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Salmonella lipopolysaccharide-induced
thymocyte death and thymic atrophy were
related to TLR4-FOS/JUN pathway in chicks
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Abstract

Background: Thymus is the crucial site for T cell development and once believed to be immune privileged.
Recently, thymus has gained special attention as it is commonly targeted by infectious agents which may cause
pathogenic tolerance and subsequent immunosuppression.

Results: We analyzed thymic responses to the challenge with Salmonella typhimurium (STm) or lipopolysaccharide
(LPS) derived from STm in chicks. Newly hatched chicks were injected intraperitoneally with 5 x 10* CFU/mL STm
or 50 mg/kg LPS. After LPS treatment, maximum thymocyte death (3 ~ 5-fold change) compared to controls was
found at 12 h, and maximum loss of thymic weight (35 %) and reduced thymic index (20 %) were found at 36 h.
After STm infection, maximum thymocyte death and thymic atrophy occurred at 36 and 72 h, respectively. No
significant changes of thymic structure, chT1+ and CD4+/CD8+ T cell ratio were observed in thymus or spleen
tissues after LPS treatment. Furthermore, transcriptome analysis revealed important roles for the TLR4-FOS/JUN
signaling pathway in thymic injury. Thus, the major process of thymic atrophy in this study first involved activation of
transcriptional factors FOS/JUN upon LPS binding to TLR4 that caused release of inflammatory factors, thereby
inducing inflammatory responses and DNA damage and ultimately cell cycle arrest and thymic injury.

Conclusions: STm and Salmonella LPS could induce acute chick thymic injury. LPS treatment acted faster than
STm. TLR4-FOS/JUN pathway may play an important role in LPS induced chick thymic injury.

Keywords: Salmonella typhimurium, Thymus injury, chT1, Transcriptome

Background

The thymus is the primary immune organ providing
naive T cells for peripheral immune tissues [1]. Theor-
etically, thymic injury can cause serious consequences,
which are related to local tissue homeostasis and im-
mune development, especially in young individuals with
an immature immune system. Due to the existence of
the blood-thymus barrier, the thymus was once deemed
to be immune privileged [2]. However, in mammals,
multiple pathogens can target the thymus and cause
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thymic injury, including extensive cell death, tissue
structure abnormality, organ atrophy and functional dis-
order, including recent thymic emigrant abnormality and
T cell tolerance to pathogens [3, 4]. In birds, pathogens in-
cluding viruses (e.g., chicken anemia virus, Marek’s disease
virus and avian leukosis virus), bacteria (e.g., Escherichia
coli) and parasites (e.g., Ascaridia galli) can also induce
thymic atrophy [5-9]. Therefore, thymus injury also may
be a common occurrence during infection in birds.
Salmonella typhimurium (STm) is one of the most
deleterious food-borne pathogens that can induce ty-
phoid fever and enteritis through infected chicken eggs
and meat [10]. STm infection could also cause the
death of newly hatched chicks [11]. STm infection has
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been reported to induce thymic atrophy, thymocyte
death and a modest decrease of recent T cell export in
mice [12, 13]. Moreover, one study indicated that the
thymic injury induced by STm in mice was mediated by
intracellular JNK signaling and its downstream effec-
tors, including reactive oxygen species (ROS) and in-
flammatory cytokines (e.g., TNF-a and IFN-y) [13]. In
chickens, several studies have indicated that STm in-
fection can induce expression of chemokines and cyto-
kines (e.g., IL-8 and IL-1P) in the spleen, liver and
intestinal tissues, which may contribute to the host
defense against STm [14, 15]. However, unlike in mam-
mals, few studies have reported the impact of STm
infection on the thymus in birds, and the molecular
mechanism of chicken thymus response to STm infec-
tion is largely unknown.

In the present study, we evaluated the thymic injury
and potential mechanisms induced by both STm and
Salmonella LPS in newly hatched chicks. We found
that both STm and LPS stimulation could induce acute
thymus injury in chicks. The effects of LPS are faster
than that of STm. Moreover, we found that the TLR4-
FOS/JUN signaling pathway may play a key role in this
process. Our results offer novel evidence for the mo-
lecular mechanism of the thymus injury induced by
Salmonella LPS.

