd fragment of the
human prion protein with an N-terminal glycine at
codon 58 [86, 87]. These pivotal studies were per-
formed in tight collaboration with Blas Frangione in
New York and Bernardino Ghetti in Indianapolis who
identified and deeply characterized brains derived
from members of a large family (Indiana kindred)
reported to be affected by GSS [88]. Interestingly,
the GSS amyloid deposits in brain from carriers of
the PRNP mutations associated to the disease con-
tain only the fragments originating from mutant PrP
alleles [89]. This implies that mutant PrP fragments
are dominant factors for amyloidogenesis in GSS
and that full-length PrP is deposited in the extracel-
lular compartment, partially degraded by proteases
and further digested by tissue endopeptidases. This
processing leads to generation of an approximately
7-kDa protease-resistant core that is similar in
patients with different mutations [90]. Moreover, we
deeply analyzed the composition of amyloid deposits
in GSS patients and found that the epsilon isoform of
14-3-3 protein is among the components of the prion
protein amyloid deposits in GSS [91]. Definitely,

our data together with studies by other authors pro-
vided evidence that GSS amyloid is composed of
differently sized PK-resistant PrP fragments (mainly
ranging from 7- to 11-kDa) forming patterns not
previously described in other prion diseases, which
may in part explain the peculiar pathology of GSS
[92–94].

Neuropathological studies on GSS patients carry-
ing different PRNP mutations revealed the significant
presence of tau-related pathology in association with
the core features of the disease, i.e., PrP-amyloid
deposits [95]. Indeed, neurofibrillary tangles (NFTs)
are diversely represented in different GSS genotypes,
being most evident in F198S, D202N and Q217R car-
riers, so it is possible to distinguish between GSS
with or without NFTs. This conclusion is interest-
ing because GSS patients with NFT have a distinct
PrPres profile, suggesting that tau pathology may be
related to pathogenic properties of specific PrPres

isoforms [96].
Additional studies by our group, demonstrated that

tau pathology is also a relevant feature of human
and experimental vCJD, suggesting that the abnor-
mal forms of PrP associated with vCJD may trigger
a tauopathy, and providing a paradigm for the early
stages of tau pathology associated with cerebral amy-
loidoses, including AD [97]. The involvement of
microglia was also reported by our group as rele-
vant in the progression of CJD [98, 99], confirming
previous animal and cell studies showing more rapid
neurodegeneration, pathology spreading, and prion
infectivity following microglia ablation, depletion, or
deficiency [100, 101].

In 1993, we showed that the main pathogenic fea-
tures of PrPres peptide is retained in its 106–147
peptide fragment [102]. In particular, synthetic
106–126 and 127–147 PrP fragments resulted to be
prone to form amyloid-like fibrils in vitro. More-
over, 106–126 PrP peptide has neurotic properties
[103], induces activation of glial cells [104, 105] and
increases plasma membrane microviscosity [106].

FROM BED TO BENCH AND BACK
IN PRION DISEASES

The progress in the knowledge of molecular mech-
anisms driving the pathology in human and animal
prion diseases offered grounds to (1) the discovery of
disease biomarkers and (2) the design of experimen-
tal treatments in this group of fatal neurodegenerative
diseases.
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Biomarkers

The implementation in clinical practice of novel
diagnostic tools for prion diseases was recently
accelerated by the employment of two innova-
tive amplification assays named Protein Misfolding
Cyclic Amplification (PMCA) and Real Time
Quaking-Induced Conversion (RT-QuIC) generated
to model the process of prion misfolding in vitro
in a very short time [107, 108]. PMCA consists of
cycles of incubation and sonication of samples con-
taining small amount of PrPres in the presence of an
excess of PrPC, so enabling the exponential amplifi-
cation of minute amount of PrPres [108]. Thus, this
technology allows the detection of PrPres even in pre-
symptomatic stages of prion diseases. In 2005, our
group, in collaboration with others, showed that by
PMCA it is possible to detect PrPres in the brain of
pre-symptomatic hamsters, enabling a clear identifi-
cation of infected animals as early as two weeks after
inoculation. Furthermore, PMCA was able to amplify
minute quantities of PrPres from a variety of exper-
imental and natural TSEs. These findings indicated
PMCA as useful to recognize the illness in humans in
early phases [109]. Following this approach, a recent
study performed with the Claudio Soto’s laboratory
in Houston, showed that urine samples from patients
with vCJD contain minute quantities of PrPres that
can be detect by using PMCA [110]. These results
provided a powerful diagnostic tool for vCJD con-
sidering its high sensitivity (92.9%) and specificity
(100.0%). RT-QuIC employs Thioflavin-T fluores-
cence to detect femtomolar amounts of PrPres in
biological samples, using soluble recombinant prion
proteins as substrate in a reaction cyclically alter-
nating incubation and shaking. This technology was
shown to enable the detection of PrP seeds in the
cerebrospinal fluid of patients with sporadic sCJD or
genetic forms of prion diseases [111, 112].

