
O R I G I N A L  R E S E A R C H

Topical Nano-Vesicular Spanlastics of Celecoxib: 
Enhanced Anti-Inflammatory Effect and Down- 
Regulation of TNF-α, NF-кB and COX-2 in 
Complete Freund’s Adjuvant-Induced Arthritis 
Model in Rats

This article was published in the following Dove Press journal: 
International Journal of Nanomedicine

Eman Alaaeldin1,2 

Heba A Abou-Taleb3 

Soad A Mohamad1 

Mahmoud Elrehany4,5 

Shereen S Gaber5 

Heba F Mansour2

1Department of Pharmaceutics, Faculty of 
Pharmacy, Deraya University, Minia, Egypt; 
2Department of Pharmaceutics, Faculty of 
Pharmacy, Minia University, Minia, Egypt; 
3Department of Pharmaceutics and 
Industrial Pharmacy, Nahda University 
(NUB), Beni-Suef, Egypt; 4Department of 
Biochemistry, Faculty of Pharmacy, Deraya 
University, Minia, Egypt; 5Department of 
Biochemistry, Faculty of Medicine, Minia 
University, Minia, Egypt 

Background: Rheumatoid arthritis (RA) is an autoimmune disease that underlies chronic 
inflammation of the synovial membrane. Non-steroidal anti-inflammatory drugs (NSAIDs) 
are commonly used to treat RA. However, a long list of adverse events associated with long- 
term treatment regimens with NSAIDs negatively influences patient compliance and ther-
apeutic outcomes.
Aim: The aim of this work was to achieve site-specific delivery of celecoxib-loaded 
spanlastic nano-vesicle-based delivery system to the inflamed joints, avoiding systemic 
administration of large doses.
Methodology: To develop spanlastic nanovesicles for transdermal delivery of celecoxib, 
modified injection method was adopted using Tween 80 or Brij as edge activators. 
Entrapment efficiency, vesicle size, ex vivo permeation, and morphology of the prepared 
nano-vesicles were characterized. Carbopol-based gels containing the selected formulations 
were prepared, and their clarity, pH, rheological performance, and ex vivo permeation were 
characterized. Celecoxib-loaded niosomes and noisome-containing gels were developed for 
comparison. The in vivo efficacy of the selected formulations was evaluated in a rat model of 
Freund’s complete adjuvant-induced arthritis. Different inflammatory markers including 
TNF-α, NF-кB and COX-2 were assessed in paw tissue before and after treatment.
Results: The size and entrapment efficiency of the selected spanlastic nano-vesicle formula-
tion were 112.5 ± 3.6 nm, and 83.6 ± 2.3%, respectively. This formulation has shown the 
highest transdermal flux and permeability coefficient compared to the other investigated 
formulations. The spanlastics-containing gel of celecoxib has shown transdermal flux of 6.9 
± 0.25 µg/cm2/hr while the celecoxib niosomes-containing gel and unprocessed celecoxib- 
loaded gel have shown 5.2 ± 0.12 µg/cm2/hr and 0.64 ± 0.09 µg/cm2/hr, respectively. In the 
animal model of RA, the celecoxib-loaded spanlastics-containing gel significantly reduced 
edema circumference and significantly suppressed TNF-α, NF-кB and COX-2 levels com-
pared to the niosomes-containing gel, the marketed diclofenac sodium gel, and unprocessed 
celecoxib-loaded gel.
Conclusion: The spanlastic nano-vesicle-containing gel represents a more efficient site- 
specific treatment for topical treatment of chronic inflammation like RA, compared to 
commercial and other conventional alternatives.
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Introduction
Rheumatoid arthritis (RA) is a chronic inflammatory auto-
immune disease that affects joints and other tissues in 
about 1% of the worldwide population.1 During the acute 
phase of the inflammatory response, cells of the immune 
system, stimulated by cytokines, migrate to the site of 
injury. Tumor necrosis factor alpha (TNF-α), a cytokine 
that primarily contributes to joint destruction during rheu-
matoid arthritis (RA), stimulates proliferation and differ-
entiation of B lymphocytes, T lymphocytes and NK cells.2 

It also induces the production of other pro-inflammatory 
cytokines such as IL-1, IL-6. In addition, nuclear factor 
kappa-B (NFкB) is a transcription factor that regulates 
immune response during inflammation.3 Cyclooxygenase- 
2 (COX-2) also participates in the inflammatory response, 
as it is the major enzyme in prostaglandin biosynthesis.4,5 

COX-2 plays an important role in articular cartilage dis-
ease and studies have reported that the expression of 
COX-2 facilitated the inflammatory cytokine-induced 
metabolic imbalance of cartilage proteoglycans, irreversi-
bly promoting arthritis.6,7 Arthritis is clinically manifested 
by stiffness of the joints, gradual loss of joint function, and 
chronic pain, which collectively leads to loss of self- 
sufficiency and disruption of life.8 While there is no cure 
for arthritis, symptomatic management can improve the 
quality of life of patients. This includes pain control 
using non-steroidal anti-inflammatory drugs 
(NSAID).9–12 Oral COX-2 inhibitors are currently recom-
mended for the management of the pain accompanying 
arthritis. However, the long-term use of these drugs is 
associated with increased risk of gastrointestinal, cardio-
vascular, and renal adverse effects,13 which explains the 
increased demand for a topical, site-specific, sustained- 
release delivery system loaded with NSAIDs, among 
other therapeutics, for the treatment of RA.14–16