Results

Thymic atrophy after LPS treatment

Newly hatched chicks were injected ip. with 5x
10* CFU/mL STm or 75 % saline (control) for the chal-
lenge of STm, and with 50 mg/kg Salmonella LPS or
75 % saline (control) for the challenge of LPS. The
thymic weight was assessed at 0 ~ 120 h post treatment
(hpt). Compared with saline treatment, treatment with
LPS derived from STm resulted in the maximum 35 %
loss of thymus weight (P <0.01, 0.18 £ 0.04 g vs. 0.27 +
0.05 g) and 20 % decrease of thymus index (P <0.05,
2.66+0.37 vs. 3.34+040) at 36 hpt; meanwhile, it
caused 17 % loss of thymus weight (P<0.05, 0.30 +
0.05 g vs. 0.36 £0.03 g) and 17 % loss of thymus index
(P<0.05, 2.81£0.23 vs. 3.37 £0.38) at 72 hpt (Fig. la
and b). The thymus weight was restored to the normal
level at 120 hpt (Fig. 1a and b). Moreover, there is a dos-
age effect of LPS on thymic weight (P <0.05) and index
(P<0.05) (Fig. 1c and d). Compared with saline treat-
ment, STm infection resulted in the maximum 43 % loss
of thymus weight (P < 0.01, 0.13 +£0.02 g vs. 0.22 + 0.05 g)
and 26 % decrease of thymus index (P < 0.05, 1.86 + 0.25
vs. 2.52+0.55) at 72 hpt compared with controls, and
these effects were attenuated at 120 hpt (Additional file 1:
Figure S1). Furthermore, the thymus maintained struc-
tural integrity with distinct boundaries of the medulla
and cortex at different stages of LPS treatment (Fig. le).
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Therefore, both STm and Salmonella LPS treatment
induced acute thymic atrophy, but the maximum LPS-
induced thymic atrophy occurred 36 h earlier than that
caused by STm infection.

Thymocyte death after LPS treatment

We assessed thymocyte death using two classic methods,
the formamide-MAD assay, which recognizes damaged
single-strand DNA in early apoptotic cells [16—18], and
the TUNEL assay, which detects low-molecular-weight
damaged DNA fragments in late apoptotic cells or nec-
rotic cells [17, 19]. These damaged DNA fragments are
abundant in apoptotic cells [16-19]. The formamide-
MADb assay revealed that the maximum LPS-induced
thymocyte death occurred at 12 hpt, which was 3-fold
higher than that of the control (P <0.001, 40 + 11.00 vs.
14 +5.65 per 10° pum). Additionally, the positive cells
were about 2-fold higher at 36 and 72 hpt. These effects
have also been detected by the TUNEL assay. The re-
sults of TUNEL assay were almost identical to that of
the formamide-MAb assay, and the TUNEL positive
cells were about 5-fold higher than that of the control at
12 hpt (Fig. 2). During STm infection, the maximum
rate of thymocyte death occurred at 36 h, and the posi-
tive cells were 4-fold higher than that of control (P <
0.01, 40 + 15.96 vs. 11 + 1.57 per 10° um). They were at-
tenuated by 2-fold (P <0.001, 19 +2.44 vs. 10+ 1.07 per
10° pum) at 72 hpt as detected by the formamide-MAb
assay (Additional file 1: Figure S1). Therefore, both STm
and Salmonella LPS treatment induced thymocyte
death, and the maximum death of thymocytes occurred
24 ~ 36 h ahead of the peak organic atrophy. Moreover,
LPS-induced thymocyte death occurred 24 h earlier
than that stimulated by STm infection (Fig. 2; Additional
file 1: Figure S1), which coincided with the phenomenon
of LPS-mediated thymus atrophy ahead of that induced by
STm infection (Fig. 1; Additional file 1: Figure S1). In all
cases, thymocyte death was mainly located in the thymic
cortex.

