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Abstract

In the 2014–2015 influenza season a novel neuraminidase (NA) genotype was detected in

global human influenza A surveillance. This novel genotype encoded an N-linked glycosyla-

tion site at position 245–247 in the NA protein from clade 3c.2a H3N2 viruses. In the years

following the 2014–2015 season, this novel NA glycosylation genotype quickly dominated

the human H3N2 population of viruses. To assess the effect this novel N-linked glycan has

on virus fitness and antibody binding, recombinant viruses with (NA Gly+) or without (NA

Gly-) the 245 NA glycan were created. Viruses with the 245 NA Gly+ genotype grew to a sig-

nificantly lower infectious virus titer on primary, differentiated human nasal epithelial cells

(hNEC) compared to viruses with the 245 NA Gly- genotype, but growth was similar on

immortalized cells. The 245 NA Gly+ blocked human and rabbit monoclonal antibodies that

target the enzymatic site from binding to their epitope. Additionally, viruses with the 245 NA

Gly+ genotype had significantly lower enzymatic activity compared to viruses with the 245

NA Gly- genotype. Human monoclonal antibodies that target residues near the 245 NA gly-

can were less effective at inhibiting NA enzymatic activity and virus replication of viruses

encoding an NA Gly+ protein compared to ones encoding NA Gly- protein. Additionally, a

recombinant H6N2 virus with the 245 NA Gly+ protein was more resistant to enzymatic inhi-

bition from convalescent serum from H3N2-infected humans compared to viruses with the

245 NA Gly- genotype. Finally, the 245 NA Gly+ protected from NA antibody mediated virus

neutralization. These results suggest that while the 245 NA Gly+ decreases virus replication

in hNECs and decreases enzymatic activity, the 245 NA glycan blocks the binding of mono-

clonal and human serum NA specific antibodies that would otherwise inhibit enzymatic activ-

ity and virus replication.

Author summary

Influenza virus infects millions of people worldwide and leads to thousands of deaths and

millions in economic loss each year. During the 2014/2015 season circulating human
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H3N2 viruses acquired a novel mutation in the neuraminidase (NA) protein. This muta-

tion has since fixed in human H3N2 viruses. This mutation at position 245 through 247 in

the amino acid sequence of NA encoded an N-linked glycosylation. Here, we studied how

this N-linked glycan impacts virus fitness and protein function. We found that this N-

linked glycan on the NA protein decreased viral replication fitness on human nasal epithe-

lial cells (hNEC) but not immortalized Madin-Darby Canine Kidney (MDCK) cells. We

also determined this glycan decreases NA enzymatic activity, enzyme kinetics and affinity

for substrate. Furthermore, we show that this N-linked glycan at position 245 blocks some

NA specific inhibitory antibodies from binding to the protein, inhibiting enzymatic activ-

ity, and inhibiting viral replication. Finally, we showed that viruses with the novel 245 N-

linked glycan are more resistant to convalescent human serum antibody mediated enzy-

matic inhibition. While this 245 N-linked Glycan decreases viral replication and enzy-

matic activity, the 245 N-linked glycan protects the virus from certain NA specific

inhibitory antibodies. Our study provides new insight into the function of this dominant

H3N2 NA mutation and how it impacts antigenicity and fitness of circulating H3N2

viruses.

Introduction

Each year seasonal influenza accounts for 3 to 5 million incidences of severe disease and up to

650,000 deaths [1]. Most influenza vaccines rely on the generation of antibodies against the

hemagglutinin (HA) protein, one of the two major glycoproteins on the virion surface. The

anti-HA protein antibodies inhibit virus entry into cells but also provide an immune pressure

which leads to the emergence of virus strains with mutations in HA antigenic sites [2, 3]. This

antigenic drift leads to escape from vaccine- and infection-induced immunity and results in

the need to change influenza vaccine strains on a fairly frequent basis.

There is renewed interest in generating influenza vaccines that provide broader and stron-

ger protection against several virus strains [4–6] and the other major influenza surface glyco-

protein, the neuraminidase (NA) protein, has emerged as a potential candidate for such a

universal influenza vaccine [6]. The NA protein has a neuraminidase activity that is critical in

two stages of the virus life cycle [7–9]. The NA protein cleaves sialic acid from mucins that

coat airway epithelial cells which facilitates influenza A virus entry into respiratory epithelial

cells [10]. The neuraminidase activity also removes sialic acid from host cell membrane bound

proteins and viral HA and NA proteins at late times post infection, allowing viral particles to

efficiently bud and spread to other respiratory epithelial cells [7, 11].

Anti-NA antibodies can prevent or decrease the severity of influenza infection [12–15].

High titer anti-NA antibodies have been correlated with decrease disease severity and protec-

tion in adults [16, 17]. Seasonal influenza A and B viruses have a conserved epitope in the NA

protein which is necessary for enzymatic function [18, 19]. Antibodies that target this epitope

inhibit neuraminidase function and virus replication. Neuraminidase antibodies can be potent

and broadly reactive [12, 20]. Anti-NA antibodies increase in titer with age and are capable of

recognizing influenza strains isolated in many different influenza seasons [12, 19, 20]. Addi-

tionally, a subset of anti-NA antibodies raised in a human infection are broadly cross reactive

and protective against influenza A and B virus strains [18, 19].

Neuraminidase antibodies can directly inhibit NA function as well as virus replication.

Antibodies that bind neuraminidase can inhibit enzymatic activity, presumable through steric

inhibition of substrate accessing the active site [12, 15]. Blocking NA activity prevents the virus
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from properly budding, leading to virions which aggregate at the cell surface [9, 12, 21]. Fur-

thermore, escape mutants that decrease binding of certain active site targeting anti-NA anti-

bodies incur a significant fitness disadvantage in virus replication and enzymatic activity [19].

This is due to mutating residues critical for the enzymatic function which these broadly reac-

tive antibodies target. These studies indicate the NA protein has a highly conserved and critical

epitope which can be targeted by neutralizing antibodies. Targeting the NA protein has

recently become one strategy for generating a universal influenza vaccine [15, 17, 20, 22]. As

such, a polyclonal antibody response to the NA protein assures inhibition of NA function as

well as steric hinderance of the HA protein—effectively neutralizing virus entry and release.

While the HA protein is the immunodominant antigen on the influenza virion, previous

studies have shown the function and significance of anti-NA antibodies in vaccination and

natural infection [12, 15, 20, 23, 24]. However, this immune pressure can also lead to the selec-

tion of viruses that have accumulated mutations in NA protein antigenic sites. NA antigenic

drift has been suggested to occur at lower frequency than HA antigenic drift but can have an

impact on influenza spread and antibody recognition of NA [25–27].

In 2014–2015 a novel genotype emerged in 3c.2a clade of human H3N2 influenza viruses.