The selective COX-2 inhibitor, celecoxib, is commonly 
used as an anti-arthritic drug, and it is available in the 
market as oral suspension, tablets or capsules. The drug is 
a very weak acid, with a PKa value of 9.68, and it is highly 
lipophilic. It exhibits variable absorption profiles and 
delayed onset of action ranging from 3 to 4 hours after 
oral administration.13 Moreover, celecoxib suffers hepatic 
first pass metabolism and rapid elimination from plasma.17 

The long-term use of celecoxib, as well as other COX-2 
inhibitors, induces cardiotoxicity after oral administration. 
To improve therapeutic outcome of celecoxib and mini-
mize the incidence of adverse events following its use, 

modified delivery approaches have been developed. In this 
regard, Shakeel et al reported the enhancement of cele-
coxib bioavailability when a transdermal nanoemulsion 
was used,18 while Moghimipour et al reported the prospec-
tive application of celecoxib-loaded liposomes as 
a transdermal drug delivery system.13 Dave et al achieved 
an improved anti-arthritic activity of celecoxib encapsu-
lated into PEGylated liposomes.19 Other nano-carriers of 
celecoxib showed improved cytotoxic,20 anti-arthritic 
effect,10 anti-inflammatory effect21 and pain management 
properties.22

Spanlastics or modified niosomes are novel flexible- 
walled nano-vesicular systems that differ from common 
niosomes in that they contain only non-ionic surfactant, 
usually Spans, in addition to an edge activator. The sur-
factant molecules are arranged in a bilayer membrane 
assembly that encloses the active agent.23 Inclusion of 
the edge activator induces destabilization of the bilayer 
membrane of the vesicular system by lowering the inter-
facial tension. Membrane destabilization imparts high 
elasticity and deformability to the vesicular system.24 

Due to the ultra-deformability of spanlastics, they possess 
the ability to squeeze themselves throughout the intracel-
lular spaces of the stratum corneum and the skin layers 
that follow, passing into the target dermal tissues and thus, 
enhancing transdermal drug penetration.25 Spanlastics 
maintain acceptable stability compared to other dosage 
forms like liposomes. They are non-irritant compared to 
other dosage forms that contain cationic surfactants, and 
they provide enhanced delivery due to their highly elastic 
deformable nature. For example, spanlastics have been 
reported to enhance the transdermal delivery of fluvastatin 
sodium16 and haloperidol.23

The objective of the present work is to develop 
a spanlastic nano-vesicular-based delivery system to improve 
the topical permeation and minimize the adverse events of 
celecoxib. The severity of inflammation and the differential 
expression of TNF-α, NF-кB and COX-2 in a Freund’s com-
plete adjuvant-induced arthritis model in rats following the 
treatment of RA rats with the spanlastic nano-vesicle gels or 
other treatments were assessed and compared.

Materials and Methods
Materials
Celecoxib was a kind gift from Amoun Pharmaceutical Co 
(Cairo, Egypt). Cholesterol, Span 60, Tween 80 and Brij 
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35 were purchased from Sigma-Aldrich (St. Louis, MO). 
Caroxyfluorescein (fluorescent marker for vesicles) was 
purchased from Acros Organics (Geel, Belgium). Other 
chemicals and solvents used in the study were of analytical 
grade and purchased from El-Nasr Pharmaceutical 
Company (Cairo, Egypt).

Methods
Preparation of Celecoxib-Loaded Spanlastics and 
Niosomes
Spanlastics (SP) were prepared using the spraying techni-
que/modified injection method reported previously.26 

Briefly, as shown in Table 1, the specified amounts of 
Span 60, Tween 80 or Brij 35 (edge activator) and cele-
coxib (5 mg) were dissolved in 2 mL absolute ethanol to 
prepare the organic phase. The resultant solution was 
loaded into a modified spraying apparatus. The aqueous 
phase was prepared by dissolving sucrose in 3 mL distilled 
water to prepare 9% w/v sucrose solution. The organic 
solution was sprayed onto the surface of the aqueous 
solution (200 µL per five seconds) in a closed system 
heated to 60º C and stirred at 1500 rpm. Spanlastics 
were then spontaneously formed upon removing the 
excess ethanol by evaporation via stirring at 1500 rpm 
for 20 minutes at 60°C. The obtained spanlastic suspen-
sion was kept overnight at 4° C to allow annealing of the 
formed bilayer. The resultant formulation was kept in the 
refrigerator pending further investigations.

