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KEY POINTS
•	 Question: Does a “smoothing effect” exist between manually recorded and electronically 

recorded vital sign measurements in postoperative care?
•	 Findings: Using a mixed-effects model, we found no relationship between continuous-manual 

differences and continuous-manual average values for heart rate and respiratory rate, and we 
found a weak (but clinically insignificant) relationship for oxygen saturation.

•	 Meaning: We found that clinical staff in a postoperative ward did not “smooth” vital sign 
values with a bias toward recording more normal readings because the differences between 
manual and continuous vital sign measurements were not related to the vital sign values.

BACKGROUND: Data smoothing of vital signs has been reported in the anesthesia literature, 
suggesting that clinical staff are biased toward measurements of normal physiology. However, 
these findings may be partially explained by clinicians interpolating spurious values from noisy 
signals and by the undersampling of physiological changes by infrequent manual observations. 
We explored the phenomenon of data smoothing using a method robust to these effects in a 
large postoperative dataset including respiratory rate, heart rate, and oxygen saturation (Spo2). 
We also assessed whether the presence of the vital sign taker creates an arousal effect.
METHODS: Study data came from a UK upper gastrointestinal postoperative ward (May 2009 to 
December 2013). We compared manually recorded vital sign data with contemporaneous con-
tinuous data recorded from monitoring equipment. We proposed that data smoothing increases 
differences between vital sign sources as vital sign abnormality increases. The primary assess-
ment method was a mixed-effects model relating continuous-manual differences to vital sign 
values, adjusting for repeated measurements. We tested the regression slope significance and 
predicted the continuous-manual difference at clinically important vital sign values. We calcu-
lated limits of agreement (LoA) between vital sign sources using the Bland–Altman method, 
adjusting for repeated measures. Similarly, we assessed whether the vital sign taker affected 
vital signs, comparing continuous data before and during manual recording.
RESULTS: From 407 study patients, 271 had contemporaneous continuous and manual record-
ings, allowing 3740 respiratory rate, 3844 heart rate, and 3896 Spo2 paired measurements 
for analysis. For the model relating continuous-manual differences to continuous-manual aver-
age vital sign values, the regression slope (95% confidence interval) was 0.04 (−0.01 to 0.10;  
P = .11) for respiratory rate, 0.04 (−0.01 to 0.09; P = .11) for heart rate, and 0.10 (0.07–0.14; 
P < .001) for Spo2. For Spo2 measurements of 91%, the model predicted a continuous-manual 
difference (95% confidence interval) of −0.88% (−1.17% to −0.60%). The bias (LoA) between 
measurement sources was −0.74 (−7.80 to 6.32) breaths/min for respiratory rate, −1.13 
(−17.4 to 15.1) beats/min for heart rate, and −0.25% (−3.35% to 2.84%) for Spo2. The bias 
(LoA) between continuous data before and during manual observation was −0.57 (−5.63 to 
4.48) breaths/min for respiratory rate, −0.71 (−10.2 to 8.73) beats/min for heart rate, and 
−0.07% (−2.67% to 2.54%) for Spo2.
CONCLUSIONS: We found no evidence of data smoothing for heart rate and respiratory rate 
measurements. Although an effect exists for Spo2 measurements, it was not clinically signifi-
cant. The wide LoAs between continuous and manually recorded vital signs would commonly 
result in different early warning scores, impacting clinical care. There was no evidence of an 
arousal effect caused by the vital sign taker.   (Anesth Analg 2018;127:960–6)
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Manual measurements of the main vital signs—
which include respiratory rate, blood pressure, 
heart rate, temperature, and oxygen saturation 

(Spo2)—are often inaccurate.1–3 Manual calculations of 
clinical risk scores are also error prone.4–6 While automated 
monitoring technology exists, it is mostly confined to high-
acuity patients, and manual measurement and documen-
tation of vital signs remain the standard of care in many 
wards. A potential source of inaccuracy that may exist in 
the manual vital sign record is data smoothing.7 Clinical 
staff may be biased toward vital sign values that lie within 
the assumed limits of normality and record vital sign values 
that are incorrectly normal— “smoothing” the extremes in 
the vital sign record. If real, this “smoothing effect”8 may 
result in lost opportunities for early recognition of physi-
ological deterioration.

