

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. **Methods:** We have analyzed the multi-omic Glioma Longitudinal Analysis dataset, integrating DNA and RNA sequencing datasets from primary and post-treatment gliomas.

Results: We classified tumors as harboring temozolomide-associated hypermutation based on mutational burden increase (HM), and RT-associated signature based on small deletion burden increase (RTscars). By deconvoluting RNA profiles into cell state fractions, we observed an increase of a proliferating stem-like (PSL) cell state in 50% of patients with a RTscars+ signature which was significantly higher than RTscars-/HM— patients (P=8e-04, Fisher's exact). PSL cell state increase associated with worse overall survival outcomes (P=1.5e-03, log-rank). We observed a significant correlation between the expression change of E2F cell cycle regulator genes (R=0.7e-04, Pearson) and EZH2 (R=0.81, P=8.3e-03) with the increase in the PSL cell state, nominating the E2F/EZH2-pathway as regulator of the PSL cell state. Furthermore, the RTscars signature was associated with an increase in frameshift neo-antigens and significantly higher neoantigen burden at recurrence (P=2.4e-02, Kruskal-Wallis). This was accompanied by a significantly higher post-treatment T-cell infiltration in these patients.

Conclusions: Our analyses revealed a longitudinal increase in the proliferating stemlike cell state associated with RT-resistance and nominates the cell cycle pathway as an actionable target. The RT-associated deletion signature (RTscars) correlated with increased frameshift-neoantigens and T-cell fractions at recurrence, suggesting a potential benefit of a combinatorial immune-targeted therapy in this specific patient population.

Legal entity responsible for the study: The authors.

Funding: Has not received any funding

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2022.07.433

300P The clinical results of an investigator initiated trial of allogeneic CAR-T cells targeting IL13R@2 in the treatment of high-grade glioma

Y. Huang¹, X. Shang², X. Li¹

¹Neurosurgery, The Dushu Lake Affiliated Hospital of Suzhou (Soochow) University, Suzhou, China; ²Jiangsu T-Maximum Biotech Co., Ltd., Suzhou, China

Background: Glioblastoma is the most common intracranial malignant tumors, which is difficult to treat and has poor prognosis. T cell immunotherapy is becoming a powerful strategy for the treatment of cancer and may provide an opportunity to improve the prognosis of patients with advanced glioma. This trial has three purposes: 1) to evaluate the safety and feasibility of allogeneic CAR-T cells in human body; 2) Lumbar injection and intratumoral injection were compared; 3) Preliminarily evaluate the effectiveness of our product in patients with advanced glioma.

Methods: We are developing allogeneic universal CAR-T cells for IL13R α 2 (IL13R α 2 UCAR-T cells) for the treatment of advanced glioma. This is a off-the-shelf anti-IL13R α 2 allogeneic CAR-T cells candidate product, which is made of a series of healthy donor materials, avoiding many shortcomings of autologous car-t products. We report here initial findings from our first-in-human clinical trial [ChiCTR200028801].

Results: We have treated a total of 7 patients, and the longest time after the first injection has been 21 months. The most common side effects are fever and anorexia. The significant increase of inflammatory factors such as interleukin-6 and interleukin-8 can be detected in cerebrospinal fluid, but the cytokine storm seen in the application of CAR-T cells in hematologic malignancies is not seen. Among the 7 patients, one patient had complete remission (CR) and lasted for 10 months, 4 patients had partial remission (PR), which was defined as tumor regression of more than 50%, and 2 patients had disease stability (SD). Therefore, the overall effective rate was 71.42% (5 / 7) and the disease control rate was 100% (7 / 7). The patient with the longest follow-up had survived for 18 months after the first injection. We monitored the number of IL13R α 2 UCAR-T cells in cerebrospinal fluid by flow cytometry or copy number detection. We found that our IL13R α 2 UCAR-T cells could survive in cerebrospinal fluid for more than 30 days.

Conclusions: These early clinical findings suggest that lumbar puncture delivery of allogeneic IL13R α 2 UCAR-T cells is safe and well-tolerated, and that IL13R α 2 UCAR T cells are capable of eliciting potent antitumor responses against recurrent glioma.

Legal entity responsible for the study: The authors.

Funding: Jiangsu T-Maximum Biotech Co., Ltd.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2022.07.434

301P Hypofractionated radiotherapy for the treatment of newly diagnosed high-grade gliomas in younger and good performance status patients during COVID-19 pandemic

<u>A.C. Valente¹</u>, C. Lopes Almeida², M.J. Costa³, I.C. Nogueira Costa⁴, J.S. Reis⁵,
M.C.B. Freitas⁶, C.M. Teixeira⁷, M.V. Gonçalves⁶, A.C. Fernandes⁵, A.S.A. Costa⁸,
C.L.B. Caeiro⁸, L. Osório⁹, I.M. Augusto¹⁰, M. Barbosa¹¹

