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Abstract 5 

The human brain’s ability to transform acoustic speech signals into rich linguistic representations has 6 

inspired advancements in automatic speech recognition (ASR) systems. While ASR systems now achieve 7 

human-level performance under controlled conditions, prior research on their parallels with the brain has 8 

been limited by the use of biologically implausible models, narrow feature sets, and comparisons that 9 

primarily emphasize predictability of brain activity without fully exploring shared underlying 10 

representations. Additionally, studies comparing the brain to text-based language models overlook the 11 

acoustic stages of speech processing, an essential part in transforming sound to meaning. Leveraging high-12 

resolution intracranial recordings and a recurrent ASR model, this study bridges these gaps by uncovering 13 

a striking correspondence in the hierarchical encoding of linguistic features, from low-level acoustic 14 

signals to high-level semantic processing. Specifically, we demonstrate that neural activity in distinct 15 

regions of the auditory cortex aligns with representations in corresponding layers of the ASR model and, 16 

crucially, that both systems encode similar features at each stage of processing—from acoustic to 17 

phonetic, lexical, and semantic information. These findings suggest that both systems, despite their 18 

distinct architectures, converge on similar strategies for language processing, providing insight in the 19 

optimal computational principles underlying linguistic representation and the shared constraints shaping 20 

human and artificial speech processing.  21 
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Introduction 23 

Understanding how the human brain processes and encodes linguistic information is a 24 

fundamental challenge in neuroscience and artificial intelligence. The human auditory cortex is 25 

capable of extracting meaning and structure from spoken language with remarkable efficiency. 26 

In parallel, automatic speech recognition (ASR) systems have achieved near-human accuracy in 27 

recognizing and transcribing speech (1). However, it remains unclear how closely the internal 28 

computation and representation of these ASR systems mirror those of the human brain, leaving 29 

a significant gap in our understanding of speech processing in humans and machines. Are both 30 

systems converging toward similar strategies, or are they reaching different solutions 31 

independently as they optimize for performance?  32 

Neuroimaging studies of speech processing in the brain have revealed an emergent encoding of 33 

linguistic hierarchies, progressing from primary to nonprimary areas of the auditory cortex (2–4). 34 

These studies show that the brain distributes, yet jointly encodes, various linguistic features, 35 

including phonemes, phonotactics, lexical-phonological, and lexical-semantic information. 36 

However, parallels between these hierarchical patterns in the brain and those found in ASR 37 

algorithms have not been directly established. Several studies have examined how end-to-end 38 

ASR systems represent linguistic information (5) and explored similarities between these systems 39 

and the brain (6). Additional research has also investigated the representational similarities 40 

between large language models (LLMs) and the brain (7–11). While these studies have provided 41 

valuable insights, they have some limitations. Many lacked the temporal precision necessary for 42 

speech processing, as they relied on functional MRI (fMRI) (7, 10) which is slow in capturing the 43 

neural dynamics. Moreover, by comparing the brain to text-based LLMs, these studies inherently 44 

overlooked the acoustic stages of speech processing even though the subjects listened to the 45 

stimuli (7–11). Other studies used models that were biologically implausible, such as 46 

transformers (6–11) or non-causal architectures (6). In addition, some studies did not explicitly 47 

analyze linguistic representation in the models (7, 9–11), or used only a narrow set of features 48 

(6, 8). Therefore, even though it has been shown that speech processing models and the brain 49 

use increasingly similar representations as revealed by the predictability of neural responses 50 
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from these models, the precise nature of this convergent similarity remains unclear, replacing 51 

one black box with another one without explaining the full picture of speech understanding.  52 

This study addresses several gaps in the current understanding of speech processing in both 53 

biological and artificial systems. First, we expand on previous studies by investigating a broad 54 

range of linguistic features, providing a comprehensive analysis that includes phonetic, lexical, 55 

and semantic representations. Second, we use a biologically plausible recurrent neural network 56 

transducer (RNN-T) (12) model that processes speech in a causal and incremental manner, 57 

aligning more closely with how the human brain processes speech in real time. Finally, by 58 

incorporating high-resolution intracranial electroencephalography (iEEG) data from participants 59 

listening to continuous speech, we establish a direct comparison between neural activations and 60 

the internal states of the ASR model.  61 

Through a detailed node-level analysis, we compare specific neural sites in the brain with 62 

individual nodes in the ASR model to directly assess representational alignment. Additionally, a 63 

layer-level analysis provides a more comprehensive view of the ASR model’s internal hierarchical 64 

representations, allowing us to examine how the structure of these representations parallels the 65 

cortical encoding of speech in humans. This dual approach enables us to uncover both fine-66 

grained and hierarchical similarities in how speech is processed by biological and artificial 67 

systems, shedding light on shared mechanisms of linguistic encoding while also revealing key 68 

divergences. 69 

Results 70 
We recorded intracranial electroencephalography (iEEG) data from fifteen human participants 71 

implanted with subdural (electrocorticography; ECoG) and depth (stereotactic EEG) electrodes. 72 

