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How does the human brain respond to novelty? Here, we address this question using fMRI data
wherein human participants watch the same movie scene four times. On the first viewing, this movie
scene is novel, and on later viewings it is not. We find that brain activity is lower-dimensional in
response to novelty. At a finer scale, we find that this reduction in the dimensionality of brain
activity is the result of increased coupling in specific brain systems, most specifically within and
between the control and dorsal attention systems. Additionally, we found that novelty induced an
increase in between-subject synchronization of brain activity in the same brain systems. We also
find evidence that adaptation to novelty, herein operationalized as the difference between baseline
coupling and novelty-response coupling, is related to fluid intelligence. Finally, using separately
collected out-of-sample data, we find that the above results may be linked to psychological arousal.

INTRODUCTION

Adaptation to novelty is fundamental to life [1]. We
continually encounter novel situations and information,
and our ability to learn, adjust our behavior, and even
reshape our mental models is crucial for our success and
well-being. The ability to adapt to novel environments,
respond to novel threats, and recognize novel opportuni-
ties has been central to the survival and diversification of
species. This principle extends to the lives of individual
organisms as well. For example, when an animal encoun-
ters a novel type of food or a novel potential predator,
its survival may depend on its ability to adapt to this
novelty. In humans, this ability to adapt is not only a
biological process but also a psychological one.

The human brain is fundamentally a complex adaptive
system. In complex systems, the local interactions of
relatively simple parts result in complex and emergently
adaptive behavior. In humans this feature allows us not
only to regulate our homeostatic needs but also to build
models of novel environments. Network science provides
us with tools well suited for analyzing the interactions in
such systems. By modeling the brain as a network, we
can consider each element in this complex system as a
node in a network and their interaction as defining the
strength of the connection between them. Using the tools
of network science, network neuroscience has shown that
the brain is a hierarchically modular system where many
units synchronize their activity to form communities at
different scales: from cellular ensembles [2, 3], to brain
regions, to brain systems [4–6].

The various scales in this hierarchically modular sys-
tem define ways the system is often approximately lower
dimensional. Previous work has described how such lower
dimensional dynamics relate to the elements of tasks [7–
9], and the building of environment-specific models [10].
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Some work suggests that the brain changes dimensional-
ity in the presence of stimuli [11]. Likewise, the modular
structure of functional brain networks has been related
to areal specialization of function [12, 13]. Furthermore,
dynamic changes to this modular structure have been
related to learning [14], task complexity [15], cognitive
flexibility [16], surprise [17], and intelligence [18].

In this paper, we explore how modular human brain
networks respond and adapt to novelty. As complex
adaptive systems, our brains form and reform models
of the environment in order to become more adaptive
[19, 20]. In this way, novel stimuli could initiate a model
learning process that helps to regulate the systems be-
havior. In this paper we model novel stimuli using a
paradigm in which human subjects watch a movie scene
on multiple occasions. The first time that human partic-
ipants watch the movie scene is novel, while subsequent
viewings are not. To the degree that participants are able
to model this novel stimuli, we expect that brain dynam-
ics reflecting this process should be different on the first
viewing than on subsequent viewings.

We show that the first viewing of this movie scene ini-
tiates dynamic coupling between various brain systems
that lowers the overall dimensionality of the system. We
find that this decreased dimensionality occurs because
brain systems like the control and default mode network
temporarily increase their connectivity with other brain
systems (like dorsal attention and visual systems) during
the presence of novel stimuli.