Further evidence for the effectiveness of ampli-
fication technologies for the detection of prions in
biological fluids came from the observation that
PrPres could be detected with 100% sensitivity and
specificity in blood samples from vCJD patients [113]
as well as from sheep and primates experimentally
infected with vCJD in preclinical stages [111]. RT-
QuIC has been further adapted to detect minimal
amounts of PrPres in other tissues, such as the olfac-
tory mucosa of sCJD patients [114]. Moreover, we
recently demonstrated that the olfactory mucosa of
patients with FFI contains trace amounts of PrPres

which are detectable by PMCA and RT-QuIC [115].

Taken together, these findings suggest that RT-QuIC
and PMCA have a huge potential to detect trace-
amount of PrPres (≥1 femtogram) in peripheral
tissues, validating a possible implementation of these
arrays into novel diagnostic criteria for human prion
diseases [116–118].

Treatments

Initial steps on the road to the development of
experimental strategies for the treatment of prion
diseases [119–121] followed previous observations
by the group led by Giampaolo Merlini in Pavia about
the effectiveness of an approach based on the use
of the anthracycline 4’-iodo-4’-deoxy-doxorubicin
(IDX) in systemic amyloidosis [122, 123]. In 1997
we found that, after treatment with IDX, clinical
signs of disease were delayed and survival time was
prolonged in an experimental prion disease in Syrian
hamsters [124]. Other studies in collaboration with
Mario Negri Institute in Milan indicated that the
IDX-structurally similar compounds tetracyclines
bind to PrP amyloid, prevent aggregation of PrP
peptides, disrupt amyloid fibrils generated by PrP
peptides, abolish neurotoxicity of PrP peptides, and
revert protease resistance of PrP peptides and gener-
ation of PrPres from sCJD, vCJD, bovine spongiform
encephalopathy, and scrapie [125, 126]. Moreover,
tetracyclines reduce prion infectivity through a direct
interaction with PrPSc and are potentially useful for
inactivation of bovine spongiform encephalopathy-
or vCJD-contaminated products and thus they are
potentially useful to design prevention strategies for
prion diseases [119, 120, 127–129], also considering
that they have favorable kinetics, high ability to cross
BBB, low toxic effects, and good tolerability even
in long-lasting treatment schedules [130].

On these bases, we began a pilot study on a small
series of patients with CJD diagnosed at Carlo Besta
Neurological Institute in Milan, between 1996 and
2004. They received a compassionate treatment with
doxycycline at a daily oral dose of 100 mg from
the time of diagnosis to death. The retrospective
analysis showed that the patients treated with doxy-
cycline survived significantly longer than untreated
patients [131]. Similar results were obtained in an
independent observational study in Germany [132].
We therefore designed a randomized, double-blind
study of doxycycline versus placebo in CJD with
the primary objective of assessing the effectiveness
of doxycycline in increasing survival time in CJD
patients. The study provided class 1 evidence that
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an oral dose of doxycycline at 100 mg per day does
not prolong survival. Quantification of the brain con-
centrations of doxycycline suggested, however, that
a higher daily dose of doxycycline should be rec-
ommended in future trials and that the enrolment of
patients in early stages of the disease is a crucial fac-
tor to enhance the beneficial effects of tetracyclines
[133]. The possibility that tetracyclines may be more
effective in treatment schedules starting very early
along the course of the disease is being tested in
a preventive clinical trial with doxycycline in FFI,
designed with the help of asymptomatic carriers, who
have agreed to be exposed over a 10-year period to
doxycycline. The results of this ongoing study are not
available at present [134].

The care of patients with AD and prion dis-
eases is challenging because of the complexity of
these disorders. Past approaches to drug development
were effective in developing symptomatic agents,
but they failed in the attempt to develop disease-
modifying compounds. New means of discovering
agents and predicting human effects, better ani-
mal models, improved trial designs and outcomes,
and more predictive biomarkers are needed. The
approach based on translational research can assist in
diagnosing, preventing or treating neurodegenerative
disorders. Translational neuroscience may acceler-
ate these achievements by providing more efficient
biomarkers and promoting successful drug develop-
ment programs for AD and prion diseases.
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