This clade, or subgroup of H3N2 viruses based on HA sequence, was the dominant circulating

clade during this season [28]. This new genotype also encoded an N-linked glycan at position

245–247 in the N2 NA protein. This glycan is located in close proximity to the NA active site

and near a known antigenic site [29]. Using infectious clone technology to assess viral fitness

and enzymatic activity, we demonstrate that this 245 NA glycan prevents binding of inhibitory

antibodies but also reduces NA enzymatic activity and virus fitness in human nasal epithelial

cell cultures. Previous studies of this 245 NA glycosylation showed similar results in terms of

NA enzymatic activity and epitope masking, however our work now shows that this 245 N-

linked glycan significantly decreases replication only on primary human nasal epithelial cells

and prevents NA antibody mediated virus neutralization [29]. The fitness cost of this mutation

is therefore balanced by the advantage provided through the escape of preexisting immunity,

contributing to viruses with this NA genotype becoming the dominant global H3N2 human

virus strain.

Results

Currently, nearly all circulating human H3N2 viruses have a N-linked glycosylation sequence

at positions 245–247 in the NA protein. To study the effect that 245 NA glycan has on virus

replication and enzymatic activity, recombinant viruses were generated which encoded either

the 2014/15 N2 NA proteins with (245 NA Gly+) or without (245 NA Gly-) the NA 245 glycan

and a 2014/2015 HA protein. The remaining six influenza virus segments from A/Victoria/

361/2011 (H3N2) were used as the virus genetic backbone. These viruses were first character-

ized on MDCK-SIAT1 cells, which overexpress the human enzyme CMP-N-acetylneurami-

nate:β-galactoside α-2,6-sialyltransferase producing more cell surface carbohydrates with

terminal α-2,6 sialic acid [30]. Both viruses showed similar kinetics of infectious virus produc-

tion and peak infectious virus amounts after a low MOI infection (Fig 1A). In contrast, infec-

tion of hNEC cultures at a low MOI with the 245 NA Gly- virus yielded significantly higher

amounts of infectious virus for a prolonged period of time when compared to the 245 NA Gly

+ virus (Fig 1B). Plaque appearance, morphology and size was then assessed using MDCK

cells. Both viruses produced clear, distinct plaques (Fig 1C) of similar size (Fig 1D). This data

indicates that while the 245 NA glycan does not impact virus replication on immortalized

MDCK-SIAT1 or MDCK cells, it has an adverse effect on virus replication in hNEC cultures.
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To understand how the addition of a N-linked glycan could impact virus replication and

protein function, a model of the N2 neuraminidase monomer was generated with UCSF Chi-

mera 3D modeling software. A similar N2 neuraminidase strain (A/Tanzania/2010, Protein

Data Bank ID code 4GZP) was used to highlight key residues and add a complex N-linked gly-

can at position 245 (Fig 2A) via the online program Glyprot. This 245 NA glycosylation site

has previously been shown to have a complex N-glycan added to it [29]. This structure was

modified in silico to have the same amino sequence of 245 NA Gly- and 245 NA Gly+ proteins.

From the model, it is clear that the 245 N-linked glycan is situated near the active site of the

protein. To assess whether this N-linked glycan could interfere with the binding of antibodies

that target epitopes close to the NA enzymatic active site, the coding sequences for both the

245 NA Gly+ and 245 NA Gly- gene were inserted into a mammalian cDNA expression vector

(pCAGGS), with an N-terminal FLAG epitope tag before the stop codon (N-terminus). The

NA-FLAG plasmids were transfected into HEK293T cells and the reactivity of the proteins

assessed using monoclonal antibodies specific for the NA protein or the FLAG epitope. Three

Fig 1. Replication of recombinant H3N2 viruses in MDCK-SIAT1, MDCK or hNEC cultures with or without 245 NA glycosylation. Low MOI growth curves with

MDCK-SIAT1 (A) or hNEC cultures (B) with the indicated recombinant viruses at 32˚C. Hours post infection (HPI) on X axis, Log of TCID50/ml on Y axis. Data are

pooled from 3 independent experiments with four replicates per virus per experiment (total n = 12 wells per virus timepoint). Data were analyzed with �p< .05 and

two-way repeated measures ANOVA with Bonferroni multiple comparison posttest. The limit of detection (L.O.D.) is indicated with a dotted line at log 2.37 TCID50/

ml in A and B. Error bars in A and B are SEM. (C) Plaque assay performed with recombinant 245 NA Gly + and 245 NA Gly—viruses on MDCK cells. (D)

Quantification of plaque area from 30–50 individual plaques per virus from 3 independent experiments.

https://doi.org/10.1371/journal.ppat.1008411.g001
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Fig 2. Binding of neuraminidase inhibitory antibodies to cells expressing 245 NA Gly+/- proteins. (A) 3D model of N2 NA with (Left, 245 NA Gly+) or without

(Right, 245 NA Gly-) the predicted 245 N-glycan. Catalytic and framework residues are highlighted in cyan. Residues 245–247 are highlighted in red. Protein structure

modeled and modified via UCSF Chimera, Protein Data Bank ID code 4GZP (Tanzania/2010 N2 NA). A typical complex style N-glycan was added via the Glyprot

online program. (B-D) 245 NA Gly+ (blue dots) or 245 NA Gly- (red dots) FLAG-tagged proteins expressed in HEK293T cells. NA expressing cells were incubated

with dilutions of monoclonal antibodies HCA2 (B), 235-1C02 (C) or 229-1G03 (D) in addition to a mouse monoclonal antibody recognizing the FLAG epitope (to

measure overall NA expression). Red lines indicate mAb binding to cells expressing 245 NA Gly- protein. Blue lines indicate mAb binding to cells expressing 245 NA

Gly+ protein. Representative data from 3 experiments.

https://doi.org/10.1371/journal.ppat.1008411.g002

PLOS PATHOGENS Influenza neuraminidase antigenic drift and virus fitness

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008411 June 29, 2020 5 / 22

https://doi.org/10.1371/journal.ppat.1008411.g002
https://doi.org/10.1371/journal.ppat.1008411


different anti-NA monoclonal antibodies were used. HCA-2 is a rabbit IgG that recognizes a

highly conserved 9 amino acid sequence (ILRTQESEC) in the active site of most influenza A

and B virus NA proteins. [18, 19]. This antibody was unable to bind to the 245 NA Gly+ protein

but showed robust binding of the 245 NA Gly- protein (Fig 2B). The human monoclonal anti-

bodies (235-1C02 and 229-1G03) were also used to study epitope masking. The binding of

these antibodies to N2 NA proteins have been described previously [20]. NA proteins encod-

ing amino acid changes at 248 and 429 [20] allow for escape from binding with 235-1C02, sug-

gesting that glycan at position 245 could inhibit antibody binding to its epitope. In fact,

binding of the 235-1C02 to the 245 NA Gly+ protein was not detected but the antibody recog-

nized the 245 NA Gly- protein (Fig 2C). The monoclonal antibody 229-1G03 was previously

shown to robustly bind to 245 NA Gly- proteins, but its binding epitope has not been mapped.