The smoothing effect has been reported to occur dur-
ing anesthesia8–13 and in acute ward monitoring.14,15 Most 
studies use methods based on the comparison of vital 
sign values from manual and automated measurements 
sources.9–15 The comparison method makes the cause of 
“data smoothing” unclear. Vital sign values from monitor-
ing equipment are noisy and may be corrupted with signal 
artefact, so the smoothing effect may partly result from 
clinicians correcting spurious values.14 Undersampling 
may also affect data smoothing based on the magnitude 
and frequency of extremal values in longitudinal records 
because sparsely sampled manual observations may not 
coincide with times of large fluctuations in vital sign val-
ues. Analysis compensating for these confounding factors 
is essential to discover whether the smoothing effect is of 
clinical relevance.

We present a secondary analysis of a large database of 
postoperative vital sign records to investigate data smooth-
ing of respiratory rate, heart rate, and Spo2. We propose that 
data smoothing increases the differences between continu-
ous and manual vital sign measurements as the (absolute) 
value of the vital sign becomes more extreme. We tested 
whether differences between continuous and manual vital 
sign recordings are related to the average value of the 2 vital 
sign recordings. We also assessed agreement between con-
tinuous and manual data. Finally, we investigated whether 
there is an arousal effect caused by the vital sign taker.15

METHODS
This article adheres to the Reporting of Studies Conducted 
Using Observational Routinely-Collected Health Data state-
ment, an extension of the Strengthening the Reporting of 
Observational Studies in Epidemiology guidelines.16,17

Dataset
The database for this retrospective analysis was cre-
ated during the Computer Alerting Monitoring System 
2 (CALMS-2) study, which was granted ethical approval 
(Mid and South Buckinghamshire ethics committee 
Research Ethics Committee: 08/H0604/79, December 9, 
2008, and Leeds [West] ethics committee Research Ethics 
Committee: 11/YH/0056, May 20, 2011) and registered in 
the International Standard Randomised Controlled Trial 
Number (ISRCTN) database (principal investigator: P.J.W., 
ISRCTN No: ISRCTN58660550, August 11, 2017). This 
study assessed whether ambulatory physiological moni-
toring combined with an alerting system improved recog-
nition and outcomes in patients after major surgery.

Vital sign data used in the CALMS-2 study were col-
lected in a step-down postoperative ward of the Oxford 
University Hospitals National Health Service (NHS) Trust, 
Oxford, between May 2009 and December 2013. Potential par-
ticipants were screened during preoperative assessment and 
deemed eligible if they were planned to undergo major upper 
gastrointestinal surgery. This category was defined as fol-
lows: oesophagectomy, oesophagogastrectomy, gastrectomy, 
Whipple’s operation, liver resection, pancreatectomy, gastric 
bypass, biliary reconstruction, and splenectomy. Participants 
were excluded based on the following criteria: participants 
<16 years of age, pregnant women, participants unable to 
wear the required monitoring, participants without the capac-
ity to consent, and participants who could not understand 
written English and for whom no translator could be found. 
For this secondary analysis, patients who did not receive 
contemporaneous bedside electronic vital sign monitoring 
and manual vital sign observations were excluded a priori. 
Written informed consent was obtained for all subjects.

In the step-down ward used in the CALMS-2 study, high-
risk patients are admitted after a period of elective intensive 
care unit stay, while patients with a lower risk of complica-
tion are admitted to the ward immediately after surgery. 
High-risk patients typically receive an increased level of care 
for the first 2–48 hours of their ward stay, during which time 
they undergo conventional bedside monitoring, consisting 
of continuously measured respiratory rate, heart rate, and 
Spo2 (Philips M3046A/Intellivue MP50 clinical monitor; 
Philips Healthcare, Best, the Netherlands). Respiratory rate 
was measured by impedance pneumography, heart rate was 
derived from the electrocardiogram, and Spo2 was measured 
by pulse oximetry. Clinical staff also made manual measure-
ments of blood pressure and temperature, typically at hourly 
intervals. After this initial period, these patients then join the 
other patients on the ward in receiving general-ward-level 
care, which consists of manual vital sign recording typi-
cally at 4-hour intervals. The standard of care for measuring 
respiratory rate on the ward is by counting chest wall move-
ments, and heart rate and Spo2 measurements were likely 
to be transposed from the monitor screen. In the CALMS-2 
study, ambulatory monitoring of heart rate and Spo2 was 
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undertaken. However, for consistency, we restricted this 
analysis to manually recorded values that could be compared 
with contemporaneous values from bedside monitoring.