Maintenance of chT1+ and CD4+/CD8+ cell ratios at 36 h

after LPS treatment

In order to analyze changes in cell sub-populations dur-
ing LPS stimulation, we detected chT1+, CD4+ and
CD8+ T cells in the spleen and CD4+ and CD8+ T cells
in the thymus at 36 h after LPS treatment using flow
cytometry. The development of T cells in thymus
undergoes stages of CD4-CD8- double negative (DN)
cells, CD4 + CD8+ double positive (DP) cells and CD4
+ CD8- or CD4-CD8+ single positive (SP) cells [1]. T
cells migrated from thymus to the periphery express
chT1 for a short time and chT1+ is typically used to as-
sess recent thymic export [20-22]. Under LPS stimula-
tion, the proportion of chT1+ cells in spleen tissue was
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Fig. 1 Salmonella LPS induced acute thymic atrophy in chicks. Newly hatched chicks were injected i.p. with saline or Salmonella LPS and then
sacrificed at defined time points to analyze thymus weight and index. a, b LPS treatment (50 mg/kg) reduced thymus weight (a) and index (b) in
chicks (n=4~6) at 36 and 72 hpt. Statistically significant differences between LPS and saline groups at each time point were determined using
Student’s t-test. (¢, d) LPS treatment decreased chick thymic weight (c) and index (d) in a dose-dependent manner (n=3 ~5) at 36 hpt.
Statistically significant differences between multiple LPS dose groups versus control group (0 mg/kg LPS) was performed with Bonferroni’s
multiple comparisons test after one-way ANOVA test. e Sections of thymuses from LPS (50 mg/kg) or saline treated chicks were stained
with hematoxylin and eosin to analyze changes of tissue structure. Light areas represent the medulla, and dark areas represent the cortex.
Scale bars =200 um. All data are presented as means + SD. *P < 0.05, **P < 0.01

not significantly different from that of the saline control
group in this study. Proportions of DP and SP T cells also
showed no significant difference in the spleen and thymus
(Fig. 3). Therefore, both chT1 cell ratios in spleen and
CD4+/CD8+ T cell ratios in thymus or spleen were not
significantly changed at 36 h after LPS treatment.

Identification of DETs in thymus after LPS challenge

To determine the molecular mechanism of the effects
induced by LPS treatment, we detected gene expression
profiles in the thymus at 0, 12, 36 and 72 hpt using the
RNA-seq method. In total, 76,769,194 clean reads were
mapped to 27,391 transcripts. In order to identify the

differential expressed transcripts (DETs), transcript ex-
pression levels at 12, 36 and 72 hpt were compared with
those at 0 hpt. As a result, 873 DETs (507 up-expressed
and 366 down-expressed) were identified at 12 hpt, 536
DETs (419 up-expressed and 117 down-expressed) at 36
hpt and 856 DETs (556 up-expressed and 300 down-
expressed) at 72 hpt (Fig 4a; Additional file 2: Table S1)
(absolute fold-change > 1.5, P<0.001). We found the
maximum number of DETs at 12 hpt and the minimum
number of DETs at 36 hpt. Many of the top 10 up- and
down-expressed transcripts were related to immune re-
sponses, including AVD, IL8L2, IL411 and IL22 (Fig 4b;
Additional file 2: Table S1).
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Fig. 2 Salmonella LPS induced acute thymocyte death in chicks. Newly hatched chicks were injected i.p. with saline or 50 mg/kg Salmonella LPS
and then sacrificed at defined time points (n =3 ~ 6) to analyze cell death by the formamide-MAb assay and TUNEL assay. The positive cells were
mainly distributed in thymic cortex. At least 5 fields in each section of the thymus were sampled, and positive cells per 1x 10° um? in the thymic
cortex were quantified. Scale bars =50 pm. Data are presented as means = SD. Statistically significant differences between LPS and saline groups

at each time point were determined using Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001