This antibody can inhibit NA enzymatic activity, suggesting it binds near the NA active site

[20]. We found that this antibody recognizes both 245 NA Gly- and 245 NA Gly+ proteins but

shows decreased binding to the 245 NA Gly+ protein, suggesting that the 245 NA glycan par-

tially disrupts 229-1G03 antibody epitope recognition (Fig 2D). Taken together these results

indicate that the 245 NA glycan masks epitopes in and around the active site of the protein as

well as multiple epitopes recognized by human monoclonal antibodies, some of which are

potent, broadly reactive inhibitory antibodies. Similar results have recently been reported

using the NA protein of the A/Hong Kong/4801/2014 vaccine strain [29].

To understand how the 245 NA glycan impacted NA function a variety of enzymatic and

kinetic activity assays were performed. To standardize NA content, we chose to partially purify

virus particles using ultracentrifugation over a sucrose cushion then normalize for NA content

using Western blotting with the HCA-2 monoclonal antibody. While the HCA-2 antibody

binding to conformationally intact 245 NA Gly+ protein is inhibited (Fig 2B), when the pro-

tein is denatured, the HCA-2 linear epitope is recognized in both the 245 NA Gly- and Gly

+ proteins (Fig 3A) [18, 19]. The NA enzymatic activity was measured using three different

NA assays. The Enzyme Linked Lectin Assay (ELLA) uses fetuin (Fig 3B) as a complex carbo-

hydrate substrate which mimics the natural ligands seen by the NA protein during natural

infection [31, 32]. The NA-STAR (Fig 3C) and NA-Fluor assays (Fig 3D) utilize smaller sialic

acid mimics that release luminescent or fluorescent molecules after cleavage. Using all three

substrates, the enzymatic activity of 245 NA Gly- was two to three higher than that of the 245

NA Gly+, suggesting that the 245 glycan was adversely affecting NA enzymatic activity. This

NA activity difference was highest in the ELLA assay, suggesting that the 245 N-linked glycan

sterically blocks the full carbohydrate substrate in this assay from the active site. However, the

relatively smaller NA-STAR and NA Fluor substrates were still utilized less efficiently by the

245 NA Gly+ protein, suggesting this glycan may have more extensive structural effects on the

NA active site.

In addition to bulk activity assays, we performed an enzyme kinetic assay to determine

enzyme velocity and affinity for substrate (Fig 3E). As expected, the 245 NA Gly+ protein has

lower enzyme velocity and a lower affinity for substrate (Fig 3E, Table 1). All of these findings

indicate that the 245 NA glycan significantly decreases NA enzymatic activity by decreasing

substrate access to the active site of the protein.

Since the 245 NA glycan blocked or decreased binding of the two human monoclonal anti-

bodies 235-1C02 and 229-1G03 and we tested the ability of these antibodies to inhibit viral

enzymatic activity. First, viral stocks of 245 NA Gly+ and 245 NA Gly- were equalized via NA

content and virus was incubated with a dilution series of the human monoclonal antibodies or

oseltamivir. Vehicle (assay buffer) was used for a control and used to subtract background. As

expected from the antibody binding studies, the monoclonal antibody 235-1C02 was unable to

inhibit the NA enzymatic activity of the 245 NA Gly+ in the NA star assay even at the highest
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concentration tested (100nm) but inhibited the 245 NA Gly- virus at a concentration of 0.8nm

(Fig 4A). The 229-1G03 inhibited both the 245 NA Gly+ and 245 NA Gly- at a concentration

of 4.7nm and 1.2nm respectively, suggesting a partial inhibition of inhibitory activity (Fig 4A)

via the 245 NA glycan. The same trend is seen in the ELLA assay (Fig 4B) with 235-1C02 able

to inhibit 245 NA Gly- at a concentration of 0.6nm but unable to inhibit the neuraminidase

Fig 3. Effect of 245 NA glycan on neuraminidase activity. The NA content in partially purified influenza virus particles was measured via SDS-PAGE and western

blot (A) using HCA-2 mAb to detect NA and M1 antibody GTX125928 to detect M1. Numbers below protein bands indicate measured intensity. NA content was

normalized to the M1 content of the same virus sample. With NA content normalized, the NA activity in the partially purified virus preparations was measured in

the enzyme linked lectin assay (ELLA) (B), NA-STAR assay (C) and NA-Fluor MUNANA based assay (D). In B, C, and D, 245 NA Gly- enzymatic activity was set

to 100. X axis label is viral NA genotype 245 NA Gly+ activity is graphed as a percentage of that activity. (E) To assess enzyme kinetics, 245 NA Gly- and 245 NA Gly

+ viruses were incubated with a dilution of MUNANA substrate and fluorescence was measured every 60s for 1 hour. Initial velocity plotted as uM product

generated per minute. Non-linear regression plotted (line) with individual values (points). � p< .05 unpaired T test. NA and M1 protein content in A were

determined using ImageJ software. Enzyme kinetics was determined using a non-linear curve fit Michaelis-Menten equation in Graphpad prism 8.

https://doi.org/10.1371/journal.ppat.1008411.g003
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activity of the 245 NA Gly+ virus. The mAb 229-G03 inhibited the 245 NA Gly- virus at a con-

centration of .55nM and reduced inhibitory activity against 245 NA Gly+ (2.35nm). Impor-

tantly, in both assays, oseltamivir inhibition was clearly observed and not different between

viruses, suggesting that the drug was fully capable of inhibiting NA enzymatic activity irrespec-

tive of 245 NA glycosylation status. These results confirm that 245 NA glycan can result in

reduced inhibitory activity of antibodies that bind near the NA active site. In addition to

monoclonal antibody studies we investigated how human convalescent serum from the 2014

through 2016 influenza seasons could inhibit enzymatic activity of the 245 NA Gly+ and 245

NA Gly- protein. We generated H6N2 viruses to avoid the confounding effect that anti-HA

antibodies in human serum can have on NA enzymatic activity [31, 33]. Twenty serum sam-

ples taken from individuals approximately 28 days after confirmed H3N2 infection were used.

Ten serum samples were from patients infected with a 245 NA Gly- virus and 10 from patients

infected with a 245 NA Gly+ virus (Table 2). Regardless of the source of serum, the 245 NA

Gly+ protein was more resistant to serum based enzymatic inhibition, indicated by a higher

concentration of serum needed to inhibit 50% of the enzymatic activity (Fig 4C–4E, Table 2)

when compared to the 245 NA Gly- virus. In 18 of the 20 serum samples tested, two to three-

fold more serum was necessary to inhibit the 245 NA Gly+ protein compared to the 245 NA

Gly- protein (Fig 4F). Together these results demonstrate that the 245 NA glycan reduces the

recognition of serum NA antibodies consistent with antigenic drift of the NA protein.