We argue that these brain systems (e.g. control, and
default mode) are assisting the brain in adapting to the
novel stimuli by building model(s) of it. Concordantly,
when the stimuli is no longer novel the activity of these
brain systems becomes more independent from the stim-
uli, resulting in an increase in the dimensionality. Ac-
cordingly, we also show that this process of dynamic
adaptation to novelty in the brain might be related to
fluid intelligence. That is, an individual’s fluid intelli-
gence is related to how much that individual adapts to
and models novel stimuli.
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FIG. 1. Novelty effects, (a) Schematic illustrating the structure of the fMRI data. Participants came in for four separate
scans. During each scan, they watched a series of movie scenes. However, at the end of each scan was the same movie scene.
We aligned the fMRI data from each of these viewings of this movie scene for analysis in the rest of the paper. (b) Sample of
images from this movie scene. (c) Box plots showing the difference between (1) the number of principal components needed
to explain 85% of the variance in brain activity, (2) the entropy of the explained variance distribution, and (3) the explained
variance of principal component 1 during the first viewing and subsequent viewings (on average). (d) Box plots showing the
entropy of the explained variance distribution of the control systems activity for all viewings. (e) Same but for the dorsal
attention system. (f ) Matrix showing the number of subsequent scans for which each edge had greater connectivity during the
novel viewing. (g) Functional connectivity (mean across subjects) matrices for all viewings. System-by-system blocks with a
significant number of novelty effects are outlined in yellow.

Finally, we collected data from a new set of subjects
that dynamically rated their level of arousal with a joy-
stick while watching these movie scenes (outside of the
scanner). We found that the novel viewing of the movie
scene resulted in increased levels of psychological arousal,
and an increase in across subject synchronization of dy-
namic arousal to the movie scene. Additionally, this dy-
namic synchronization of arousal was highly related to
the out-of-sample activity in the thalamus, echoing pre-
vious work relating thalamic activity and arousal to the
low-dimensional architecture of neural activity [15, 21].

Understanding how the human brain dynamically re-
sponds and adapts to novel information could be a funda-
mental first step to understanding how we build models of
the world. Here we show that this process likely involves
increased coupling within and between the control sys-
tem, default mode network, and dorsal attention system
alongside an increased between-subject synchronization
of activity in a similar set of regions. Furthermore, we
provide evidence that this response might be mediated

by arousal systems involving the thalamus.

RESULTS

In our study we analyzed data from 7 Tesla fMRI
movie-watching data collected as part of the Human Con-
nectome Project [22]. In these data, participants watched
a selection of movie scenes (from both Hollywood movies
and independent films) on four separate occasions. The
final movie scene on each occasion was the same. Here,
we analyze time series data from 129 of these subjects
who watched this same movie scene four times (for a
schematic describing the organization of these data, see
Fig. 1a,b).
In this section we describe our evidence for the effect

of novelty on the brain. We analyze data wherein human
participants watch the same movie scene on four sepa-
rate occasions, and show that the human brain responds
differently on the first viewing of the movie scene. One
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FIG. 2. Increased inter-subject synchronization in response to novelty., (a) Schematic describing our within subject
analysis. (b) Matrix showing the mean within subject (across viewing) correlation values for each system, and region (c). (d)
Schematic describing our across subject analysis. (e) Matrix showing the mean across subject (same viewing) correlation values
for each system, and region (f ). Finally, we show box plots of the mean across subject correlation per scan/viewing for the
control system B (g), control system C (h), default mode network A (i) and default mode network B (j ).

common response to this novelty is to increase coupling
between a select set of brain regions, effectively reducing
the dimensionality of the system. Additionally, we find
that the same brain systems that increase their coupling
also increase their across-subject synchronization during
the novel viewing.

Decreased dimensionality and increased connectivity
in response to novelty

In this section we show that the novel movie view-
ing tends to be related to decreased dimensionality and
increased connectivity for a select set of brain systems.
Dimensionality can be approximated by linear methods
using principal component analysis (PCA) to investigate
the distribution of explained variance. If the explained
variance is mainly concentrated in a small number of di-
mensions, then the system is lower dimensional. We use
three measures to explore this: (1) the number of com-
ponents that it takes to explain 85% of the variance, (2)
the entropy of the explained variance distribution, and
(3) the explained variance of the first principal compo-
nent.

We found that the first viewing of a novel movie scene
resulted in decreased dimensionality by all three metrics
(when compared to other viewings; Fig. 1c; p < 0.05).