The expression patterns of ten genes in chick thymus
were detected by qPCR

To validate the results of RNA-seq, ten up-expressed
genes, including TLR4, TLR15, AVD, IL8L2, BPI, SOCS3,
IL6ST, ILIR2, HSPB1 and NOV, were chosen for qPCR
detection. In order to accurately describe the expression
patterns of genes, thymic tissue RNA at eight time
points, including 0, 2, 6, 12, 24, 36, 72 and 120 h after
LPS challenge, were collected for qPCR detection. The
results showed that the gene expression patterns de-
tected by qPCR were similar to those of obtained by the
RNA-seq method (Fig. 5). There was a significant correl-
ation between the changes of genes detected by RNA-
seq and qPCR methods (Additional file 1: Figure S2).
This finding confirmed the reliability of the RNA-seq
data. Based on the qPCR results, all ten genes were up-
expressed at 12 ~24 h after LPS treatment. Moreover,
the TLRI1S, AVD, IL8L2, BPI, SOCS3 and ILIR2 genes
were up-expressed as early as 2 h after LPS treatment,
and most of them were restored to the normal level
after 36 h of LPS treatment (Fig. 5). Similarly, all of
these ten genes were up-expressed with STm infection.
However, the peak of the gene expression under STm
infection occurred later than that in the LPS-treated

group (Additional file 1: Figure S3). This result indi-
cated that the change in expression of genes during
STm infection occurred later relative to that with LPS
treatment. The difference in gene expression between
LPS treatment and STm infection was consistent with
the observed differences in thymocyte death and thymic
atrophy between those two conditions. All of the results
indicated that these biological events occurred later
with STm infection than with LPS stimulation.

TLR4-FOS/JUN signaling pathway may mediate
LPS-induced thymic atrophy

IPA was performed on DETs to identify the key signaling
pathways triggered by LPS. We found that immune-
related signaling pathways, including the complement
system, granulocyte adhesion and diapedesis pathway,
IL-6 signaling pathway and the acute phase response sig-
naling pathway, were activated at 12 and 36 h post LPS
treatment. Moreover, we found that cell cycle-related
signaling pathways were down-regulated at 12 h post
LPS treatment (Fig. 6a; Additional file 3: Table S2). We
further analyzed the genes involved in the acute phase
response signaling and cell cycle related pathways at 12
and 36 h. Genes, including TLR4, FOS, JUN, IL22,
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Fig. 3 Impact of Salmonella LPS on T cell population in chick thymus and spleen. Newly hatched chicks were injected i.p. with saline or 50 mg/kg
Salmonella LPS and then sacrificed at 36 hpt (n = 3) to analyze the impact of Salmonella LPS on chick T cell populations. a chT1+ cell ratios in spleen
decreased but not significantly. b, ¢ No significant change of CD4+/CD8+ T cells in chick thymus (b) or spleen (c) was observed. All data
are presented as means + SD. Statistically significant differences between LPS and saline groups at each time point were determined using

J

IL8L2, SOCS3, PPARG, were up-expressed in the TLR4-
FOS/JUN signaling pathway. Genes, including STT3A,
CDC25A, CDK1/6, CCNA, CCNB, CCND and CCNE, in-
volved in the cell cycle pathway were down-expressed.
Furthermore, the oxidative and calcium stress related
genes of SOD and calpain were up-expressed (Fig. 6b;
Additional file 1: Figure S5a; Additional file 4: Table S3).
These changes were attenuated at 72 h after LPS treat-
ment (Additional file 1: Figure S5b; Additional file 4:
Table S3).

Discussion

The thymus is a common target for infectious diseases
without exception in mammals and birds [2, 4, 5]. In the
present study, we found that STm induced acute thymic
injury in newly hatched chicks, which was represented
by thymocyte death and organic atrophy. Previous stud-
ies also found multiple pathogens, including parasites

(e.g., Ascaridia galli), virus (e.g., chicken anemia agent)
and bacteria (e.g., E. coli), could induce thymic atrophy
in chickens [6, 9, 23]. Therefore, thymic atrophy is a com-
mon consequence of pathogenic infection in chickens.