Neuraminidase inhibitory antibodies have previously been shown to inhibit virus replica-

tion by inhibiting enzymatic activity of the protein or by inducing a cellular immune response

through antibody dependent cellular cytotoxicity (ADCC) [12, 20, 31, 34] or a combination of

both. With two recombinant viruses only differing in the 245 NA glycosylation sequence, we

sought to understand how this glycan would impact the ability of 229-1G03 and 235-1C02 to

neutralize virus infectivity. Using the two recombinant viruses we found that the antibody

235-1C02 was unable to neutralize the 245 NA Gly+ virus, but effectively neutralized the 245

NA Gly- virus at an average concentration of 1.3nm (Fig 5A). Using 229-1G03, we found this

antibody was able to neutralize both 245 NA Gly+ and 245 NA Gly- viruses, with an average

concentration of 6.4nm and 1.5nm respectively, indicating somewhat reduced neutralizing

activity against the 245 NA Gly+ virus (Fig 5B). Using the experimentally determined 50%

neutralizing antibody concentration with the 245 NA Gly- virus in Fig 5A and 5B, a multistep

growth curve in the presence or absence of these antibodies was performed. Fig 5C demon-

strates that the 245 NA Gly+ virus was not impacted with the 235-1C02 antibody, as no signifi-

cant difference was found in infectious virus production comparing human IgG isotype (clone

IGHG1) and 235-1C02. However, antibody 229-1G03 did significantly decrease infectious

virus production of the 245 NA Gly+ virus, showing a partial ability to neutralize infectious

virus, consistent with the binding (Fig 2) and enzymatic inhibition results (Fig 4). This sug-

gests that the epitope this antibody binds is partially accessible on the 245 NA Gly+ protein. In

Fig 5D, both human monoclonal antibodies significantly decreased infectious virus production

of the 245 NA Gly- virus to near undetectable levels, suggesting potent neutralizing activity.

These results confirm our previous findings with protein binding (Fig 2) and enzymatic

Table 1. Enzyme kinetics of 245 NA Gly- and 245 NA Gly+ viruses. NA-Flour assay conducted in triplicate, repre-

sentative results shown of two biological replicates. Values calculated with Graph Pad prism 8 with Michaelis-Menten

non-linear regression. 95% confidence interval (CI) shown.

Test Virus vMAX (95% CI) Km (95% CI) R squared of line

245 NA Gly- .6645 (0.6305 to 0.7001) 61.55 (50.59 to 74.76) .99

245 NA Gly+ .4680 (0.4551 to 0.4813) 108.9 (99.12 to 119.6) .99

https://doi.org/10.1371/journal.ppat.1008411.t001
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Fig 4. Effect of inhibitory antibodies and human serum on NA enzymatic function ELLA and NA Star. Concentration of N2 monoclonal antibody needed to

inhibit 50% of NA activity of 245 NA Gly+ and 245 NA Gly- viruses in NA-STAR (A) or ELLA (B) NA activity assays using partially purified H3N2 viruses. X axis

labels indicate mAb or Oseltamivir. Upper limit of detection shown with a dotted line in A and B, indicating the highest concentration of inhibitory antibody used

(100nM). (C-E) NA inhibition (NAI) ELLA assay performed with human convalescent serum from patients with confirmed H3N2 infection using H6N2

recombinant viruses. Virus content equalized via plaque assay. Convalescent serum NAI assay from all patients with confirmed H3N2 infection with NA Gly- virus

(C), NA Gly+ virus (D) and both NA genotypes together (E). All patient serum samples with connecting lines between matched serum samples (F). Serum samples
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inhibition (Fig 3). The 245 NA glycan prevents NA active site-specific antibodies from binding

and inhibiting the NA protein, and significantly decreases antibody mediated neutralization of

other NA specific neutralizing antibodies.

Discussion

In this study we demonstrated that the recently acquired 245 N-linked glycan site in the NA

protein of currently circulating human H3N2 viruses significantly alters the function and anti-

genicity of the NA protein. The 245 NA glycan decreased in vitro replication on primary

hNECs but did not decrease replication on immortalized MDCK cells nor decrease plaque

area of isogenic viruses (Fig 1). This suggests that some aspect of primary hNECs, likely the

presence of respiratory mucins, is decreasing virus replication. Neuraminidase is necessary for

virus motility through mucins [10, 35] and decreasing NA enzymatic activity likely decreases

the ability of the virus to move through mucus. The decrease in neuraminidase activity found

in three separate activity assays (Fig 3) but was most pronounced when fetuin was used as a

substrate, indicating recognition of sialic acid on longer carbohydrate chains is especially

affected by 245 NA glycosylation. We conclude that the 245 NA glycan likely blocks substrate

access to the active site and decreases enzymatic activity. Decreasing enzymatic activity is likely

tied to a decrease in replication seen in mucin secreting hNECs but not seen in immortalized

MDCK cells, which to this point have not been shown to secrete mucins.

from the same individual are connected to indicate relative activity to the 245 NA Gly+ and 245 NA Gly- viruses. X axis label indicates test virus NA genotype. Dotted

line shown is lower limit of detection in C-F, highest concentration of convalescent serum used (1:40 dilution). � p< .05 paired T-Test.

https://doi.org/10.1371/journal.ppat.1008411.g004

Table 2. Serum samples and 50% NAI values. Serum samples taken from CEIRS study. Serum genotype, 50% NAI (NAI50) titer and fold difference shown. Twenty

convalescent serum samples taken approximately 28 days after confirmed H3N2 infection used. Ten from 245 NA Gly+ infected patients, 10 from individuals infected

with a 245 NA Gly- virus. NAI50 values are the highest titer that resulted in at least 50% inhibition of enzyme activity in ELLA assay using H6N2 viruses expressing either

245 NA Gly+ or 245 NA Gly- protein. Data shown from one biological replicate. Each NAI assay was conducted in duplicate and averaged to determine titer.

Convalescent Serum ID Serum NA Genotype 245 NA Gly+ NAI50 Titer 245 NA Gly- NAI50 Titer Fold NA Gly+ / NA Gly-

01-23-A-0081 NA Gly Positive 80 80 1

01-23-A-0023 NA Gly Positive 160 640 4

01-23-A-0051 NA Gly Positive 160 320 2

01-11-A-0262 NA Gly Positive 1280 2560 2

01-21-A-0268 NA Gly Positive 1280 2560 2

02-11-Pro-0003 NA Gly Positive 80 80 1

02-11-Pro-0005 NA Gly Positive 160 320 2

02-11-Pro-0023 NA Gly Positive 320 1280 4

02-11-Pro-0029 NA Gly Positive <40 320 8

02-11-Pro-0101 NA Gly Positive 160 2560 8

01-11-A-0148 NA Gly Negative 40 80 2

01-11-A-0256 NA Gly Negative 1280 5120 4

01-11-A-0307 NA Gly Negative 640 1280 2

02-11-Pro-0006 NA Gly Negative 1280 1280 1

01-21-A-0192 NA Gly Negative 320 640 2

02-11-Pro-0030 NA Gly Negative <40 <40 1

02-11-Pro-0036 NA Gly Negative <40 160 4

02-11-Pro-0056 NA Gly Negative 160 320 2

02-11-Pro-0057 NA Gly Negative 160 320 2

01-21-A-0185 NA Gly Negative 160 320 2

https://doi.org/10.1371/journal.ppat.1008411.t002
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The presence of an N-linked glycan site at NA 245 did not affect NA sensitivity to the anti-

viral drug oseltamivir. While oseltamivir access to the NA active site may be reduced due to

the 245 NA glycan in a manner similar to that seen with the other enzyme substrates used,