Next, we performed PCA separately on each of seven
brain systems defined by Schaefer et al [5] and found that
the change in overall dimensionality was primarily due to
changes in the dimensionality of the control system and
the dorsal attention system (Fig. 1d-e; p < 0.05).
To investigate these effects in greater detail, we used

functional connectivity analysis. Intuitively, this de-
screased dimensionality should result in increased con-
nectivity during the first viewing. We therefore calcu-
lated the functional connectivity for every viewing, and
compared the connectivity values of each edge for the
different viewings. This involved collecting the edge
strength for an edge across all subjects, and comparing
this distribution on the first viewing with the distribu-
tions of later viewings. For a novelty effect to be con-
sistent, this connectivity distribution should be higher
(lower) on the first viewing than all three subsequent
viewings.
For every edge, we calculated how consistent this

connectivity effect was by taking the number of sub-
sequent viewings the connectivity distribution was less
than (greater than) the distribution in the first viewing
(Fig. 1f; p < 0.05). We then used a spin test to iden-
tify brain systems (and their interactions) that had a
significantly consistent connectivity-based novelty effect
compared to a spatially constrained null model, and we
found that control system B, dorsal attention systems A
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FIG. 3. Between subjects versus within subject coupling, (a) Matrix showing, for each system-by-system block, the
number of subsequent scans where between subject functional connectivity values were greater for the first viewing. (b) Matrix
showing, for each edge, the number of subsequent viewings that had less connectivity than the first viewing. (c) Inter-subject
functional connectivity for each viewing.

and B, as well as edges between control system C and
the salience system B increased their connectivity on the
first novel viewing (Fig. 1g, p < 0.05). In contrast, edges
between the control system and the dorsal attention sys-
tem, as well as between the control system and the cen-
tral visual system, and salience system B and the dorsal
attention system A had higher negative correlations on
the first novel viewing (Fig. 1g, p < 0.05).

In order to ensure that these effects were not due to
confounds, we tested a number of alternative possibili-
ties. We found that the first scan of the resting-state
scans showed no significant decreases in dimensionality
(Fig. S2d, p < 0.05). Additionally, we also checked to
see if subjects exhibited more motion on the first scan,
and they did not (Fig. S1a-d). Further, we found that
this novelty effect remained intact across different parcel-
lation scales (200 and 400 nodes; Fig. S2a,b, p < 10−5).
We also checked if this effect was still intact when no
global signal regression is used during processing. We
found that the first viewing had significantly lower di-

mensionality than the next two viewings, but not the
final viewing (Fig. S2c, p < 0.05).

Increased inter-subject synchronization in response
to novelty

In this section, we show that the brain activity of par-
ticipants watching the novel movie scene is more synchro-
nized on the first viewing than later viewings. Addition-
ally, the brain systems that were more synchronized were
also those that we found increased their connectivity in
the previous section.
In order to explore this, we first performed a within-

subject analysis to identify which brain regions/systems
had a similar temporal activity profile each time a sub-
ject watched the movie scene. We found that visual and
dorsal attention systems tended to maintain similar tem-
poral activity profiles each time that subjects watched
the movie, but other brain systems did not (Fig. 2a-c,
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FIG. 4. Adaptation to novelty effect in the brain is related to intelligence, (a) Plot showing the mean activity
(across subjects) in the control system, plotted against the mean activity in the dorsal attention system. The trajectories are
colored according to whether they happened in the first viewing (red) or on subsequent viewings (blue). (b) Plot showing the
relationship between adaptation (absolute difference in connectivity between first and later viewings) and fluid intelligence. (c)
Plot showing the correlation between adaptation and fluid intelligence for different pairs of brain systems, and regions (d). For
the region by region correlation matrix, we conducted a spin test to assess if significant correlations were concentrated in any
system-by-system blocks. Blocks that did not pass the spin test are greyed out.

p < 0.05).

Next, we performed an across-subject analysis to see
if brain regions/systems were more or less synchronized
across subjects on different viewings. We found that
a large number of brain systems increased their across
subject synchronization on the first viewing, including
the control system (A,B,C), the default mode network
(A,B), the dorsal attention system A, limbic system B,
salience system (A,B) and somatomotor system A (Fig.
2d-f, p < 0.05), but the systems where this effect was the
greatest were control (B,C) and default mode network
(A,B) (Fig. 2g-j, p < 0.05).