Niosomes (N) were prepared using the spraying technique. 
Briefly, cholesterol, Span 60 and celecoxib were dissolved in 
ethanol (organic phase) which was sprayed onto the surface of 
the aqueous phase. Same procedures used to prepare spanlas-
tics were also adopted herein to prepare niosomes.

Physicochemical Characterization of 
Celecoxib-Loaded Spanlastics and Niosomes
Entrapment Efficiency (EE%) 
Free unencapsulated celecoxib was removed from the cel-
ecoxib-loaded spanlastics or niosomes by centrifugation 
(25,000 rpm for 60 minutes at 4°C). The separated nano- 

vesicles were washed by re-suspension in methanol and 
centrifugation.13,27 The washing step was repeated twice 
to insure complete removal of the free drug.28 We have not 
reported any adverse influence of the centrifugation pro-
cess on the vesicle integrity.24 After each centrifugation 
step, the supernatant was collected, and the celecoxib 
content in it was measured by UV-Vis spectrophotometry 
at 253 nm29 using an UV-Vis spectrophotometer 
(Shimadzu-50-02, Kyoto, Japan). The amount of celecoxib 
entrapped was determined by subtracting the amount of 
free drug from the total celecoxib included in the 
formulation.30 The entrapment efficiency (EE %) was 
then calculated using the following equation:

EE% ¼
amount drug entrapped

total drug amount � 10027

Vesicle Size, Size Distribution and Zeta Potential 
Vesicle size and polydispersity index of the prepared span-
lastics and niosomes were investigated in triplicate using 
Malvern Zetasizer Nano (Malvern Instruments, Malvern, 
UK) following proper dilution with purified deionized 
water at 25°C, as previously reported.31

Zeta potential of the prepared formulations was deter-
mined using Malvern mastersizer (3000E Malvern 
Instruments, UK) after proper dilution with Millipore 
water. The average zeta potential of three replicates was 
determined.32

Ex vivo Skin Permeation of Celecoxib-Loaded 
Spanlastics and Niosomes
All animal experiments and protocols mentioned herein 
were performed according to the guidelines for the Care 
and Use of Laboratory Animals of the National Institutes 
of Health (NIH 1985) and were reviewed and approved by 
the Pharmacy Research Ethics Committee (PREC) of 
Minia University (approval number 61/2019). Female 
rats were provided water and food ad libitum, exposed to 
12-hour cycle of light and darkness, and they were left to 
acclimatize for 1 week before the experiments started. The 
hair of the abdominal skin was carefully removed by 
shaving. Twenty four hours later, mice were euthanized 
by cervical dislocation and their abdominal skin was col-
lected. The skin fat was removed using isopropyl alcohol 
and a surgical scalpel. The skin was divided by scissors 
into pieces of proper size that were stored at −80 
C pending further experiment. Within two weeks of col-
lection, the excised shaved abdominal skin of female mice 
was thawed and used to study the ex vivo permeation of 
celecoxib from the prepared nanovesicles.15

Table 1 Molar Ratios of Components of the Prepared 
Spanlastics and Niosomes

Span 60 Tween 80 Brij 35 Cholesterol

Sp1 1 – 1 –

Sp2 4 1 – –
N1 4 – – 1

N2 1 – – 1
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Before the experiment, the frozen skin was soaked for 
one hour in sodium chloride solution (0.9% w/v). The skin 
was fixed on a modified Franz cell with a sample compart-
ment that holds up to 50 mL of receptor medium. The skin 
was fixed in such a way that the stratum corneum faces the 
donor side (sample compartment), while the deeper skin 
layers face the receptor medium side (reservoir compart-
ment). Twenty-five mL of citrate-phosphate buffer solution 
(pH 5.5) containing 0.5% w/v tween 80, used to maintain 
sink condition,33,34 was used as a receptor medium.15 One 
hundred µL of the prepared nano-vesicles were accurately 
added to the sample compartment. The whole unit was 
shaken at 50 rpm in a thermostatic shaker adjusted at 37 ± 
0.5°C. Two mL samples were removed at predetermined 
time intervals for up to 6 hours. The samples were ana-
lysed spectrophotometrically by measuring the absorbance 
at 253 nm to determine the mean cumulative amount 
celecoxib diffused. This experiment was carried out in 
triplicate and the mean values were recorded.35 

Unencapsulated celecoxib suspension was used as 
a control. This suspension was prepared by dissolving 
celecoxib in the least amount of absolute ethanol followed 
by the addition of distilled water to reach celecoxib con-
centration equivalent to that of the studied formulations.

The ex vivo permeation kinetics of the studied nano-
vesicles were investigated by fitting the permeation data to 
different mathematical models, including zero order, first 
order, and Higuchi diffusion models, as follows:

Zero-order: R = K0 t
First-order: R =1 – e−k1 t
Higuchi diffusion model: Q = KH t1/2

where R or Q is the fraction of drug permeated at time 
t, while K, or KH is the rate constant corresponding to each 
model.