Fig 5. Effect of neuraminidase inhibitory antibodies on virus growth. The concentration of anti-neuraminidase monoclonal antibody 235-1C02 (A) and 229-1G03

(B) needed to neutralize 50% of the infectivity of 245 NA Gly- or 245 NA Gly+ viruses was determined on MDCK cells. Low MOI growth curve with recombinant

viruses on MDCK cells (C-D). Hours post infection (HPI) on X axis, Log of TCID50/ml on Y axis. MDCK cells were infected with an MOI of .001 with either 245 NA

Gly+ virus (C) or 245 NA Gly- virus (D). After 1hr of inculation, viruses were treated with either human IgG isotype control (clone IGHG1), mAb 235-1C02 or mAb

229-1G03. Dotted line in A and B indicated upper limit of detection, highest concentration of mAb used (100nM).� p< .05 unpaired T test A and B. Dotted line in C

and D indicated lower limit of detection, 2.37 TCID50/ml. Data are pooled from 3 independent experiments with four replicates per virus per experiment (total n = 12

wells per virus timepoint) in C and D Error bars in C and D is SEM. � p< .05 two way repeated measures ANOVA with Bonferroni multiple comparison posttest in C

and D.

https://doi.org/10.1371/journal.ppat.1008411.g005
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subsequent release of oseltamivir is most likely not effected, resulting in efficient inhibition of

NA enzymatic activity. Further studies of the kinetics of oseltamivir inhibition of 245 NA Gly

+ and 245 NA Gly- viruses could provide additional insights into this observation.

Recently there have been attempts to map the antigenic regions of the NA protein. The 245

NA glycan is located near the enzymatic active site ([29], Fig 2) and is poised to mask this

region of the NA protein. We sought to understand how this glycan, which incurs a significant

fitness disadvantage as judged by virus replication in hNEC cultures, could still fix in the

human H3N2 virus population in such a short timeframe. Through multiple assays we found

this glycan has an important role in masking NA antigenic sites. This glycan blocks NA active

site-specific antibodies from binding (Fig 2), prevents NA active site-specific antibodies from

inhibiting enzyme function (Fig 4), and blocks the ability of active site antibodies to neutraliz-

ing virus replication (Fig 5). Additionally, another NA specific monoclonal (229-1G03) anti-

body with an undefined binding epitope is partially blocked from binding to their epitope by

this glycan (Figs 2, 4 and 5), suggesting that the 245 NA glycan masks multiple epitopes on the

NA protein. This inhibition of NA inhibitory antibody activity was shown with specific mono-

clonal antibodies and with polyclonal serum from H3N2 infected individuals. The ability to

escape from preexisting NA immunity therefore provides a significant fitness advantage for

the virus. While we used serum antibody levels to show reduced activity towards 245 NA Gly

+ viruses, assessing escape from NA antibody in respiratory tract secretions would be more rel-

evant. This antibody evasion presumably counters the reduced replication of 245 NA Gly

+ viruses in hNEC cultures, resulting in a virus whose overall fitness for infecting humans is

increased compared to 245 NA Gly- viruses. Since the virus replication fitness deficits were

only observed in hNEC cultures while the antibody inhibition of virus replication was evident

in immortalized cell lines, our use of hNEC cultures has allowed for a more complete under-

standing of the effects of 245 NA glycosylation on virus fitness.

Neuraminidase works in conjunction with the HA receptor of the influenza virus to infect

and spread virus effectively [36, 37]. As such, studying the NA and HA proteins together is

crucial to understanding viral evolution. Both the HA and the NA protein interact with the

same ligand, sialic acid, and thus balancing each proteins’ affinity for this ligand is critical to

the influenza cycle [36–39]. Both proteins are necessary for in vivo replication, but the nuance

of their interaction is important as well. Too strong of an HA-sialic acid interaction compared

to NA activity results in the HA protein being trapped in respiratory mucins or not being able

to release progeny virions from the infected cell [40, 41]. On the other side of the spectrum,

too weak of an HA-sialic acid interaction compared to NA activity results in removal of sialic

acid receptors before the HA protein can engage its ligand and initiate infection. This fine bal-

ance between affinity for sialic acid impacts virus fitness [37, 38]. In the beginning of the 2014/

2015 season a novel influenza A H3N2 HA clade, 3c.2a, emerged which contained a predicted

N-linked glycosylation site at position 158–160 on the HA protein. This N-linked glycan cov-

ered a significant antigenic site on the HA protein, antigenic site B [28]. Towards the end of

this season, the 245 NA N-linked glycan genotype emerged within the same clade of H3N2

viruses. These dramatic changes to both the HA and NA protein occurred within the same

influenza season. The timing of these N-linked glycosylation events suggests a re-balancing of

HA and NA activity within circulating H3N2 viruses. Future studies are necessary to under-

stand how these separate glycosylation events might actually be linked together in improving

H3N2 virus fitness as well as evading humoral immunity. Furthermore, the H3N2 HA protein

continues to evolve in the human population and virtually all clades of H3N2 viruses have this

245 NA N-linked glycan. Whether the adverse effects of 245 NA Gly+ are observed with more

recent H3 HA proteins should be investigated to determine whether HA mutations that com-

pensate for the reduced 245 NA Gly+ enzymatic activity have fixed in human H3N2 viruses.
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In recent years the NA protein has had renewed interest as a relatively conserved protein

that’s an attractive vaccine target [12, 22, 42]. In some respects, the NA protein is an excellent

candidate for a universal vaccine. A single monoclonal antibody can neutralize decades of

influenza virus isolates regardless of strain at nanomolar amounts. Neuraminidase inhibitory

antibodies can inhibit viral spread, and replication at multiple stages of the virus life cycle [43].

Finally, many different studies show that NA inhibitory antibodies can decrease disease sever-

ity, virus transmission or provide sterilizing immunity [5, 14, 18–20, 24].

Antibody response to NA are not induced effectively in all age groups by current influenza

vaccines because the amount of NA is not standardized in vaccine preparations and the NA

protein conformation is more sensitive to the current vaccine production methods than the

HA protein [12, 20, 44, 45]. While other methods for inducing NA immunity are being devel-

oped, our data show that acquisition of an N-linked glycosylation site in N2 NA can lead to

escape from antibodies that bind to one of the most universal antigenic sites of the protein. It

is important that future studies of universal influenza vaccines utilize a multi-epitope vaccine

that would require multiple mutations from the virus to escape the vaccine-induced

immunity.