¹Medical Oncology Dept., CHUSJ - Centro Hospitalar Sao Joao E.P.E - SNS - Polo Porto, Porto, Portugal; ²Oncology Department, CHUSJ - Centro Hospitalar Sao Joao E.P.E -SNS - Polo Porto, Porto, Portugal; ³Serviço de Oncologia Médica, CHUSJ - Centro Hospitalar Sao Joao E.P.E - SNS - Polo Porto, Porto, Portugal; ⁴Medical Oncology Service, CHUSJ - Centro Hospitalar Sao Joao E.P.E - Polo Porto, Porto, Portugal; ⁵Medical Oncology Department, CHUSJ - Centro Hospitalar Sao Joao E.P.E - SNS - Polo Porto, Porto, Portugal; ⁶Medical Oncology Department, Centro Hospitalar Sao Joao E.P.E - Polo Porto, Portugal; ⁷Oncology Department, São João University Hospital Center, Porto, Portugal; ⁸Medical Oncology Department, HSI - Hospital de Sao Joao Centro Hospitalar Universitario, EPE - SNS, Porto, Portugal; ⁹Radiotherapy, Centro Hospitalar e Universitário São João - Porto, Porto, Portugal; ¹⁰Oncologia Médica, CHUSJ - Centro Hospitalar Sao Joao E.P.E - SNS - Polo Porto, Porto, Portugal; ¹¹Medical Oncology Department, CHUSJ - Centro Hospitalar Sao Joao E.P.E - SNS - Polo Porto, Porto, Portugal

Background: During the initial approach to the COVID-19 pandemic, some international recommendations regarding high-grade gliomas (HGG) favored the use of hypofractionated radiotherapy (HFR) regiments, particularly in elderly and frail patients. In our institution, to reduce the risk of COVID-19 infection and the treatment interruptions, the multidisciplinary group decided to carry out a modified STUPP protocol (HFR - 40,05Gy/15 fractions over 3 weeks - with TMZ), even in younger patients with good performance status (PS). However, a few data exist about the role of HFR in this subgroup of patients.

Methods: Retrospective analysis of patients with a newly diagnosed HGG treated with chemoradiotherapy with temozolomide (TMZ) followed by adjuvant TMZ, between 2016 and 2021. Patients with \leq 70 years old and ECOG PS \leq 2, treated with conventional fraction RT (CFR, 60Gy/30 fractions, over 6 weeks) or HFR concurrent with TMZ (75 mg/m2/day), followed by adjuvant TMZ (150-200 mg/m2/day for 5 days, every 4 weeks) were included. Survival analysis was performed using the Kaplan-Meier method and prognostic factors assessed by univariate analysis and by the Cox regression model.

Results: A total of 157 patients were included, with a median age of 56 years old (26-69). The majority (82,2%) was submitted to surgical resection. About 24% (n=37) were treated with HFR-TMZ and 76% (n=120) with CFR-TMZ. The most frequent adverse event was thrombocytopenia (n=39), with no difference between groups (p=0,828). The patients treated with HFR had a median overall survival (mOS) of 18 months vs. 21 months with CFR (p=0,221). The median progression free survival (mPFS) was 13 months for patients treated with HFR, and 10 months for CFR (p=0,418). In multivariate analysis, IDH mutation (OS: HR 0,47; 95% CI 0,26-0,86; p= 0,014. PFS: HR 0,47; 95% CI 0,27-0,84; p=0,010) and absence of corticotherapy (OS: HR 0,65; 95% CI 0,44-0,98; p=0,038. PFS: HR 0,65; 95% CI 0,44-0,97, p=0,034) had a positive impact on OS and PFS.

Conclusions: According to our data, in HGG patients with \leq 70 years old and a good PS, the use of HFR with TMZ had no impact on median PFS and OS, when compared with CFR-TMZ. However, the role of HFR in this setting needs further research.

Legal entity responsible for the study: The authors.

Funding: Has not received any funding.

Disclosure: All authors have declared no conflicts of interest.

https://doi.org/10.1016/j.annonc.2022.07.435

 $\underline{W}.$ Li^1, Z. Kang¹, S. Li¹, Y. Lin¹, Y. Li², Y. Mao³, J. Zhang³, T. Lei⁴, H. Wang⁵, Y. Su⁵, Y. Yang⁵, J. Qiu⁵

¹Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; ²Medical Oncology, Chongqing Cancer Hospital, Chongqing, China; ³Neurosurgery, Huashan Hospital Affiliated to Fudan University, Shanghai, China; ⁴Neurosurgery, Tongji Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, China; ⁵Clinical Development, CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, China

Background: SYHA1813 is a novel small-molecule vascular endothelial growth factor receptors (VEGFRs)/ colony-stimulating factor 1 receptor (CSF1R) inhibitor, exerting synergistic antitumor effects through inhibiting angiogenesis and modulating macrophage polarity in preclinical models. We report preliminary results from a phase I, DE study of SYHA1813 in pts with recurrent or advanced solid tumors including HGG.