Transmission Electron Microscopy (TEM)
A transmission electron microscope (JEM-1400, Jeol, 
Tokyo, Japan) operated at 80 kV, was utilized to visualize 
the morphology of the selected celecoxib-loaded spanlas-
tics and niosomes. One droplet of the vesicular suspension 
was added on the top of carbon-coated copper grid. The 
grid was left to dry at ambient temperature before the 
examination.26,36

Preparation of Carbopol Gel of the Selected 
Celecoxib-Loaded Spanlastics and Niosomes
Carbopol 934 was used to prepare gel of the selected cele-
coxib-loaded spanlastics and niosomes. The gel was prepared 

by dissolving Carbopol 934 (1% w/v), propylene glycol (1% 
w/v, as penetration enhancer), glycerol (3%w/v, as plastici-
ser) in an appropriate amount of deionized water. The resul-
tant mixture was stirred for 2 hours to ensure complete 
dissolution of the ingredients and homogeneity of the gel.37 

Appropriate amounts of celecoxib suspension, celecoxib- 
loaded spanlastics (SP2) or celecoxib-loaded niosomes 
(N2) were added to the mixture mentioned above and the 
mixture was then stirred for 30 minutes to achieve uniform 
dispersion. Two drops (about 120 μL) of triethanolamine 
were then added while stirring to neutralize Carbopol and 
induce the formation of the gel. The pH of the resultant gel 
was adjusted to 5.5 and the gel was kept at room temperature 
for 24 hours before further investigations.38

Characterization of the Selected 
Nanovesicles-Loaded Gels
The prepared gels were examined for clarity against white 
and black backgrounds. The pH of the prepared gels was 
measured (Mettler Toledo, Switzerland). Viscosity and 
rheological profiles were also determined using 
Brookfield DV-III viscometer (Stoughton, MA) equipped 
with spindle 94 that was rotated at a variable speed ran-
ging from 1 to 50 rpm. The study conditions and tempera-
ture (37±1º C) were kept constant for the three gel 
preparations.37 The viscosities were recorded at different 
shearing stress rates and plotted against these rates to 
obtain the corresponding rheological profiles.

Ex vivo Skin Permeation of the Selected 
Nanovesicles-Loaded Gels
Ex vivo permeation of the prepared gels was investigated 
through excised rat skin using the same procedures men-
tioned earlier for celecoxib-loaded spanlastics and nio-
somes. Permeation data were fitted to different 
mathematical models as mentioned above.15

In vivo Animal Study
In vivo evaluation of the selected celecoxib-loaded spanlas-
tics and niosomes was conducted in a Freund’s complete 
adjuvant-induced arthritis model in rats. All animal experi-
ments and protocols mentioned herein were reviewed and 
approved by the Pharmacy Research Ethics Committee 
(PREC) of Minia University (approval number 61/2019).

Animal Conditions 
Thirty male Wistar rats weighing 250–300 g (12–14 
months old), were used in the study. The rats were main-
tained in propylene cages and were exposed to 12-hours 
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light/darkness cycle, at a temperature of 23 ± 1°C. Regular 
rat chow and tap water were provided to the rats ad 
libitum.

Induction of Arthritis 
Before starting the study, the behaviour of all rats enrolled in 
the study was evaluated, and the right paw measurements of 
these rats were taken using digital calipers. Twenty-five ani-
mals were anesthetised via intraperitoneal (IP) injection of 
ketamine chloride (40 mg/kg). After that, 0.1 mL of Freund’s 
Complete adjuvant (complete fraction of Mycobacterium 
butyricum suspended in mineral oil; Sigma, St Louis, MO, 
USA) was injected into the sub-plantar tissue of the right 
posterior paws of the rats as reported previously.39 Animals 
were inspected on daily basis, by measuring the dimensions of 
the injected paws and observing the animal’s general condi-
tions and behaviors. Arthritis was developed in all injected rats 
within 10 days, in the form of the development of distinct 
localized edema (swelling).

Chronic Treatment with Celecoxib Formulations 
Eighteen days following the induction of arthritis, rats were 
randomly divided into six groups.(n=5/group) Group I rats (no 
arthritis, negative control) were injected with 100 µL of 0.9% 
saline, group II rats (arthritis, vehicle control) were treated 
topically with the blank gel base, group III rats (arthritis, 
positive control) were treated topically with the marketed 
diclofenac sodium gel (Olfen® Gel, MUP, Egypt) at a dose 
of 4.5 mg/kg,30 group IV arthritic rats were treated topically 
with celecoxib gel (1.55 mg celecoxib/kg), group V arthritic 
rats were treated topically with celecoxib spanlastic- 
containing gel (1.55 mg celecoxib/kg),10 and group VI arthritic 
rats were treated topically with celecoxib niosome-containing 
gel (1.55 mg celecoxib/kg). The treatment formulations were 
applied twice daily. Measurements of edema were recorded on 

the 19th, 21st, 23rd, 25th, and 30th after the injection of the 
Freund’s complete adjuvant. The data collected were repre-
sented as mean ± SD (n = 5). The percentage inhibition of 
edema was calculated using the following equation:

% Reduction of edema ¼ C Freund0s adjuvant� C formulation
C Freund0s adjuvant:

15

where C is the circumference of the paw either after 
injection with Freund’s adjuvant (C Freund’s adjuvant) or 
after treatment (C formulation).