Our work supports that described in a previous study on this 245 NA glycan, regarding the

impact of this 245 N-linked glycan on antibody binding and inhibition of NA enzymatic activ-

ity [29]. However, it’s important to note that we found no significant effect of virus growth on

immortalized cells using our recombinant H3N2 viruses based on a contemporary H3N2 viral

backbone, while the authors of Wan et Al showed a significant impact on virus replication via

plaque size using recombinant H6N2 viruses [29]. Furthermore, we found a striking replica-

tion defect using our physiologically relevant hNEC cultures. The glycosylated NA also showed

reduced NA enzymatic activity, indicating the addition of this glycan did effect the enzymatic

site of the protein. This suggests that using recombinant H3N2 viruses with a physiologically

relevant cell culture system allowed us to model how this glycosylation can dramatically

impact NA enzymatic activity and virus fitness.

This study highlights the necessity to consider multiple aspects of the NA protein in regard

to vaccine production and virus evolution. Decades of influenza research have focused on the

HA protein for vaccine development, viral evolution and pandemic potential. As the interest

in NA protein as a vaccine increases, many of the lessons learned studying influenza HA may

also be applied to NA. The NA protein is immunogenic and can provide protection against

many strains of influenza viruses [42]. However, like the HA protein, the NA protein can

undergo antigenic drift and evade the humoral immune response. As immune pressure

mounts due to a renewed vaccination effort at targeting NA protein, the NA protein will likely

also become a “moving target” for vaccine development, in a manner similar to what has

already been documented for the HA proteins.

Materials and methods

Cell lines and primary cells

Madin-Darby Canine Kidney Cells (MDCK) and human embryonic kidney cells 293T

(HEK293T) were maintained in complete medium (CM) consisting of Dulbecco’s Modified

Eagle Medium (DMEM) supplemented with 10% fetal bovine serum, 100U/ml penicillin/

streptomycin (Life Technologies) and 2mM Glutamax (Gibco). Human nasal epithelial cells

(hNEC) were isolated from non-diseased donor tissue following endoscopic sinus surgery.

Cells were grown, differentiated and maintained at the air liquid interface as previously

described [46]. hNEC differentiation medium and maintenance medium was prepared as pre-

viously described [46–48]. hNEC cultures were used for low MOI growth curves only when
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fully differentiated. All cells were maintained at 37˚C in a humidified incubator supplemented

with 5% CO2.

Plasmids

The plasmid pHH21 was used to generate full length influenza hemagglutinin (HA) or neur-

aminidase (NA) plasmids for recombinant virus production. Briefly, viral RNA was isolated

from the clade 3c.2a H3N2 viruses A/Bethesda/P0055/2015 (245 NA Gly+ ID 253812) and A/

Columbia/P0041/2014 (245 NA Gly- ID 253817) with a Qiagen mini-vRNA isolation kit. Gene

specific primers with cloning sites for H3N2 neuraminidase or hemagglutinin were used to

create cDNA via a one-step RT-PCR reaction (SuperScript III-Platinum Taq mix, Thermo-

Fisher Scientific). The cDNA products were cut with appropriate restriction enzymes, column

purified (QIAquick PCR Purification kit) and ligated with restriction enzyme cut-pHH21

using T4-ligase (New England Biolabs, NEB). Ligation products were transformed into DH5a

(NEB) cells and colonies were mini-prepped (QIAprep spin mini-prep) and Sanger sequence

verified. Sequence verified colonies were maxi-prepped (ZymoPURE) and used for recombi-

nant virus preparation. Since the HA amino acid sequence between A/Bethesda/55/2015 is

identical to A/Columbia/41/2014, A/Bethesda/55/2015 HA-pHH21 plasmid was used for both

H3N2 viruses. The codon at amino acid position 160 in HA (H3 numbering, Threonine) was

modified via site-directed mutagenesis (Agilent) from the wild type (ACA, Thr) to a new

codon (ACT, Thr) less likely to revert to a lysine codon- which occurred frequently during pre-

vious attempts to virus rescue.

H6 hemagglutinin-pHH21 was synthesized by Genscript (www.genscript.com) in the

pHH21 vector. The H6 HA coding sequence from A/Environment/Hubei-Jinzhou/02/2010

[49] was inserted into pHH21 flanked by human H3 5’ (GCAAAAGCAGGGGATAATTC
TATTAACC) and 3’ (TAAGAGTGCATTAATTAAAAACACCCTTGTTTCTACTAA) UTR

sequences. After gene synthesis, two mutations (Q223L and G225S) were added in the HA

coding sequence to increase HA protein binding to 2,6 sialic acid [50]. The gene product was

transformed into DH5a (NEB) and maxi-prepped for recombinant virus production. pHH21

plasmids encoding the internal segments for A/Victoria/361/2011 (H3N2, rVic recombinant

viruses) or A/WSN/33 (H6N2, rWSN recombinant viruses) were generated as previous

described [51].

The plasmid pCAGGS was used for transient expression of C-terminal flag-tagged NA Gly

+ or NA Gly- neuraminidase proteins. C-terminal flag tag (DYKDDDDK) was added to

pHH21-NA encoding plasmids via site directed mutagenesis (Agilent). cDNA was generated

from the pHH21-NA flag plasmids with Q5 Hot-Start PCR (NEB). This cDNA product was

then cloned into the mammalian expression vector pCAGGS for transient transfection experi-

ments as previously described [52].

Recombinant virus production

Recombinant H3N2 or H6N2 viruses were generated using the 12-plasmids reverse genetics

system as previously described [51]. Briefly HEK293T cells were plated at 50% confluency 1

day before transfection in complete media. On the day of transfection, media was replaced

with serum free Opti-MEM. HEK293Ts were then transfected with eight plasmids encoding

full length influenza segments in the pHH21 vector (PB2, PB1, PA, HA, NP, NA, M, NS) and

four plasmids encoding the influenza replication proteins in the pcDNA3.1 vector (PB2, PB1,

PA and NP). At one day post transfection 5μg/ml N-acetyl trypsin was added to the transfec-

tion reaction. MDCK cells were over-laid four hours post trypsin treatment. Every 24 hours

post MDCK-overlay virus containing supernatant was sampled for virus production. Fresh
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Opti-MEM with 5μg/ml N-acetyl trypsin was added when a sample was taken. Virus from the

transfected cell supernatants was plaque purified as described below, sequenced, and used to

generate seed stocks by infecting MDCK cells at an MOI of 0.001. Working stocks were gener-

ated from sequence confirmed seed stocks by infecting MDCK cells at an MOI of .001 as

described below.

Plaque assay

MDCK cells were grown in complete medium to 100% confluency in 6-well plates. Complete

medium was removed, cells were washed twice with PBS containing 2mm calcium magnesium

(PBS+) and 400μL of inoculum was added. Cells were incubated at 32˚C for 1hour with rock-

ing every 15 minutes. After 1hr, the virus inoculum was removed and phenol-red free DMEM

supplemented with3% BSA (Sigma), 100U/ml pen/strep (Life Technologies), 2mM Glutamax

(Gibco), 5mM HEPES buffer (Gibco) 5μg/ml N-acetyl trypsin (Sigma) and 1% agarose was

added. Cells were incubated at 32˚C for 3–5 days and then fixed with 4% formaldehyde. After

removing the agarose, cells were stained with napthol-blue black. Plaque size was analyzed in

ImageJ [53]. For recombinant virus production, virus plaques were picked with a pipette

instead of fixing with formaldehyde and placed in IM and stored at -80˚C for later seed stock

generation.