We found both STm and Salmonella LPS could in-
duce thymocyte death and thymic atrophy. They also in-
duced almost the same patterns of gene expression, cell
death and organic atrophy, although LPS acted more
rapidly than STm. The maximum thymocyte death and
thymic atrophy occurred at 12 and 36 h, respectively,
with LPS challenge, while they occurred at 36 and 72 h,
respectively, following STm infection. LPS has been con-
firmed to induce inflammation through the TLR4 signal-
ing pathway [24-26]. Therefore, we deduced that LPS
may be the major contributor to the thymus injury
induced by STm infection, which acts by triggering
intrathymic inflammation. Given the size of LPS versus
bacteria, the delayed thymic reaction following STm
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Fig. 4 Analysis of DETs in chick thymus after Salmonella LPS treatment. Newly hatched chicks were injected i.p. with saline or 50 mg/kg Salmonella
LPS and then sacrificed at defined time points (n =7 ~9) to perform transcriptome analysis of the thymus. DETs were determined using the MARS
model in DEGseq package between different time points (12 hpt vs. 0 hpt, 36 hpt vs. 0 hpt, 72 hpt vs. 0 hpt) with the same cut-off (P < 0.001, absolute
fold change 2 1.5). a Numbers of DETs at different time point. b Top ten up- and down-expressed genes at different time point. The positive

values indicate up-expression and negative values indicate down-expression

infection may be resulted from the longer time for bac-
teria enter the tissue and interact with TLR4 than single
LPS molecular. Besides, LPS treatment did not disrupt
splenic chT1+ cells and CD4+/CD8+ T cell ratios in thy-
mus and spleen tissues in chicks. The chT1 is an index
to evaluate recent thymic export [21]. The maintenance
of splenic chT1+ cells suggested that recent thymic ex-
port may not be disturbed at 36 h when maximum
thymic atrophy occurred after LPS treatment. CD4 +
CD8+ DP T cells are the main subpopulations in thymus
[1]. The maintenance of DP and SP T cell ratios indi-
cated that the composition of CD4+/CD8+ T cell sub-
populations may not be changed at 36 h after LPS
treatment. Our results were consistent with those of a
previous study in mice infected with STm [13]. Thus,
thymic dysfunction may not be inevitable with thymic
injury due to pathogenic treatment.

To gain further insight into the acute chick thymic
injury induced by Salmonella LPS, we performed tran-
scriptome analysis of the thymus. We found that in-
flammatory cytokines, DNA damage genes and cell
cycle genes were changed after LPS challenge. IPA re-
sults indicated that the acute inflammation mediated
through the TLR4-FOS/JUN signaling pathway may
play an important role in thymic atrophy. Based on the
present studies and those findings published by other
groups [24—39], we concluded that the transcriptional
factors FOS/JUN were activated upon LPS binding to
TLR4 protein, consequently inducing the release of in-
flammatory factors IL8L2 and CCL4. These inflamma-
tory factors, including /L-22, IL8L2 and CCL4, could

induce the inflammation and promote the oxidative
and calcium stress. These reactions resulted in DNA
damage and cell cycle arrest, which contributed to the
thymic atrophy in chicks. TLR4 is a specific pattern
recognition receptor for LPS in birds and mammals
[24, 27]. In mice, deficiency of TLR4 was shown to
prevent thymocyte death and thymic atrophy when
challenged by E. coli LPS [28, 29]. Transcriptional fac-
tors FOS/JUN can form the AP-1 dimeric complex to
regulate cell proliferation and death [30]. AP-1 can be
activated by LPS-TLR4 signaling and then induce the
expression of inflammatory cytokines, including IL8 and
CCL4, which contribute to inflammation by recruiting
and activating leukocytes [27, 31, 32]. LPS stimulation also
has been shown to induce the expression of another
inflammatory factor IL22 in vivo, and overexpression
of IL22 alone could induce thymic atrophy in mice
[33, 34]. Furthermore, inflammatory reactions can pro-
mote the production of ROS [35, 36]. ROS alone can
damage the host DNA, and it also can interact with
calcium signaling to induce cell death and cell cycle
arrest [37-39]. Thus, thymic atrophy induced by STm
or Salmonella LPS in this study was considered to be
mainly or at least partially mediated through the
TLR4-FOS/JUN signaling pathway in chicks.

We also found that some anti-inflammatory factors,
including BPI, PPARy and SOCS3, were activated after
LPS stimulation. BPI can inhibit formation of the LPS-
TLR4 complex through competing with LPS [40].
PPARYy can inhibit FOS/JUN and NF-xB by preventing
their binding to target sequences [41, 42]. SOCS3 can
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inhibit STAT phosphorylation through binding of JAK
kinase [43]. Thus, negative inflammation response reg-
ulators naturally can also be activated when the host is
infected by pathogens in order to maintain the immune
homeostasis and avoid excessive tissue injury [44, 45].
In addition, we observed apoptosis mediated through
the mitochondrial pathway at 72 h of LPS treatment.
Moreover, the thymus weight was restored to the normal
level at 120 h. These finding indicated that compensatory
growth occurred after the acute inflammatory injury. The
phenomenon of compensatory growth of the thymus after
injury also has been observed in mice [46].