Total RNA Extraction from Rat Paw Tissue 
Approximately 100 mg of the rat paw tissue was homoge-
nized in 1 mL Trizol solution (Amresco, Solon, OH, USA) 
using an ultrasonic homogenizer (Sonics-Vibracell, Sonics& 
Materials Inc., Newtown, CT, USA). Total RNA was 
extracted from the tissue using trizol RNA extraction reagent 
(Amresco, Solon, OH, USA) according to the manufacturer’s 
instructions. The total RNA concentration was determined 
spectrophotometrically at 260 nm. The purity was calculated 
according to the ratio A260/A280 per manufacturer’s instruc-
tions. Samples with purity ≥ 1.7 were used for qRT-PCR 
using GAPDH (Glyceraldehyde-3-phosphate dehydrogen-
ase) as a reference housekeeping gene for determination of 
the relative expression of TNFα, NFкB and COX-2.40

Real-Time qRT-PCR 
cDNA synthesis was accomplished for equal quantities of 
total RNA in all samples using the RevertAid H Minus First 
Strand cDNA Synthesis kit (K1632, Thermo Scientific 
Fermentas GmbH, St. Leon-Ro, Germany). Real-time poly-
merase chain reaction (PCR) was carried out using single- 
stranded cDNAs, and Maxima SYBR Green qPCR Master 
Mix (2X) (Thermo Scientific Fermentas GmbH, St. Leon-Ro, 
Germany) with the help of StepOne (PCR) Detection System 
(Applied Biosystems, Life Technologies GmbH, Frankfurt, 

Table 2 Forward and Reverse Primer Sequences of Studied Markers

Marker Sequence Accession No. Amplicon Size (bp)

TNF –α F-5ʹ-AGGACACCATGAGCACGGAA-3ʹ 
R-5ʹ-GGGCCATGGAACTGATGAGA-3’

NM_012675.3 234

NF-kB F-5ʹ-GCAACTCTGTCCTGCACCTA-3ʹ 
R-5ʹ-CTGCTCCTGAGCGTTGACTT −3’

NM_001276711.1203 203

COX-2 F-5ʹ-GCATTCTTTGCCCAGCACTT-3ʹ 
R-5ʹ-GTCTTTGACTGTGGGAGGAT-3’

NM_017232.3 210

GAPDH F-5ʹ-TCTCTGCTCCTCCCTGTTCT-3ʹ 
R-5ʹ-CTTGCCGTGGGTAGAGTCAT-3’

NM_017008.4 229
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Germany). The used set of primers is mentioned in Table 2. 
Real-time polymerase chain reaction (qRT-PCR) was carried 
out using 20 μL of RealMOD Green qRT-PCR Mix kit 
(iNtRON biotechnology) with 0.02 µg RNA per reaction 
containing 10 Pmol of specific primers, for 30 cycles of 95° 
C for 10 sec, and 60°C for 1 min. Comparative Ct (threshold 
cycle) method was used to determine the relative amounts of 
the products. The relative expression was calculated using the 
formula 2 (-ΔΔCt).41 They were scaled relative to controls 
where control samples were set at a value of 1.

Statistical Analysis
All studies were carried out in triplicate and the average 
value ± SD was calculated. Analysis of variance (Welch 
ANOVA) with a 95% confidence interval was employed 
for statistical analysis for the data (XLSTAT software, 
Addinsoft).

Results
Physicochemical Characterization of 
Celecoxib-Loaded Spanlastics and 
Niosomes
Entrapment Efficiency (EE%)
The EE% of the prepared spanlastics and niosomes was 
investigated to determine the amount of celecoxib loaded 
in these nanovesicles and the results are displayed in Table 
3. The entrapment efficiency of SP2 (83.6±2.3%) was 
significantly higher (P< 0.05) than that of SP1 (68.3 
±3.4%). The entrapment of N2 (76.4±2.4%) was higher 
than that of N1 (65.3±5.4) (P< 0.05).

Vesicle Size, Size Distribution and Zeta Potential
The vesicle size and polydispersity index (PDI) of the 
prepared spanlastics and niosomes are shown in Table 3. 
SP2 and N2 exhibited vesicular sizes of 112.5± 3.6 and 
165.3± 5.3 nm, respectively. They are significantly smaller 
than those of SP1 and N1 (154± 3.2 and 326.5± 12.6 nm, 

respectively) (P< 0.0001). PDI values of the prepared 
nanovesicles ranged between 0.126 and 0.321. Zeta poten-
tial values ranged between - 13.6 to −17.5.