Manual vital sign measurements documented on paper-
based bedside charts were double entered into an elec-
tronic database. A third researcher reconciled differences 
with access to the original charts.5 Continuous vital sign 
data from the bedside monitors were saved directly from 
the monitor every second. The final dataset obtained for 
this study consisted of vital sign records of respiratory rate, 
heart rate, and Spo2 from continuous bedside monitoring 
equipment and manual vital sign observations.

Manual and continuous vital sign values were com-
pared based on the timestamps taken from paper records 
and the computer-generated timestamps from the patient 
monitor. Clinical staff manually recorded blood pressure 
measurements at the time of observation, and these were 
also logged in the automatically generated data record. We 
set the manual observation time for all vital signs to the 
computer-generated timestamps for blood pressure (while 
checking that data were correctly matched). This calibration 
method ensured that the data considered contemporaneous 
from manual and continuous measurement sources were 
synchronized, and thus could appropriately be used for 
comparison.

Statistical Analysis
We summarized the number of vital sign measurements 
included per patient using the sample median and inter-
quartile range.

We sampled the continuous data at the time of each 
manual observation to create paired measurements of con-
tinuous and manual vital signs. We sampled the continuous 
data by extracting the median value of a 5-minute window 
centered at the time of manual observation. We used this 
methodology (also known as “median filtering”) to summa-
rize the continuous data without the effects of measurement 
noise or short-term variance while retaining long-term vital 
sign trends. We included all manual observations with 
contemporaneous periods of continuous data, allowing 
patients to provide multiple observations in our analysis. 
We selected a 5-minute window to reflect clinical practice, 
in line with previous work.13,15 We undertook sensitivity 
analyses by recomputing the primary assessment method 
for windows of 1–10 minutes.

To obtain the differences between the 2 measurement 
sources, we subtracted the manual vital sign from the con-
tinuous vital sign in each measurement pair. We also calcu-
lated the average of the continuous and manual vital signs 
for each measurement pair. We modeled the relationship 
between the differences and the averages of the measure-
ment recordings using a linear mixed-effects model, with 
averages as a fixed effect and subject as a random effect to 
adjust for repeated measurements. We note that there may 
be factors other than a smoothing effect that could affect the 
relationship between the continuous-manual difference and 
the continuous-manual average, notably the accuracy of the 
continuous monitoring equipment. However, given our use 
of gold standard monitoring equipment and median filter-
ing to remove transient outliers, the continuous data were 
likely to be equally reliable over the range of measurement 

values. Thus, a linear relationship between the continuous-
manual difference and the continuous-manual average 
would be best explained by a clinical bias in the manual 
data, allowing the smoothing effect to be tested.

The regression slope of the fixed effect in the mixed-
effects model represents the increase in the continuous-man-
ual difference for a 1-unit increase in the continuous-manual 
average. Statistical significance of the regression slope was 
calculated with an F test (type III with Kenward–Roger 
degrees of freedom approximation),18 using a significance 
of 0.05 to reject the null hypothesis that the regression slope 
was 0 (no relationship). To assess the clinical significance 
of the linear relationship, we simulated the mean differ-
ences and 95% confidence intervals (CIs) predicted by our 
model at vital sign values corresponding to important clini-
cal thresholds. We used respiratory rate values of 8 and 24 
breaths/min, heart rate values of 40 and 130 beats/min, and 
an Spo2 value of 91%, which are the maximum National 
Early Warning Score limits for each vital sign.19

We generated Bland–Altman plots for the continuous and 
manual vital sign data by plotting the differences between 
the 2 measures (y-axis) against the averages of the 2 mea-
sures (x-axis). The bias was calculated as the mean differ-
ence between continuous and manual measurement pairs. 
Limits of agreement (LoAs) were calculated using a mixed-
effects model, including a subject random effect to adjust for 
repeated measurements.20 CIs (95%) were calculated for the 
bias and the LoAs using the method recommended by Bland 
and Altman.21 Horizontal lines were included on the Bland–
Altman plots to show the bias and LoAs. The regression line 
from the linear mixed-effect model was plotted to visualize 
the relationship between the differences and the averages.