Conclusions

We confirmed that STm and Salmonella LPS could in-
duce thymocyte death and thymic atrophy in chicks.
LPS could be the main factor in the thymic atrophy
during a STm infection. Inflammatory reactions were
the factor contributing to the thymic atrophy after LPS
treatment in chicks. Moreover, this work associated
with findings published by other groups [24-39] dem-
onstrates that this inflammatory process may be medi-
ated through the TLR4-FOS/JUN signaling pathway.

Our results provide novel evidence for the molecular
mechanism of the thymus injury induced by LPS de-
rived from STm.

Methods

Ethics statement

This study was approved by the Ethics Committee of
Huazhong Agricultural University (HZAUMU2013-0005).
The experiments were performed in accordance with the
Guide for the Care and Use of Laboratory Animals (1996),
and protocols were approved by the Hubei Province for
Biological Studies Animal Care and Use Committee.

Animals

Healthy newly hatched broiler chicks (< 3 days old, Cobb
500) were obtained from the Wuhan Zhengda chicken
breeding company and housed under conventional con-
ditions without any vaccinations. Chicks were injected
intraperitoneally (i.p.) with 0.5 mL of 5 x 10* CFU/mL of
live STm strain cvec541 (China Veterinary Culture Col-
lection Center, Beijing, China) or LPS derived from STm
(L7261; Sigma-Aldrich, St. Louis, MO, USA) at 50 mg/
kg of body weight in 0.5 mL avian saline (0.75 % NacCl).
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The control group was injected only with 0.5 mL avian
saline. Six chicks per treatment (STm or saline injection)
per time point (0, 12, 36, 72 and 120 h) were sampled in
STm infection experiment. At least four chicks per treat-
ment (LPS or saline injection) per time point (0, 2, 6, 12,
24, 36, 72 and 120 h) were sampled for morphology and
qPCR analyses. For transcriptome analysis of chick thy-
mus after LPS treatment, at least seven chicks per time
point (0, 12, 36 and 72 h) were sampled. Thymuses were
collected and weighed at defined time points. The thy-
mus index was calculated using the formula: Thymus
index (mg/g) = weight of thymus (mg)/body weight (g)
[47]. For morphological analysis, fresh thymuses were
fixed in 4 % paraformaldehyde, embedded into paraffin
and stored at 4 °C. For gene expression analysis, fresh
thymuses were frozen in liquid nitrogen and stored at
-70 °C. For cell subpopulation analysis, fresh thymuses
and spleens were collected and performed flow cytomet-
ric assays without storing. All organ sampling for each
chick was finished in thirty minutes.

Hematoxylin and eosin staining

Thymic tissues embedded in paraffin were cut into 4-
um-thick sections. The sections were then deparaffinized
in xylene, rehydrated in a graded series of alcohol to
water. Slides were stained with Harris hematoxylin solu-
tion for 5 min and differentiated in acid alcohol for 10 s.
After rinsing in running tap water for 15 min, the sec-
tions were then stained in eosin solution for 1 min,
dehydrated in alcohol, cleared in xylene and mounted
with coverslips. Stained samples were examined by light
microscopy (Olympus BX51, Tokyo, Japan) with a digital
camera (DP72; Olympus).