Ex vivo Skin Permeation
Ex vivo permeation was investigated to predict the in vivo 
performance of the prepared nanovesicles upon topical 
application for transdermal delivery. Ex vivo skin permea-
tion profiles of celecoxib-loaded spanlastics and niosomes 
through excised rat skin are displayed in Figure 1. It is 
obvious that SP2 and N2 exhibited significantly higher 
skin permeation rates than those of SP1 and N1, respectively 
(p < 0.05). All the prepared nanovesicles demonstrated sig-
nificantly higher skin permeation than that of celecoxib 
suspension. The percentage of celecoxib permeated through 
the excised rat skin over the first hour was 41.3 ± 1.9% and 
25.7 ± 2.1% from SP2 and SP1, respectively. Furthermore, 
N2 and N1 permeated 30.2 ± 1.5, and 18.5 ± 1.5, respec-
tively. On the other hand, celecoxib suspension permeated 
only 5.3 ± 0.68%. At the end of the permeation study (6 
hours), the percentages of celecoxib permeated were 85.2 ± 
3.4%, 62.3 ± 3.6%, 74.2 ± 3.0%, 43.2 ± 3.0% and 12 ± 4.2% 
for SP2, SP1, N2, N1 and celecoxib suspension, respec-
tively. Additionally, SP2 had the highest transdermal flux 
and permeability coefficient compared to all other studied 
formulations (Table 4). Table 5 displays the correlation 
coefficient (r2) of permeation of the studied nanovesicles 
following fitting to different mathematical models men-
tioned in the experimental section. It is obvious that 
Higuchi’s diffusion was the best fitting model.

Table 3 Entrapment Efficiency, Vesicle Size, Polydispersity Index 
(PDI) and Zeta Potential of the Prepared Spanlastics and 
Niosomes

EE% Vesicle 
Size (nm)

PDI Zeta 
Potential

Sp1 68.3±3.4 154±3.2 0.321±0.12 − 13.6±1.5
Sp2 83.6±2.3* 112.5±3.6*** 0.126±0.09 −17.5±3.4

N1 65.3±5.4 326.5±12.6 0.213±0.034 −14.3±2.5

N2 76.4±2.4 165.3±5.3*** 0.245±0.021 −16.3±1.2

Note: *p<0.05, ***p<0.005.
Figure 1 Ex vivo skin permeation of SP1, SP2, N1, N2 and celecoxib suspension. 
***p<0.005.
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Morphology of the Selected Nanovesicles
Based on the results of entrapment efficiency, vesicle size 
and ex vivo study, SP2 and N2 were selected for investi-
gation of morphology and further studies. TEM images of 
SP2 and N2 are displayed in Figure 2. Both spanlastics 
and niosomes demonstrated uniform spherical shapes with 
smooth surfaces, good dispersion and no aggregations.

Characterization of the Selected 
Nanovesicles-Containing Gel
Visual inspection revealed that SP2 and N2-containing 
Carbopol gels were transparent, clear, homogeneous and 
free from any clogs. The pH of the gels was around 6.8 ± 
0.2. Viscosity was diminished upon increasing the shear-
ing rate from 1 to 50 rpm (Figure 3). Ex vivo skin permea-
tion profiles of the selected nanovesicles-containing gels 
through excised rat skin and that of celecoxib gel are 
displayed in Figure 4. It is obvious that SP2-containing 
gel exhibited a significantly higher skin permeation than 
that of N2 and celecoxib loaded gels (p < 0.05). 

Transdermal flux and permeability coefficient of the stu-
died gels are displayed in Table 4. SP2-containing gel 
showed flux of 6.9±0.25 µg/cm2/hr while N2-containing 
gel and celecoxib-loaded gels displayed 5.2±0.12 and 0.64 
±0.09 µg/cm2/hr respectively. Table 5 displays the correla-
tion coefficient (r2) for the studied gels. It is obvious that 
Higuchi’s diffusion was the best fitting model.

Anti-Inflammatory Effect in Freund’s 
Complete Adjuvant-Induced Arthritis
The percentage of edema reduction was determined in 
treated groups with respect to the control group (Table 
6). Results show that at day 30 of induction of arthritis, 
after 7 days of treatment, the % of reduction of edema in 
the groups treated with diclofenac sodium gel (Olfen®) 
and celecoxib gel were comparable (42.13 ± 2.2% and 
40.25 ± 4.3%, respectively). The use of celecoxib-loaded 
niosomes or spanlastic gels (N2, SP2) significantly 
increased the edema reduction percentage to 64.1 ± 3.5% 
and 73.45 ± 2.6%, respectively (p< 0.0001). Interestingly, 
spanlastic gel of celecoxib (SP2) showed significantly 
higher edema reduction percentage than that of the nioso-
mal gel (N2) (P <0.005).

Relative mRNA Expression
Relative mRNA expression of TNF-α, NFKB and COX- 
2 was significantly increased in group II (arthritis, posi-
tive control) after induction of inflammation compared to 
group I (no arthritis, negative control) (p ≤ 0.001). Up- 
regulation of the 3 markers indicates that inflammation 
was successfully induced. Table 7 displays the mean 
values of the relative expression of TNFα, NF-kB and 
COX-2 in groups III, IV, V and VI. Table 7 and Figure 5 
reveal that the relative expression significantly decreased 
(P ≤ 0.005) in all the treated groups regardless of the 
type of the formulation. This indicated that all the mar-
kers were down-regulated after treatment, which illus-
trates alleviation of the induced-inflammation by the 
applied treatments. SP2 and NS displayed significantly 
better reduction of expression of the three inflammatory 
markers (P ≤ 0.005) compared to other groups. 
Noticeably, the spanlastic gel formulation showed sig-
nificantly lower expression of the 3 markers compared to 
niosomal gel (P ≤ 0.05).