The participants listened to 30 minutes of continuous speech spoken by four speakers. To ensure 73 

that the subjects were engaged in the task, we paused the audio at random intervals and asked 74 

the subjects to report the last sentence before the pause. All subjects were attentive and could 75 

correctly repeat the speech utterances. We extracted the envelope of the high-gamma frequency 76 

band (70-150 Hz), which has been shown to correlate with neural firing in the proximity of the 77 

recording electrode (13, 14), as the neural response measure of the recorded signals. 78 
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We restricted our analyses to electrode sites in the auditory cortex (AC; 𝑁 = 335) and the 79 

inferior frontal gyrus (IFG; 𝑁 = 191). Figure 1A shows the general location of the IFG and the 80 

subregions of the auditory cortex on the FreeSurfer average brain (15). We further limited our 81 

analysis to sites that were determined to be speech-responsive (𝑁 = 291/526,	 determined by 82 

a t-test between responses during speech and in silence). We labeled the neural sites in both 83 

hemispheres based on their anatomical region to enable population tests: posteromedial 84 

Heschl’s gyrus (pmHG; 𝑁! = 12/15, 𝑁" = 16/19), anterolateral Heschl’s gyrus (alHG; 𝑁! =85 

34/36, 𝑁" = 32/34), planum temporale (PT; 𝑁! = 9/12, 𝑁" = 18/20), middle superior 86 

temporal gyrus (mSTG; 𝑁! = 44/53, 𝑁" = 17/18), posterior superior temporal gyrus (pSTG; 87 

𝑁! = 27/32, 𝑁" = 21/23), anterior superior temporal gyrus (aSTG; 𝑁! = 19/60, 𝑁" = 0/13), 88 

and inferior frontal gyrus (IFG; 𝑁! = 32/119, 𝑁" = 10/72). The electrode locations and their 89 

responsiveness are plotted in Figure 1B on the average FreeSurfer brain, where the color 90 

indicates whether an electrode is speech-responsive.  91 
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 92 

Figure 1. Stages of speech processing in the brain based on ASR modelling. 93 

(A) General location of the inferior frontal gyrus (IFG) and subregions of the auditory cortex (AC). 94 

(B) Electrode locations within the region of interest. Colors represent whether the electrode 95 

showed higher activation in the presence of speech stimuli compared to moments of pre-trial 96 

silence. (C) RNN-Transducer architecture. 𝒙𝒕 are spectrogram frames, 𝒇𝒕 are the encoder’s 97 

outputs, 𝒉𝒕,𝒖 are model outputs used to generate output labels, 𝒚𝒖 are output labels predicted 98 

by the model (feedback), and 𝒈𝒖 are the prediction network’s outputs. (D) Predicting brain 99 

responses from the ASR model. To determine the mapping between network layers and 100 

electrode sites, we fit a Ridge regression model to predict the neural response at the electrode 101 

(𝑟&) while the participant was listening to some stimuli 𝑆, from the activation matrix Γ',& 102 

corresponding to the response of the 𝑖-th layer of the ASR model to the same stimuli 𝑆. (E) 103 

Improvement in prediction score of electrode sites when using the best ASR layer compared to a 104 
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spectrogram baseline predictor. The best ASR layer for an electrode was determined by 10-fold 105 

cross-validation. (F) We color each electrode based on the layer of the ASR model that predicts 106 

it best. (G) Within each subregion of interest, we compute the fraction of electrodes that are best 107 

predicted by each layer of the ASR. We then normalize these fractions by dividing each row by 108 

its maximum value. This metric shows in which subregion of interest a given layer of the model 109 

is represented relatively stronger. 110 

 111 

 112 

Stages of speech processing in the brain based on ASR modeling 113 

We use an RNN-Transducer (RNN-T) (12), a recurrent neural network trained to predict letters 114 

(graphemes) from the speech spectrogram, to model the speech recognition process in the brain. 115 