In order to check if these results were due to a sim-
ilarity in participants’ motion responses to the movie,
we took the similarity between all subjects time-varying
motion for each viewing. Each distribution per view-
ing represents how aligned motion dynamics are across
subjects. All of these distributions were consistent with
chance (Fig. S1).

Finally, in order to directly explore the similarity be-
tween the set of brain regions that increased their cou-
pling (Fig. 1g-j) and the set of brain regions that in-
creased across subject synchronization we performed an
additional analysis wherein we created an inter-subject
functional connectivity matrix.

Briefly, this matrix was created by computing the cor-
relation between region i’s activity from subject A and
region j’s activity from subject B, for all participants
and all pairs of regions, i and j. We then calculated the
mean value of all of these correlations to be the value
of edge(i, j) in the inter-subject functional connectivity
matrix. This matrix measures the inter-subject synchro-
nization between all pairs of brain regions. We created
one of these matrices for each viewing (Fig. 3c) and then
compared the distribution of edges within and between
each brain system.

After counting the number of subsequent viewings

where within or between system correlation values were
significantly greater (or less) than the novel movie view-
ing, we had a matrix showing the number of significant
values for each within, and between-system block (Fig.
3a). In support of our suspicion that the regions with in-
creased coupling were also increasing their between sub-
ject synchronization, we found that this matrix was pos-
itively correlated with a matrix representing the edges
with increased connectivity in the first viewing (versus
subsequent viewings; r = 0.43, p < 0.05; Fig. 3b).
Taken together, these results suggest that novel movie

scenes result in an increase in across-subject synchroniza-
tion, and this phenomenon is highly related to the phe-
nomenon of increased connectivity during novel movie
scenes.

Adaptation to novelty and intelligence

We hypothesized that the degree of adaptation to nov-
elty in the brain would be related to fluid intelligence. In
this section, we develop a measure of adaptation using
the novelty effects we described in the previous section
and show that this measure of adaptation is positively
related to fluid intelligence.
To define adaptation, we measured the difference in

connectivity between the first viewing and subsequent
viewings. More specifically, we took the absolute differ-
ence between connectivity on the first viewing and the
mean connectivity of subsequent viewings. Intuitively,
this measure captures how different the novelty effect is
from the baseline effect of the movie scene.
We hypothesized that brain systems that we identi-

fied in the previous sections would be most likely to have
adaptation effects related to intelligence. Two conspicu-
ous brain systems were the control system and the dorsal
attention system. The connectivity within these systems
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FIG. 5. Adaptivity and arousal, (a) Box plot showing the difference between average arousal during the first viewing and
average arousal on subsequent viewings. (b) Box plot showing the difference between inter-subject arousal synchronization
(dynamic arousal) during the first viewing and subsequent viewings. (c) Plot showing the average arousal trajectory during the
first viewing, and the average thalamic activity. (d) Plot showing the average arousal trajectory on the first viewing plotted
against the average thalamic activity. (e) Box plots of the correlation of average arousal and activity in each region of different
brain systems on the first viewing. Asterisks indicate systems whose distribution of correlation values were significantly greater
than zero.

not only increased in response to novelty, but the activity
between these systems also became more strongly nega-
tively correlated during the novel viewing. To investigate
this, we took the mean activity within the control sys-
tem and the dorsal attention system for each viewing,
and took the correlation between these brain systems
per viewing. To measure adaptation, we took the ab-
solute difference between these correlation values on the
first viewing and on later viewings Fig. 4a). We found
that these adaptation values were positively related to
subjects’ fluid intelligence scores (Fig. 4b; Spearman’s
ρ = 0.23, p < 0.05). When we extended this analysis to
consider every pair of brain systems, we found that this
effect was the only one to be both positive and significant
(Fig. 4c).

Finally, we wanted to investigate if this adaptation ef-
fect and its relationship with fluid intelligence persisted
at a finer scale involving the coupling of individual brain
regions. We took the full functional connectivity network
of each individual on the first viewing and on subsequent
viewings and calculated the adaptation effect for each
edge and subject. We then correlated these adaptation
values with fluid intelligence and found that those cor-
relations that were strong and significant tended to be
concentrated in blocks connecting the control system to
the dorsal attention system, as well as blocks connect-
ing default mode network to visual, somatomotor, dorsal
attention and salience networks (Fig. 4f,g; edges with

r > 0.2 and p < 0.05 were tested using a spin test,
p < 0.05), thus supporting that this adaptation effect
persisted at a finer scale.