Virus seed and working stocks

For generation of recombinant virus seed stocks, 400μl of plaque picked virus was added to

confluent MDCK cells plated in 6 well plates and infected for 1hr as previously described [50,

52]. The plaque pick inoculum was removed and infection media (IM) was added. Infection

medium (IM), consisted of DMEM with .3% BSA (Sigma), 100U/ml pen/strep (Life Technolo-

gies), 2mM Glutamax (Gibco) and 5μg/ml N-acetyl trypsin((Sigma)). Cells were placed in a

32˚C incubator and monitored daily for CPE. Seed stock was harvested between 3 and 5 days

or when CPE reached approximately 75–80%. Seed stocks were then sequenced and infectious

virus titer determined by TCID50. A working stock for each virus was generated by infecting

confluent MDCK cells in a T75 flask at an MOI of .001 for 1 hour at 32˚C. The inoculum was

removed, and IM was added. Cells were monitored daily for CPE and working stock harvested

when CPE reached approximately 75–80%. Working stocks were sequenced verified and infec-

tious virus determined via TCID50 as described below.

Low-MOI infections

Low-MOI growth curves were performed at an MOI of .001 in MDCK cells and .01 in hNEC

cultures. MDCK cell infections were performed as described above. After the infection, the

inoculum was removed and the MDCK cells were washed three times with PBS+. After wash-

ing, IM was added and the cells were placed at 32˚C. At the indicated times post inoculation,

IM was removed from the MDCK cells and frozen at -80˚C. Fresh IM was then added. For

low-MOI growth curves in the presence of monoclonal antibodies, the indicated antibodies

were added to the IM after the virus was allowed to attach to cells. In low-MOI hNEC growth

curves, the apical surface was washed three times with PBS and the basolateral media was

changed at time of infection. hNEC cultures were inoculated at an MOI of .01. hNEC cultures

were then placed in a 32˚C incubator for 2 hours. After inoculation, the hNECs were washed

three times with PBS. At the indicated times, 100μl of IM without N-acetyl trypsin was added

to the apical surface of the hNECs. The hNECs were then incubated for 5 minutes at 32˚C and

the IM was harvested and frozen at -80˚C. Basolateral media was changed every 48hrs post

infection for the duration of the experiment.
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TCID50

MDCK cells were seeded in a 96 well plate 2 days before assay and grown to 100% confluence.

Cells were washed twice with PBS+ then 180μL of IM was added to each well. Ten-fold serial

dilutions of virus was created and then 20μL of the virus dilution was added to the MDCK

cells. Cells were incubated for 6 days at 32˚C then fixed with 2% formaldehyde. After fixing,

cells were stained with napthol blue-black, washed and virus titer was calculated[50, 52].

Transient transfection for NA-Flag expressing cells

Transient transfection of HEK293T was performed with TransIT-LT1 per the manufacturers

protocol. Briefly, cells were grown in complete medium until time of transfection to roughly

50% confluency. On the day of transfection, complete medium was removed and replaced

with Opti-MEM serum free medium. Opti-MEM, TransIT-LT1 and 2.5μg of plasmids encod-

ing gene of interest were mixed then added to HEK293T cells. At 16hr post transfection wells

were used for flow cytometric analysis.

NA antibodies

NA specific monoclonal antibodies 229-1G03, 235-1C02 and HCA2 were used to assess bind-

ing to NA proteins. 229-1G03 and 235-1C02 were provided by Patrick Wilson [20]. 235-1C02

binds to residues 249 and 428 on the NA protein as described and the 229-1G03 binds to an as

yet uncharacterized epitope on the N2 NA protein. HCA-2 monoclonal antibody was provided

by Sean Li [18]. HCA-2 binds to a known, highly conserved epitope in the active site of the NA

protein, residues 222–230 ILRTQESEC. To assess antibody binding to expressed NA proteins,

all monoclonal antibodies were diluted to 1μg/ml 1X PBS (Quality Biologics) containing .1%

BSA, (Sigma) was used throughout antibody staining protocol (FACS buffer). The antibodies

were then serially diluted 1:2 in FACS buffer. Mouse anti-FLAG (clone M2, Sigma) was diluted

in FACS buffer to 1μg/ml. For western blotting mouse anti-FLAG and anti-influenza M1 anti-

body were diluted to 2μg/ml in blocking buffer. Antibodies were diluted in IM for virus neu-

tralization assays. For low MOI growth curve viral inhibition, NA inhibitory antibodies were

diluted in IM + 5μg N-Acetyl Trypsin. 229-1G03 was diluted to 1.5nm, 235-1C02 1.3nm, and

human IgG isotype clone IGHG1 diluted to 5nM.

Secondary antibodies

Secondary antibodies were used to detect binding of primary unconjugated monoclonal anti-

bodies. Goat anti-Mouse IgG Alexa Fluor 488, Goat anti-Rabbit IgG Alexa Fluor 647 and Goat

anti-Human IgG Alexa Fluor 647 were used at 1μg/ml concentration in FACS buffer (Thermo-

Fisher Scientific). For western blotting, all secondary antibodies were diluted in blocking

buffer at a concentration of 1μg/ml.

Human serum

Convalescent human serum obtained through the JH-CEIRS study (HHSN272201400007C)

were used in this study. Serum samples were treated with receptor destroying enzyme (Cosmos

Biological) and heat treated according to the manufacturers protocol for use in ELLA studies.

Flow cytometry

HEK293T cells were detached with .05% Trypsin-EDTA (Life Technologies) and fixed with

2% paraformaldehyde (Affymetrix) at room temperature for 15 minutes. Cells were washed

with FACS buffer after fixation and stained with the indicated amounts of human or rabbit
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monoclonal antibody and anti-FLAG mouse monoclonal antibody. Cells were washed twice in

FACS butter between each antibody incubation step. Cells were analyzed on a BD-FACS Cali-

bur and data analyzed with FlowJo V10.5.3 software. Geometric mean was used to identify

mean fluorescence intensity (MFI).

Partially purifying virus particles

Virus partially purified by ultracentrifugation over a sucrose cushion for SDS-PAGE and west-

ern blotting. Clarified virus working stock supernatant was overlaid onto a 25% sucrose-NTE

(100nM NaCl (ThermoFisher Scientific), 10mM Tris (Promega) and 1mM EDTA (Sigma))

buffer. Virus was centrifuged at 27,000 RPM in a SW-28 rotor in a Beckman Coulter Optima

L90-K UltraCentrifuge for 2 hours. After the first ultracentrifugation, the supernatant was

removed. The virus pellet was re-suspended in PBS. Pellet was further concentrated by ultra-

centrifugation in an SW-28ti rotor at 23,000 RPM for 1hr. The pellet was resuspended in PBS

for use in NA activity, western blotting and PNGase assays.