Discussion
Optimization of a nanosized drug delivery system could have 
a great potential in the enhanced therapeutic effect of the 

Table 4 Transdermal Flux from ex vivo Permeation Study of the 
Selected Formulations

Formulation Transdermal 
Flux (Jss)  
(µg/cm2/hr)

Permeability 
Coefficient  
(cm h−1) ×10−3

N2 7.3±0.12*** 10.9±0.15***
N1 4.2±0.31 5.4±0.24

Sp1 6.02±0.42 10.2±0.2

Sp2 7.6±0.24*** 11.4±0.13***
Celecoxib suspension 1.4 ±0.08 3.5±0.4

N2 gel 5.2±0.12*** 9.2±0.26***
Sp2 gel 6.9±0.25*** 10.5±0.32***

Celecoxib gel 0.64±0.09 2.9±0.6

Note: ***p<0.005.

Table 5 Mathematical Modeling of Permeation Kinetics

Formulation R2

Zero First Higuchi

N2 0.821 0.832 0.971
N1 0.742 0.753 0.986

Sp1 0.865 0.812 0.984

Sp2 0.862 0.732 0.991
Celecoxib suspension 0.856 0.964 0.823

N2 gel 0.745 0.856 0.985

Sp2 gel 0.823 0.821 0.993
Celecoxib gel 0.863 0.832 0.961
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Figure 2 Transmission electron microscope images of (A) SP2, (B) N2.

Figure 3 Rheology of (A) N2 gel, (B) SP2 gel.
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entrapped cargo.42,43 In this study, we aimed to reduce the 
vesicular size and enhance the EE% and the skin permeation 
of celecoxib within two different nanosized formulations 
(spanlastics and niosomes). The use of Tween 80 (an edge 
activator with HLB value of 15) to prepare SP2 resulted in 
higher EE% compared to Brij (HLB =16.9) which was used 
in SP1. Previous studies reported that EE% increased as the 
HLB of the edge activator decrease.16,44 Moreover, increas-
ing the concentration of the Span 60 in SP2 lodged more drug 
within its hydrophobic vicinity,45 and promoted the forma-
tion of multi-layered membrane, which also improved drug 
entrapment.46 Similarly, the EE% was increased in the nio-
somal dosage form N2 upon increasing the concentration of 
cholesterol, compared to N1, resulting in higher formulation 

viscosity, and membrane firmness which improved the phy-
sical stability.47 A previous research reported that optimal 
drug entrapment in niosomes could be attained at cholesterol: 
surfactant ratio 1:1.48

Additionally, the use of Tween 80 as a surfactant in SP2 
instead of Brij in SP1 could be responsible for the smaller 
size of SP2, due to the reduced surface energy and water 
uptake of the less hydrophilic surfactant.48 On the other 
hand, the smaller vesicle size of N2 relative to N1 could 
be attributed also to the higher concentration of cholesterol 
that enhanced the hydrophobicity of the bilayer of the nano- 
vesicles resulting in a reduced surface free energy and thus 
decreasing the vesicular size.38,49 Small vesicular size of 
topical formulations is an essential requirement to augment 
permeation through the skin and provide large surface area 
for enhanced diffusion. It is worth to note that ethanol used 
in the preparation of the formulations is supposed to 
decrease the thickness of the nanovesicular membrane, 
and consequently change the surface charge, reduce vesicu-
lar size, and provide more steric stabilization.50,51 The uni-
form PDI values of the prepared nanovesicles indicate 
optimal formulation homogeneity.52 This can be attributed 
to the application of the spraying technique to prepare the 
formulations, which was shown previously to provide 
homogenous distribution of the prepared nano-vesicles.26 

The enhanced diffusion of the prepared nano-vesicles 
through the excised rat skin compared to celecoxib suspen-
sion could be attributed to the permeation enhancement 

Figure 4 Ex vivo permeation of SP2 gel, N2 gel and celecoxib gel. ***p<0.005.

Table 6 Percentage of Reduction in Edema Circumference

Formulation Day 21% Inhibition Day 23% Inhibition Day 25% Inhibition Day 30

Group III (diclofenac treated) 7.1 ± 1.8 15.6 ± 1.94 23.6± 2.1 42.13 ± 2.2
Group IV (celecoxib gel) 6.5 ± 2.3 17.5 ± 3.2 21.9 ± 3.6 40.25 ± 4.3

Group V (niosomal gel) 5.4 ± 1.5 25.8 ± 2.4 38.4± 2.8 64.1 ± 3.5***

Group VI (spanlastic gel) 5.8 ± 0.7 29.1 ± 1.5 48.6± 2.3 73. 5 ± 2.6***

Note: ***p<0.005.