Increased psychological arousal in response to
novelty

We hypothesized that one factor that could partially
drive novelty effects in the brain could be arousal (e.g.
[23]). Perhaps systems that instantiate this effect in the
brain modulate cortical coupling to produce the various
effects described above. To explore this, we collected
data from 46 subjects who watched all of the same movie
scenes from the original fMRI dataset while dynamically
rating their level of psychological arousal with a joystick.
More specifically, the subjects watched all of the movie
scenes described in Fig. 1a, including viewing the re-
peated movie scene four times.
We found that subjects reported more overall arousal

on the first viewing of the novel movie scene (Fig. 5a;
one-sample t-test; p < 0.05). Next, we tested and con-
firmed that these arousal ratings were more synchronized
across subjects during the first viewing (Fig. 5b; one-
sample t-test; p < 0.05).
In order to investigate if a signature of this arousal

effect could be found in the brain activity of subjects
who watched these movie scenes in the scanner, we com-
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pared dynamic arousal ratings with brain activity. Given
that previous research has suggested that that thalamus
is involved in arousal [24–26], we chose to focus on the
relationship between arousal ratings (outside of the fMRI
scanner) and thalamic activity.

To do this, we took the mean of the dynamic arousal
ratings across subjects in order to get an estimate of the
average populations dynamic arousal response to watch-
ing this movie scene for the first time. Then, we cor-
related this average temporal profile of arousal with the
average temporal thalamic activity profile across subjects
who watched this movie in the scanner. We found a pos-
itive correlation between the mean activity of the tha-
lamus and this mean measure of dynamic arousal (Fig.
5c; Spearman’s ρ = 0.41, p < 0.05). This effect was not
present for later viewings.

In addition, we checked to see if this effect could be
found in any other brain systems. To check this, we cor-
related the activity of every region (cortical and subcor-
tical) with this mean measure of dynamic arousal on the
first viewing. We found that the activity of regions in
the default mode network C, both central and peripheral
visual systems, and the activity of the thalamus were
more related to dynamic arousal than chance (Fig. 5e,
one-sample t-test, p < 0.05).

DISCUSSION

How does the brain respond to novelty? Early research
by Eugene Sokolov and others on the novelty response, or
“orienting reflex” found that humans and other animals
would involuntarily attend to novel stimuli in the envi-
ronment until they gradually habituated to that stim-
uli, as he hypothesized, by developing neural represen-
tations to model the novel input [23, 27–32]. Later, it
was found that the characteristic neural accompaniment
to this orienting response was the novelty P3, an event-
related brain potential (ERP) involving activation of the
frontal and parietal cortices [23, 27, 33–35], although ex-
periments combining ERP and fMRI also found effects
in the superior temporal gyrus [36].

Neuroscience and psychology studies have also stud-
ied novelty processing generally as an important feature
of cognition and adaptation [37–42]. For example, re-
cent research in the primate brain found that novelty is
intertwined with computations of sensory surprise and
recency, also finding activation in temporal areas, specif-
ically posterior medial temporal cortex [43]. Addition-
ally, a 2015 review on novelty processing and its effects
on the brain and cognition suggests that novelty increases
arousal, improves perception and action, increases moti-
vation and exploratory behavior, and promotes learning,
also implicating a large variety of brain regions includ-
ing the temporal and frontal cortices [44]. Additionally,
modern innovations in machine learning have seen ma-
jor improvements by integrating conceptions of novelty-
seeking and detection into both agents and optimization

processes [45–48].

Here, instead of focusing on individual novel stimuli (as
many of these past studies have), we used more dynamic
novel stimuli in order to characterize how the novelty re-
sponse unfolds across time with more naturalistic stim-
uli. We operationalized this question using neuroimaging
data from human participants repeatedly viewing a novel
movie scene, a paradigm that has been used several times
in fMRI literature (e.g. [49–53]).