We assessed whether there is an arousal effect caused by 
the vital sign taker by comparing continuous data before 
and during the time of manual observation. For the continu-
ous data before the observation, we used the median value 
of a 15-minute window ending 5 minutes before the time 
of observation. For the continuous data during the time of 
observation, we used the median of a 5-minute window, as 
described in previous paragraphs. These methods replicate 
those of Taenzer et al,15 to allow comparison. The selection 
of the continuous data is shown schematically for heart 
rate in Figure 1. We prepared Bland–Altman plots for the 
“before” and “during” measurements using the same meth-
odology described in the previous paragraph.

We did not perform sample size calculations for this 
study because it is a retrospective cohort study of an exist-
ing dataset—we used all available data, noting that our 
dataset was larger than those used in most previous analy-
ses of the smoothing effect.9–13,15,22 We also could not iden-
tify the statistical power of the study since previous studies 
of “the smoothing effect” have not used Bland–Altman 
analyses (preventing estimation of approximate population 
regression slopes). We instead provided CIs for all reported 
outcomes to demonstrate the precision of our results, as rec-
ommended by Goodman and Berlin.23

RESULTS
Patient inclusion is shown in Figure  2. Concurrent man-
ual and continuous vital sign measurements were avail-
able for respiratory rate from 263 patients (3740 paired 
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measurements), heart rate from 267 patients (3844 paired 
measurements), and Spo2 from 271 patients (3896 paired 
measurements). The median (interquartile range) number 
of observations for each patient was 11 (7–18) respiratory 
rate, 11 (7–18) heart rate, and 11 (7–19) Spo2 measurements.

The mixed-effect model regression slope (95% CI) 
between the continuous-manual difference and the contin-
uous-manual average was 0.04 (−0.01 to 0.10; P = .11) for 
respiratory rate, 0.04 (−0.01 to 0.09; P = .11) for heart rate, 
and 0.10 (0.07–0.14; P < .001) for Spo2 (Figure 3 and Table). 
The mean differences (95% CI) predicted by the model were 
−1.14 (−1.57 to −0.71) and −0.44 (−1.57 to 0.04) breaths/min 
for respiratory rates of 8 and 24 breaths/min, respectively. 
Likewise, the differences were −2.93 (−4.75 to −1.11) and 
0.63 (−4.75 to 3.26) beats/min for heart rates of 40 and 130 
beats/min, respectively, and −0.88% (−1.17% to −0.60%) for 
Spo2 values of 91%.

The bias (LoA) between the continuous and manual data 
was −0.74 (−7.80 to 6.32) breaths/min for respiratory rate, 

−1.13 (−17.4 to 15.1) beats/min for heart rate, and −0.25% 
(−3.35% to 2.84%) for Spo2 (Figure 3 and Table).

The bias (LoA) between continuous data before and 
during manual recording was −0.57 (−5.63 to 4.48) breaths/
min for respiratory rate, −0.71 (−10.2 to 8.73) beats/min for 
heart rate, and −0.07% (−2.67% to 2.54%) for Spo2 (Figure 4 
and Table). CIs (95%) for the bias and LoAs are reported in 
the Table.

Results for the sensitivity analysis of the primary assess-
ment method for different window sizes (during the manual 
observation) are given in Supplemental Digital Content 1,  
Table 1, http://links.lww.com/AA/C522.

DISCUSSION
We found no clinically relevant smoothing effect in postop-
erative care. If vital sign data were smoothed, then manual 
measurements would be recorded above abnormally low 
and below abnormally high continuous measurements, 
causing continuous-manual differences to be related to vital 
sign values. However, differences between manual and 
continuous heart rate and respiratory rate measurements 
were not related to the average values because the regres-
sion slope was not significantly different to 0. Differences 
between manual and continuous measurements of Spo2 
were related to the measurement value. However, this rela-
tionship was clinically insignificant (Figure 3), with minor 
differences for low values of Spo2. For example, for Spo2 
measurements of 91%, the model predicted a continuous-
manual difference of −0.88% (−1.17% to −0.60%), which is 
within the measurement error of most pulse oximeters.24 
The LoAs (95% CI) between continuously and manually 
recorded vital signs were large: 14.1 (13.8–14.4) breaths/
min, 32.5 (31.9–33.3) heartbeats/min, and 6.2% (6.1%–6.3%) 
Spo2 between LoAs, suggesting that these recordings can-
not be used interchangeably. We found no evidence of an 
arousal effect from the vital sign taker. The bias between 
continuous vital sign values recorded before and during 
manual observation was less than a single breath, heartbeat, 
or percentage Spo2.