Table 7 Mean Relative Gene Expression of TNFα, NF-kB and COX-2 in Paw Tissue of Study Groups

Groups TNFα NF-kB COX-2

I (negative control) 1.0 1.0 1.0

II (arthritic positive control) 4.13 ± 0.3619 5.51 ± 0.2257 6.11 ± 0.5097
III (diclofenac treated) 2.436 ± 0.1987*** 2.458 ± 0.1581*** 3.792 ± 0.227***

IV (celecoxib gel) 2.354 ± 0.1194*** 2.308 ± 0.1122*** 3.8 ± 0.133***

V (Spanlastic gel) 1.53 ± 0.04899*** 1.4 ± 0.03647*** 1.94 ± 0.1015***
VI (niosomal gel) 1.95 ± 0.08695*** 1.88 ± 0.08276*** 2.202 ± 0.1569***

Note: ***p<0.005.
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effect of the included non-ionic surfactants. These surfac-
tants decrease the crystalline properties of the intracellular 
lipid bilayer of the skin which improves permeation.53 The 
superior permeation results of SP2 could be explained on 
the basis that spanlastics have the ability to deliver cele-
coxib as a very fine colloidal dispersion with greater surface 
area, which minimizes the drug diffusional path length 
through the skin.54 Besides, modifying of the nanovesicles 
with the edge activator is another factor that contributes to 
the improved skin diffusion as it increases spanlastic 
deformability and consequently augments the capacity of 
the vesicles to keep and bind water when applied under 
non-occlusive state to avoid dehydration.42,55–57 

Accordingly, spanlastics provides deep relocation to water 
opulent strata to guarantee appropriate hydration condition. 
In addition, edge activator has a high tendency for exceed-
ingly curved framework; a characteristic that enables span-
lastics to generate stress-dependent alteration of their 
existing assembly to overcome their movement reluctance 
through the restraining skin channels and hence permits 
reproducible drug passage.58 The higher permeation of 
SP2 relative to SP1 could be attributed to the smaller 
vesicle size and the highly elastic and non-bulky hydrocar-
bon chains of Tween 80.42

Formulation of N2 and SP2 into gel was essential to 
increase the residence time on the skin after application. 
The obvious pseudoplastic or shear-thinning performance 
of the prepared gels is favorable for topical application 
because of the ease of spreadability.59,60 Fitting of the 
permeation data to different mathematical models revealed 
that the Higuchi’s model fits the experimental data the 

most, which indicates that diffusion is the possible release 
mechanism of celecoxib from the prepared nano-vesicles 
and selected gels.

In rats with Freund’s Complete adjuvant-induced RA, 
the relative expression levels of TNF-α, NF-кB and COX- 
2 are higher compared to those of the non-arthritic group. 
The augmented TNF-α, NF-кB and COX-2 levels in the 
arthritic control rats were significantly reduced in the 
treated rats treated either with diclofenac or celecoxib 
formulations. NF-кB is an important transcription factor 
in macrophages that controls gene expression for various 
cytokines and plays a significant role in RA 
development.61 It has been reported that NF-кB controls 
TNF-α expression, while, TNF-α works as an inducer of 
NF-кB stimulation.60 Hence, TNF-α suppression produces 
an overall decrease of the pro-inflammatory cytokines that 
require NF-кB for their expression.62 Moreover, prosta-
glandin E2 (PGE2) biosynthesis from arachidonic acid by 
COX-2 has an important role in rheumatoid arthritis devel-
opment in the synovium.63 Increased PGE2 intensifies 
vasodilation, pain, and bone and cartilage erosions.61 

Increased COX-2 levels were found in arthritic control 
animals with subsequent enlarged paw circumference, 
whereas a significant reduction was detected after treat-
ment in a manner related to the extent of permeation of the 
applied COX-2 inhibitor. Indeed, the anti-inflammatory 
effect of the celecoxib-containing spanlastic gel formula-
tion showed the most effective alleviation of inflammation 
as seen in the mean relative expression values of the 
studied markers compared to the arthritic control group. 
The study recommends the use of spanlastic gel as a novel 

Figure 5 Relative mRNA expression of TNF-α, NFKB and COX-2 in paw tissue of Freund’s complete adjuvant-induced arthritis in rats. ****p<0.0001, ***p<0.005, **p<0.01.
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form for the topical delivery of celecoxib for the treatment 
of RA.

Conclusion
In the existing study, spanlastics and niosomes were devel-
oped as nanovesicles for the topical delivery of celecoxib 
to treat arthritis. Our approach was to enhance the ther-
apeutic effect of celecoxib via enhancing the permeation 
of celecoxib at the inflammation site while avoiding the 
well-reported side effects of the drug. Celecoxib-loaded 
spanlastic-containing gel displayed superior results in 
terms of reduction of circumference of edema and sup-
pressing the arthritis markers in Freund’s complete adju-
vant-induced arthritis in a rat model.
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