Our results suggest that this novel movie scene induces
a decrease in the overall dimensionality of brain activ-
ity that involves in increased coupling within and be-
tween a select set of brain regions, primarily in the con-
trol and dorsal attention systems. These systems involve
brain regions such at the inferior parietal lobule, lateral
dorsal/oi9ventral prefrontal cortex, and medial posterior
prefrontal cortex in the control system, and temporal oc-
cipital, parietal occipital, superior parietal lobule, post
central, and frontal eye fields in the dorsal attention sys-
tem. This result is in line with areas of interest involved
in the orienting response, and also aligns with more re-
cent results using repeated novel stimuli wherein the au-
thors found that lateral temporal and inferior frontal re-
gions cluster together more during the first viewing of
novel stimuli [50]. Interestingly, we find that the neural
trajectories that characterize this increased connectivity
appear to synchronize across participants. This suggests
that the novelty response is time-locked to the shared
stimuli (the novel movie scene).

Following the first viewing of the movie scene (as the
movie scene is no longer novel) later viewings tend to
evoke somewhat different dynamics. The dimensional-
ity of the activity increases, primarily in the control and
dorsal attention systems, and a similar set of brain re-
gions becomes less synchronized across subjects, suggest-
ing these regions are either no longer tracking the stimuli
or they are now tracking the stimuli in a more idiosyn-
cratic manner. Nonetheless, more primary visual regions
tend to maintain a similar set of dynamics for tracking
the stimuli, and as such remain synchronized across sub-
jects for all viewings.

Presumably, one of the primary functions of our brain
is to form and reform models of the environment in order
for an organism to become more adaptive. Many differ-
ent theories about organisms and brains generally agree
on the importance of modeling the environment, but dis-
agree on the nature of the models and their function (e.g.
[19, 20, 54–59]).

These results present a thought provoking picture of
the neural response to novelty in human beings that
might be unified by considering how they relate to the
model building process. For example, some research sug-
gests that the thalamus plays a key role in mediating
the relationship between attention and arousal [26]. The
presence of both increased arousal, and the link to thala-
mic activity in our results could suggest that participants
are increasing their attention to the novel stimuli for the
purpose of model building. Indeed, research on the ori-
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enting response in human beings suggests that we can
only recognize novelty by comparing incoming sensory
stimuli with a model, and that differences between the
stimuli and the model provoke an increased attention to
the novel stimuli for the purpose of model building [23].

Model building and increased attention might also ex-
plain why we see an increased between-subject synchro-
nization in response to novel stimuli. That is, as par-
ticipants pay more attention to the movie scene on first
viewing for the purpose of model building, their brain
activity becomes more time-locked to the movie. Like-
wise, on later viewings, the brain activity of participants
(mostly in control systems) is no longer as time-locked
to the stimuli because the model building process has
mostly been completed.

This model building hypothesis also helps to explain
the relationship between our measure of adaptation and
fluid intelligence scores. This can be most clearly il-
lustrated in reference to Raven’s Progressive Matrices
[60–63], the test often used to measure fluid intelligence
(a variant of this test was used to compute the scores
used in this study, namely Penn Progressive Matrices
[64]). Raven’s Progressive Matrices presents subjects
with novel sequences of designs following a specific pat-
tern. The task of the participant is to model the sequence
and to use the inferred pattern to complete a partial se-
quence.

In this way, fluid intelligence is highly associated with
the ability to rapidly model novel stimuli. Indeed, as
Carpenter et al state in one early and prominent theo-
retical paper on intelligence: “analytic intelligence refers
to the ability to deal with novelty” [63]. We could be
measuring an indirect result of this modeling process by
measuring the difference between the neural novelty re-
sponse on the first viewing and later viewings. If the nov-
elty response is no longer present in later viewings for a
participant, presumably this is because this participant
was able to successfully model this novel stimuli. Our
adaptation measure could therefore be indirectly mea-
suring how quickly or effectively participants model this
novel movie scene.