Formamide-monoclonal antibody (MAb) assay

The rehydrated thymic sections were incubated with
20 pg/ml proteinase K and 0.1 mg/ml saponin in PBS
for 20 min at room temperature (RT) and then incubated
in 50 % (v/v) formamide in distilled water at 56 °C for
20 min before transferring to cold PBS for 5 min. The sec-
tions were then incubated with a primary mouse IgM
anti-ssDNA MAD (clone F7-26; EMD Millipore, Billerica,
MA, USA) at a dilution of 1:10 for 30 min at 37 °C. Sec-
ondary antibody incubation was performed using the anti-
mouse IgM SABC kit (Boster, Wuhan, China). After
visualization with DAB solution, the sections were coun-
terstained with hematoxylin. Sections were examined by
light microscopy (Olympus BX51) with a digital camera
(DP72; Olympus). Sections were sampled by random
movement of the mechanical microscope stage to bring
new, non-overlapping areas (at least 5 fields) into view.
Counts were standardized from the mean number of
formamide-MAb-positive cells per field to the number
per 1 x 10° pmz.
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TUNEL assay

The TUNEL assay was performed using the In Situ Cell
Death Detection Kit, POD (Roche Boehringer Mann-
heim Corp., Indianapolis, IN, USA) according to the
manufacturer’s instruction. The rehydrated thymic sec-
tions were incubated with terminal deoxynucleotidyl
transferase (TdT) in a reaction buffer for 1 h at 37 °C.
Thereafter, the sections were washed in PBS and ob-
served using a fluorescence microscope (Olympus,
Tokyo, Japan) with a digital camera (DP72; Olympus)
before the following steps were performed. Endogenous
peroxides were blocked by incubation in 3 % H,0O, in
PBS for 10 min at RT. Fluorescent signal conversion
was performed using an anti-fluorescein antibody conju-
gated with peroxides. Sections were incubated with DAB
solution and counterstained with hematoxylin. Cell count-
ing and statistical analysis for TUNEL-positive cells were
conducted in the same manner as that for formamide-
MAb-positive cells mentioned above.

Flow cytometry

Thymus and spleen tissues were prepared to obtain
single-cell suspensions (2 x 10° cells) as previously de-
scribed [48]. Immunofluorescence staining was performed
with anti-chicken directly-conjugated MAbs: anti-CD4
FITC, anti-CD8 PE and anti-chT1 FITC (AbD Serotec,
Ltd., Oxford, UK). Cell suspensions were added to PBS
wash buffer containing 2 % bovine serum albumin and di-
luted antibodies for 30 min at 4 °C, followed by washing
and resuspension in PBS containing 1 % paraformalde-
hyde. All cell populations were assessed using a FACSAria
III (BD Biosciences, San Jose, CA, USA).

RNA-seq and data analysis

Total RNA was isolated from each thymic sample using
the standard TRIzol protocol (Invitrogen, Carlsbad, CA,
USA). RNA quality was examined by gel electrophoresis
and with a Nanodrop spectrophotometer (Thermo,
Waltham, MA, USA). For RNA sequencing, RNA sam-
ples from seven to nine biological replicates at each
time point (0, 12, 36 and 72 h) were separated into
three independent pools, each comprised of two or three
distinct samples, at equal amounts. Strand-specific libraries
were constructed using the TruSeq RNA sample prepar-
ation kit (Illumina, San Diego, CA, USA), and sequencing
was carried out using the Illumina HiSeq 2000 instrument
by the commercial service of Genergy Biotechnology Co.
Ltd. (Shanghai, China). The raw data was handled by Perl
and data quality was checked by FastQC 0.11.2 (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). The
read length was 50 bp. Clean reads were aligned to the
chicken genome (release: Gallus gallus 4.0) from NCBI
using Bowtie [49], with one mismatch allowed. Genome
mapped data were annotated using the gff3 file of the
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Gallus gallus 4.0 genome (ftp://ftp.ncbi.nlm.nih.gov/ge-
nomes/Gallus_gallus/). The expression of the transcript
was calculated by RPKM (Reads Per Kilobase of exon
model per Million mapped reads) using Perl. Differen-
tially expression transcripts (DETs) were determined
using the MA-plot-based method with Random Sam-
pling (MARS) model in the DEGseq package between
different time points (12 hpt vs. 0 hpt, 36 hpt vs. 0 hpt,
72 hpt vs. 0 hpt) [50]. Generally, in MARS model, M =
log,C; - log,C», and A = (log,C; +1og,C)/2 (C; and C,
denote the counts of reads mapped to a specific gene ob-
tained from two samples) [50]. The thresholds for deter-
mining DETs are P <0.001 and absolute fold change > 1.5.
Then DETs were chosen for signaling pathway enrichment
analysis using Ingenuity Pathway Analysis (IPA) software.
The significantly enriched pathways were determined when
P <0.05 and at least two affiliated genes were included.