PNGase, SDS-PAGE and western blotting

Partially purified virus particles were used for SDS-PAGE. For PNGase treatment, the PNGase

kit from (NEB) was used per manufacturer’s instructions. After PNGase treatment, all samples

were treated with 4X-Laemli buffer (Bio-Rad) containing 250mM dithiothreitol (DTT, Ther-

moFisher Scientific) and boiled at 100˚C for 5 minutes. Samples were run on 4–20% Mini-

PROTEAN TGX gels (Bio-Rad) with an All-Blue precision plus protein ladder (Bio-Rad) at

70v. Proteins were transferred onto an immobilon-FL membrane (Millipore) at 75v for 1hr.

After transfer, membranes were blocked with blocking buffer (PBS containing .05% Tween-20

(Sigma) and 5% non-fat milk (Bio-Rad)) for 1 hour at room temp. Primary antibody (HCA2

and anti-M1) was incubated overnight at 4˚C in blocking buffer. Membranes were washed in

PBS with .05% Tween-20 (wash buffer). Secondary antibody was added for 1hr at room tem-

perature (25˚C) in blocking buffer then washed again in wash buffer. Blots were imaged and

analyzed with the FluorChem Q system (Proteinsimple).

NA-Star assay

NA-Star Influenza Neuraminidase Inhibitor Resistance Detection Kit assay was performed

according to manufactures specifications (ThermoFisher Scientific). Briefly, serial two fold

dilutions of human serum or monoclonal antibodies were mixed in NA-STAR assay buffer.

An equal volume of partially purified virus diluted in NA-Star assay buffer was added to the

antibody dilutions. This mixture of virus and antibody was placed in a 96 well white opaque

plate and incubated at room temp for 30 minutes with gently horizontal shaking. After incuba-

tion, 10μl of 1X NA-Star substrate was added and the plates were incubated at room temp for

an additional 30 minutes while shaking. After adding substrate, accelerator was added and

plates were read immediately by measuring luminescence on a FilterMax F5 multimode

microplate reader. To assess overall NA activity, no monoclonal antibody was added. Data was

analyzed in Prism (GraphPad) and 50% inhibition was defined as antibody or serum concen-

tration that resulted in at least 50% inhibition of NA activity compared to virus without

antibody.

Enzyme linked lectin assay

Enzyme linked lectin assays (ELLA) were performed as previously [31, 32]. Flat-Bottom Nunc

MaxiSorp plates (ThermoFisher Scientific) were coated with 100μl of fetuin (Sigma) at 25μg/
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ml. Plates were kept at 4˚C for at least 18 hours, up to 1 month before use. Monoclonal anti-

bodies, human serum or oseltamivir were serially two-fold diluted in Dulbecco’s phosphate

buffered saline with calcium and magnesium (ThermoFisher Scientific) containing 1% BSA

(Sigma) and .2% Tween-20 (referred to as sample buffer). Dilutions were performed in 60μl in

duplicate on a Nunclon Delta Surface Round bottom 96 well plate. Virus was added to sample

buffer, and 60μl of virus was added to the dilution plate. For monoclonal antibody and inhibi-

tor experiments recombinant H3N2 virus was used. For human serum, recombinant H6N2

virus was used. NA content was equalized via western blotting for H3N2 or virus content

equalized via plaque assay for H6N2. Fetuin coated plates were washed immediately before

addition of 100μl virus premixed with antibody, serum or oseltamivir. Plates were covered

with a plastic lid then placed in 37˚C incubator with 5% C02 for 16–18 hours overnight. The

following day, plates were washed six times with PBS containing .05% Tween 20 (referred to as

PBST). After the last wash, 100μl of biotinylated peanut agglutinin lectin at 1μg/ml was added

to every well and incubated at room temperature for 2 hours. After peanut lectin addition,

plates were washed three times with PBST. Next, 100μl of 1μg/ml streptavidin-horse radish

peroxidase (Millipore Sigma) was added to every well and plates were incubated at room tem-

perature for 1 hour. Plates were then washed 3 times with PBST before the addition of 100μl of

.5mg/ml o-Phenylenediamine (Sigma) diluted in phosphate-citrate buffer with sodium perbo-

rate (Sigma). Plates were incubated for 10 minutes at room temperature and reactions were

stopped and developed by addition of 100μl of 2N sulfuric acid diluted in water. Absorbance

was read at 405nm on a FilterMax F5 multimode microplate reader (Molecular Devices). To

assess NA activity, no monoclonal antibody was added. Data was analyzed in Prism (Graph-

Pad8) and 50% inhibition was defined as antibody or serum concentration that resulted in at

least 50% inhibition of NA activity compared to virus without antibody.

NA-Fluor assay

NA-Fluor Influenza Neuraminidase Assay was performed according to manufacturer’s specifi-

cations and enzyme kinetics experiments performed as previously reported [54]. For enzyme

kinetics, MUNANA substrate was serially two-fold diluted in assay buffer on an opaque black

96 well plate. Virus was prepared in assay buffer then added to the plate containing MUNANA

substrate dilutions. Fluorescence was measured every 60s for 1 hour after addition of virus on

a FilterMax F5 multimode microplate reader (Molecular Devices). Enzyme Vmax and Km was

calculated using Prism software (GraphPad).

NA neutralizing antibody assay

To assess the ability of monoclonal antibodies ability to inhibit virus replication, a neutralizing

assay was performed. MDCK cells were plated to 100% confluency on 96 well plates and

washed twice with PBS+. A two-fold serial dilution of monoclonal antibody was made in IM

+ 5μg/ml N-acetyl trypsin at a starting concentration of 100nm in a volume of 60μl in duplicate

on round bottom Nunclon plates. Next, 60μl (total of 2,000 PFU) of either 245 NA Gly+ or 245

NA Gly- H3N2 recombinant virus diluted in IM with 5μg/ml N-Acetyl Trypsin was added to

the dilution plate and 100μl of the mixture of virus and antibody was then added to MDCK

plates. After 6 days plates were fixed with 4% formaldehyde and stained with napthol blue-

black as described above. Wells were considered negative for virus replication if the entire

monolayer was intact.
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NA neutralizing antibody virus replication assay

To study monoclonal antibody inhibition of multistep viral growth, viral replication assays

were conducted in the presence of NA monoclonal antibodies or human IgG isotype. Conflu-

ent MDCKs were infected with an MOI of .001 as described above. After infection, viral inocu-

lum was removed, the cells washed twice with PBS+ and monoclonal antibodies (235-1C02,

229-1G03 or human IgG isotype clone IGHG1) were added at the indicated concentration in

IM containing 5μg/ml n-Acetyl trypsin. Infected cells were incubated at 32˚C. At each time-

point post infection, supernatant was removed and stored at -80C. Fresh IM with 5μg/ml N-

acetyl trypsin and the indicated antibody was added. Viral titer was determined via TCID50.
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