Interestingly, one prominent neuroscientific theory of
intelligence, the parieto-frontal integration theory of in-
telligence (P-FIT) [65–69] implicates a number of the
same brain regions that were explored here. In particular,
we find that central regions from this theory like the infe-
rior and superior parietal lobule and the dorsal prefrontal
cortex, which form the control system defined in [5, 70]
form the backbone of the majority of our results, not only
on intelligence and adaptation, but also on dimensional-
ity/coupling changes and inter-subject synchronization,
further suggesting a unifying factor underlying these re-
sults.

Conclusion

In conclusion, our results suggest that a number of
brain systems increase their connectivity and synchro-
nize to incoming sensory stimuli in response to nov-
elty. Additionally, we find evidence that this process
is related to both psychological arousal and intelligence.
These results can be seen in light of a broader emerg-
ing project to integrate intelligence and learning research
into a network and systems perspective within neuro-
science [14, 15, 18, 71–90]. In particular, we see these
results as speaking to the participation of widely dis-
tributed brain systems in the recognition and accommo-
dation to novel stimuli via model building.

MATERIALS AND METHODS

Human Connectome Project Data

The Human Connectome Project (HCP) 7T dataset
[22] consists of structural magnetic resonance imaging
(T1w), resting state functional magnetic resonance imag-
ing (rsfMRI) data, movie watching functional magnetic
resonance imaging (mwfMRI) from 184 adult subjects.
These subjects are a subset of a larger cohort of ap-
proximately 1200 subjects additionally scanned at 3T.
Subjects’ 7T fMRI data were collected during four scan
sessions over the course of two or three days at the Cen-
ter for Magnetic Resonance Research at the University
of Minnesota. Subjects’ 3T T1w data were collected at
Washington University in St. Louis. The study was ap-
proved by the Washington University Institutional Re-
view Board and informed consent was obtained from all
subjects.

Demographics

We analyzed MRI data collected from Ns = 129 sub-
jects (77 female, 52 male), after excluding subjects with
poor quality data. Upon defining each spike as relative
framewise displacement of at least 0.25 mm, we excluded
subjects who fulfill at least 1 of the following criteria:
greater than 15% of time points spike, average framewise
displacement greater than 0.2 mm; contains any spikes
larger than 5mm. Following this filter, subjects who con-
tained all four scans were retained. At the time of their
first scan, the average subject age was 29.36±3.36 years,
with a range from 22 − 36. 70 of these subjects were
monozygotic twins, 57 were non-monozygotic twins, and
2 were not twins.

MRI acquisition and processing

A comprehensive description of the imag-
ing parameters and image preprocessing can be
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found in [91] and in HCP’s online documentation
(https://www.humanconnectome.org/study/hcp-young-
adult/document/1200-subjects-data-release). T1w were
collected on a 3T Siemens Connectome Skyra scanner
with a 32-channel head coil. Subjects underwent two
T1-weighted structural scans, which were averaged for
each subject (TR = 2400 ms, TE = 2.14 ms, flip angle
= 8◦, 0.7 mm isotropic voxel resolution). fMRI were
collected on a 7T Siemens Magnetom scanner with a 32-
channel head coil. All 7T fMRI data was acquired with a
gradient-echo planar imaging sequence (TR = 1000 ms,
TE = 22.2 ms, flip angle = 45◦, 1.6 mm isotropic voxel
resolution, multi-band factor = 5, image acceleration
factor = 2, partial Fourier sample = 7/8, echo spacing
= 0.64 ms, bandwidth = 1924 Hz/Px). Four resting
state data runs were collected, each lasting 15 minutes
(frames = 900), with eyes open and instructions to
fixate on a cross. Four movie watching data runs were
collected, each lasting approximately 15 minutes (frames
= 921, 918, 915, 901), with subjects passively viewing
visual and audio presentations of movie scenes. Movies
consisted of both freely available independent films
covered by Creative Commons licensing and Hollywood
movies prepared for analysis [92]. For both resting
state and movie watching data, two runs were acquired
with posterior-to-anterior phase encoding direction and
two runs were acquired with anterior-to-posterior phase
encoding direction.