Quantitative real-time PCR (qPCR)

Total RNA was isolated from thymuses of three chicks at
each time point (0, 2, 6, 12, 24, 36, 72 and 120 h) of LPS
treatment group or saline control group. In addition, RNA
was also isolated from thymuses of three chicks at each
time point (0, 12, 36, 72 and 120 h) under STm infection.
Then total RNA were treated with RNase-free DNase I
(Fermentas, Opelstrasse, Germany) to remove contamin-
ating genomic DNA. The first strand cDNA was synthe-
sized using the RevertAid First Strand ¢cDNA Synthesis
Kit (Fermentas, Opelstrasse, Germany). The reaction
mixture (10 pl) for qPCR contained of 5 uL SYBR Se-
lect Master Mix for CFX (Applied Biosystems), 0.2 pL
of each forward and reverse primer and 1 pL of tem-
plate cDNA. The qPCR reactions were performed on a
Bio-Rad CFX Connect real-time PCR detection system
(Bio-Rad, Hercules, CA, USA). The qPCR conditions
were as follows: pre-denaturation at 95 °C for 5 min,
followed by 40 cycles of denaturation at 95 °C for 30 s,
annealing at 60 °C for 30 s, and elongation at 72 °C for
20 s. The primer sequences were listed in Additional file 5:
Table S4. ACTB was chosen as a reference for qPCR. All
samples were run in triplicate and gene expression levels
were quantified using the AACt method [51].

Statistical analysis

Data were calculated as the means + standard deviation
(SD). All analyses and graphic representations were
performed with Prism software 5.01 (GraphPad Soft-
ware, Inc., San Diego, USA). The statistical significance
in mean values between two-group comparison was
performed using two-tailed Student’s t-test (Fig. 1a and
b; Fig. 2; Fig. 3; Additional file 1: Figure S1). The statis-
tical significance in the comparison of multiple sample
sets versus control was performed with Bonferroni’s
multiple comparisons test after one-way ANOVA test
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(Fig. 1c and d; Fig. 5). The correlation analysis between
changes of ten genes detected by qPCR and RNA-seq
was performed and the significance was detected using
Pearson’s test (Additional file 1: Figure S2). Differences
were considered significant if P <0.05. *P <0.05, **P <
0.01 and ***P < 0.001.

Availability of supporting data

All the datasets supporting the results have been listed
in the article and its additional files. The RNA-seq data
has been deposited to the National Center for Biotech-
nology Information (NCBI) Short Read Archive (SRA)
under accession code SRP065372.

Additional files

Additional file 1: Supplementary figures. (PDF 1259 kb)

Additional file 2: Table S1. Detailed information on DETs at different
time points. a Up-expressed DETs at 12 hpt. b Down-expressed DETs at
12 hpt. ¢ Up-expressed DETs at 36 hpt. d Down-expressed DETs at 36
hpt. e Up-expressed DETs at 72 hpt. f Down-expressed DETs at 72 hpt.
Transcripts were considered as DETs only with absolute fold changes =
1.5 and P < 0.001. (XLS 387 kb)

Additional file 3: Table S2. Detailed information on IPA pathway
analysis of DETs at different time points. a Over-represented pathways
from up-expressed DETs at 12 hpt. b Over-represented pathways from
down-expressed DETs at 12 hpt. ¢ Over-represented pathways from
up-expressed DETs at 36 hpt. d Over-represented pathways from
down-expressed DETs at 36 hpt. e Over-represented pathways from
up-expressed DETs at 72 hpt. f Over-represented pathways from
down-expressed DETs. IPA pathways with P < 0.05 and at least two
genes affiliated were reported in the present study. (XLS 63 kb)
Additional file 4: Table S3. Detailed information on genes involved in
merged IPA pathways at different time point. Genes involved in merged
IPA pathways with P < 0.001 were considered. Dashes indicated no
significant difference in the genes expression. (XLS 21 kb)

Additional file 5: Table S4. List of gPCR primers. (XLS 27 kb)
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