Our sensitivity analysis showed that window size 
affected the relationship between continuous-manual differ-
ences and averages but not to a clinically meaningful extent 
(Supplemental Digital Content 1, Table 1, http://links.lww.
com/AA/C522). As window size was reduced, lessening 
the effect of median filtering, the differences predicted by the 
model increased, although only by 1–2 heartbeats or breaths. 
Increasing the window size does not affect our findings, sug-
gesting that the choice of a 5-minute window (also chosen by 
Reich et al13 and Taenzer et al15) appropriately removes arte-
fact without increasing the sample size beyond what is plau-
sible for bedside measurement. Notably, 4 previous studies 
found a smoothing effect using automated monitoring sig-
nals without temporal averaging, relying on manufacturer 
settings for artefact removal.8,9,11,12 Sapo et al14 demonstrated 
that Spo2 values <90% are associated with poor signal qual-
ity, suggesting that the effects in these studies may be due to 
clinicians correctly removing spurious values.

Further methodological differences may explain why 
our results contrast with the previous literature suggest-
ing a smoothing effect.8–10,12,13,22 Four studies compared the 

Figure 1. An example heart rate observation, for which the “before” 
window is shown in blue, the “during” window is shown in green, 
and the manual observation (synchronized to the time of the blood 
pressure measurement) is shown in red.

Figure 2. The vital sign data selection process. CALMS-2 indicates 
Computer Alerting Monitoring System 2; Spo2, oxygen saturation.

http://links.lww.com/AA/C522
http://links.lww.com/AA/C522
http://links.lww.com/AA/C522
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magnitude and frequency of extreme values in manual 
and automated vital sign measurements where the auto-
mated measurement had higher measurement rates.9,10,12,22 
Frequently sampled signals are more likely to capture tran-
sient extreme measurements than sparsely sampled signals, 

partly explaining the discrepancies found in these articles. 
Furthermore, 1 study compared manual and automated 
measures from different patient cohorts,13 while others only 
presented data from automated measurements8 or used 
simulated measurements from mannequins.22

Figure 3. Bland–Altman plots for RR, HR, and Spo2 showing limits of agreement between the continuous data and the manual observation 
(continuous data–manual observation). Bias and limits of agreement are shown with blue lines, the regression line is shown in green, and a 
dashed red line shows the zero y-intercept. HR indicates heart rate; RR, respiratory rate; Spo2, oxygen saturation.

Table.  Results for the Bland–Altman Analysis Comparing Continuous Vital Sign Data to Manual 
Observations for Respiratory Rate, Heart Rate, and Oxygen Saturation
 Vital Sign
Bland–Altman Analysis Respiratory Rate (breaths/min) Heart Rate (beats/min) Spo2 (%)
Sample size    
  Patients (observations) 263 (3740) 267 (3844) 271 (3896)
Continuous-manual    
  Bias (CI) −0.74 (−0.82 to −0.66) −1.13 (−1.32 to −0.94) −0.25 (−0.29 to −0.22)
  Lower LoA (CI) −7.80 (−7.94 to −7.66) −17.4 (−17.7 to −17.1) −3.35 (−3.41 to −3.29)
  Upper LoA (CI) 6.32 (6.18–6.46) 15.1 (14.8–15.5) 2.84 (2.78–2.90)
  Regression slopea (CI), P valueb 0.04 (−0.01 to 0.10), .11 0.04 (−0.01 to 0.09), .11 0.10 (0.07–0.14), <.001
“Before” – “During”    
  Bias (CI) −0.57 (−0.63 to −0.51) −0.71 (−0.82 to −0.60) −0.07 (−0.10 to −0.04)
  Lower LoA (CI) −5.63 (−5.72 to −5.53) −10.2 (−10.3 to −9.97) −2.67 (−2.72 to −2.62)
  Upper LoA (CI) 4.48 (4.38–4.58) 8.73 (8.55–8.92) 2.54 (2.49–2.59)

Abbreviations: CI, confidence interval; LoA, limits of agreement; Spo2, oxygen saturation.
aRegression slope from the linear mixed-effect model, which represents the increase in the continuous-manual difference for a 1-unit increase in the continuous-
manual average.
bStatistical significance of the regression slope between the differences and the average of continuous and manual vital sign data was calculated with an F test 
(type III with Kenward–Roger degrees of freedom approximation),18 using a significance of .05 to reject the null hypothesis that the regression slope was 0.