Structural and functional images were minimally pre-
processed according to the description provided in [91].
7T fMRI images were downloaded after correction and re-
processing announced by the HCP consortium in April,
2018. Briefly, T1w images were aligned to MNI space
before undergoing FreeSurfer’s (version 5.3) cortical re-
construction workflow. fMRI images were corrected for
gradient distortion, susceptibility distortion, and motion,
and then aligned to the corresponding T1w with one
spline interpolation step. This volume was further cor-
rected for intensity bias and normalized to a mean of
10000. This volume was then projected to the 2mm
32k fs LR mesh, excluding outliers, and aligned to a com-
mon space using a multi-modal surface registration [93].
Resting state and moving watching fMRI images were
nuisance regressed in the same manner. Each minimally
preprocessed fMRI was linearly detrended, band-pass fil-
tered (0.008-0.25 Hz), confound regressed and standard-
ized using Nilearn’s signal.clean function, which re-
moves confounds orthogonally to the temporal filters.
The confound regression strategy included six motion es-

timates, mean signal from a white matter, cerebrospinal
fluid, and whole brain mask, derivatives of these previ-
ous nine regressors, and squares of these 18 terms. Spike
regressors were not applied. Following these preprocess-
ing operations, the mean signal was taken at each time
frame for each node, as defined by the Schaefer 200/400
parcellation(s) [5] in 32k fs LR space.

Fluid intelligence scores

Here we used fluid intelligence scores collected,
processed and provided by the Human Connec-
tome Project [22]. To access data, please see
www.humanconnectome.org. Fluid intelligence was as-
sessed using Penn Progressive Matrices, which is a short-
ened and computerized version of the Raven’s Progressive
Matrices, a well-established measure of fluid intelligence
that measures abstract reasoning using novel patterns in
a pattern completion task [64].

Quantifying dynamic psychological arousal

An independent sample of 46 undergraduate subjects
watched the same complete set of movie-scenes as the
Human Connectome Project cohort in order to provide
a moment-by-moment rating of psychological arousal.
These subjects were instructed to push a spring-loaded
joystick (Pro Logitech Extreme 3D Pro; Model # 963290-
0403) forward to indicate an increase in psychological
arousal. A bar on the right side of the screen provided
a real-time indicator of the degree to which they were
moving the joystick, corresponding to a level between
‘not psychologically arousing’ (baseline; resting state of
joystick) to ‘extremely psychologically arousing’ (pushed
all the way forward). Subjects were instructed to contin-
ually rate their level of psychological arousal throughout
each movie scene. These ratings were sampled at the
presentation of each frame of the episode (24 samples
per second). Because the repetition time (TR) of the
fMRI scanner was 1 s, we used subjects’ mean arousal
rating over each 1-s interval. Overall, this is similar to
how other studies have used joysticks to get dynamic
ratings of psychological responses to naturalistic stimuli
(e.g. [94]). This study was approved by the institutional
review board (IRB) at Indiana University.
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FIG. S1. Novelty effect does not come from motion, (a) Box plots showing the mean motion per subject for each viewing.
These distributions do not significantly differ. (b) Box plots showing the motion similarity across time per subject for each
viewing. These distributions do not significantly differ. (c) Box plots showing that the explained variance of PC1 per viewing
in motion filtered data (filter above 0.15 frame-wise displacement). First viewing distribution is significantly greater than later
viewings (p < 0.05). (d) Box plots showing that the entropy of the explained variance per viewing in motion filtered data (filter
above 0.15 frame-wise displacement). First viewing distribution is significantly lower than later viewings (p < 0.05).
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FIG. S2. Novelty effect is found across scale and processing decisions, and not found at rest, (a) Box plots showing
the entropy of the explained variance per viewing in Schaefer 200 parcellation (the parcellation we used in the main results).
First viewing values are significantly lower than later viewings (p < 10−5). (b) Box plots showing the entropy of the explained
variance per viewing in Schaefer 400 parcellation. First viewing values are significantly lower than later viewings (p < 10−5).
(c) Box plots showing the entropy of the explained variance per viewing in data without global signal regression. First viewing
values are significantly lower than the next two viewings, but not the final viewing (p < 0.05). (d) Box plots showing the entropy
of the explained variance per scan in data from the same subjects during resting-state. First viewing values are significantly
lower than later viewings (p < 0.05).
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