Figure 4. Bland–Altman plots for RR, HR, and Spo2 showing limits of agreement between continuous data sampled before the observation and 
continuous data sampled during the observation (“before” data – “during” data). Bias and limits of agreement are shown with blue lines, and 
a dashed red line shows the zero y-intercept. HR indicates heart rate; RR, respiratory rate; Spo2, oxygen saturation.
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In contrast to our Spo2 findings, Taenzer et al15 reported 
a difference of 6.5% between continuous and manual mea-
surements of Spo2 <90% in general medical and postopera-
tive wards. The method used continuous data to group Spo2 
measurements >90% or <90%, thus comparing the differences 
between measurement sources to the values of the continu-
ous source. Bland and Altman25 have shown that this process 
introduces a false correlation to the data. Hence, we compared 
the differences to the average values as recommended.25,26 For 
readers interested in this effect, we have replicated our anal-
yses, comparing the difference against the continuous mea-
sure (and finding false correlations) in Supplemental Digital 
Content 2, Figure 1, http://links.lww.com/AA/C523.25

Manually recorded vital sign measurements varied 
widely from the continuous measurements. Respiratory 
rate is difficult to measure clinically,2,3 so the high variance 
in the differences between continuous and manual mea-
surements is perhaps not unexpected. However, as early 
warning scores commonly include respiratory rate ranges 
between 2 scores of 4 breaths/min or less,19,27 these differ-
ences would commonly impact clinical care. The LoAs for 
heart rate and Spo2 were also wide and again would com-
monly result in different early warning scores. These results 
are important for those seeking to automate early warning 
scores,28,29 which have not been designed for use with con-
tinuous data, so patients would clearly alert differently.

Our study is limited by its single-center design because 
practices may vary between hospital wards and institu-
tions. There may have been transcription errors in the value 
or timing of manual vital sign observations. This effect was 
minimized by double data entry and synchronizing obser-
vation times with computer-generated timestamps of blood 
pressure. One bedside monitoring provider was used in this 
study, so we could not assess differences between monitors. 
If we had found a relationship between the continuous-
manual differences and averages, then this would have 
prevented exploration of whether the relationship could 
be explained by monitor inaccuracy, rather than clinician 
smoothing. Because there is no clinically significant rela-
tionship, this is not a significant issue for our findings. Our 
results are not influenced by undersampling because the 
measurement pairs of manual and continuous data sample 
the same physiology. The strengths of our article are the 
large dataset used in comparison to previous work and the 
analysis of 3 different vital signs.

We have provided evidence against the existence of a 
smoothing effect in postoperative care. However, this phe-
nomenon may still exist in the context of anesthesia. It is 
possible that errors in vital sign documentation increase 
when clinicians record vital signs from memory after the 
measurement has been taken.9,10 This may be more perva-
sive in acute episodes during surgery and may not apply 
to postoperative wards, where nursing staff are available to 
measure and document vital signs simultaneously. Further 
research should investigate the smoothing effect during 
anesthesia, using the Bland–Altman method of assessing 
agreement between measurement sources, and comparing 
manually recorded measures to the median of a continuous 
window. If confirmed, the effects of the large differences 
between manually recorded and continuous vital sign mea-
surements on early warning scores require investigation 

before the measurement and recording of these variables can 
be safely automated for early warning score computation.

CONCLUSIONS
We found no evidence that a clinically significant smooth-
ing effect exists for respiratory rate, heart rate, or Spo2 in 
postoperative care. We found no evidence of an arousal 
effect caused by the vital sign taker. Differences between 
manually recorded and continuous measures of respiratory 
rate, heart rate, and Spo2 were frequently large, suggesting 
that the methods cannot be used interchangeably. E
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