RNN-T models take spectro-temporal speech signals as input through a causal mechanism, and 116 

have been widely used for speech recognition (16–20), making them an ideal candidate model to 117 

compare with the full hierarchy of speech processing in the brain. The model consists of two 118 

branches—transcription and prediction (Figure 1C). The transcription branch, consisting of 6 uni-119 

directional LSTM layers (T1–T6), acts as a bottom-up encoder by producing acoustic embeddings 120 

from the input speech spectrogram. The prediction branch, consisting of 1 uni-directional LSTM 121 

layer (P), acts as an internal language model in that it is conditioned on previous non-blank 122 

symbols produced by the model. It stores an internal representation of the prior predictions of 123 

the model that together with the encoder’s output are combined by a shallow joint network and 124 

used to make the next prediction. We computed layer activations for all layers of these two 125 

branches in response to the same 30-minute stimulus set that the human participants listened 126 

to. 127 

To examine how the speech processing pathways of the brain and the model map to each other, 128 

we find the best matching model layer for each electrode site (Figure 1D). First, for each 129 

electrode-layer pair, we fit a single-lag regression model that predicts the electrode activity from 130 

the layer activations in response to the same stimuli (reduced to top 256 principal components): 131 

𝑦(𝑡) = 𝑋(𝑡 − 𝛿)𝛽 + 𝑐 + 𝜀 132 
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where 𝑦 is the 𝑇 × 1 response vector for an electrode site, 𝑋 is the 𝑇 × 𝐻 matrix of layer 133 

activations, 𝛿 is a constant time lag, 𝛽 is the 𝐻 × 1 vector of regression coefficients, 𝑐 is a 134 

constant bias term and 𝜀 is the regression error. We also define a baseline 256-dimensional 135 

predictor which is obtained from a 128-dimensional log-Mel-spectrogram stacked on top of a 1-136 

sample delayed version of itself, such that 𝑋(𝑡, 1: 128) = 𝑆(𝑡, : ) and 𝑋(𝑡, 129: 256) =137 

𝑆(𝑡 − 1, : ), where 𝑋 is the 𝑇 × 256 baseline predictor and 𝑆 is the 𝑇 × 128 spectrogram. For 138 

each electrode, we also fit a single-lag linear regression model that predicts the neural activity 139 

from the baseline predictor, allowing for a fixed time lag 𝛿. Figure 1E shows the improvement of 140 

cross-validated prediction scores for each electrode when predicting from the ASR model 141 

compared to the baseline spectrogram predictor. 142 

We associate each electrode with the layer of the model that predicts it with the highest 143 

accuracy. The colors in Figure 1F indicate the corresponding layer of the model for each neural 144 

site in the AC and IFG; and Figure 1G shows the normalized fraction of electrodes in each brain 145 

region best predicted by each layer of the model (values indicate fraction of neural sites in brain 146 

region, divided by sum of fractions within layer/row). The model layers map to the cortex such 147 

that as we move deeper in the model, in the cortex we move from the primary auditory cortex 148 

(pmHG) laterally to PT and mSTG, and from there to pSTG, aSTG, and IFG. The corresponding 149 

model depth (layer number) of an electrode is also correlated with various other metrics 150 

associated with being downstream in speech processing – relative prediction improvement from 151 

ASR over baseline (Spearman’s 𝑟 = 0.582, 𝑝 ≪ 1𝑒 − 4), neural response latency (𝑟 = 0.373, 152 

𝑝 ≪ 1𝑒 − 4), neural site’s distance from the primary auditory cortex (center of pmHG chosen as 153 

reference for primary AC; 𝑟 = 0.613, 𝑝 ≪ 1𝑒 − 4). These results together suggest a clear 154 

association between the biological and artificial processing pathways. 155 

The brain results, however, show a difference in encoding between hemispheres, where neural 156 

sites corresponding to deeper layers of the ASR model are predominantly found in the left 157 

hemisphere. We can see this by a statistical comparison between the distribution of associated 158 

model depth of electrodes (one-sided two-sample t-test, 𝑡 = 6.31, 𝑝 ≪ 1𝑒 − 4, 𝑑𝑓 = 289). 159 

More interesting is the difference by anatomical region, where as we move further away from 160 

the primary AC, lateralization increases – pmHG (𝑡 = −0.183, 𝑝 = 0.57, 𝑑𝑓 = 26), alHG (𝑡 =161 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2025. ; https://doi.org/10.1101/2025.01.30.635775doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.30.635775
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

−1.25, 𝑝 = 0.89, 𝑑𝑓 = 64), PT (𝑡 = 2.57, 𝑝 = 0.008, 𝑑𝑓 = 25), mSTG (𝑡 = 2.27, 𝑝 = 0.0134, 162 

𝑑𝑓 = 59), pSTG (𝑡 = 2.78, 𝑝 = 0.0039, 𝑑𝑓 = 46), aSTG (no speech-responsive sites in the right 163 

hemisphere), IFG (𝑡 = 2.98, 𝑝 = 0.0024, 𝑑𝑓 = 40). These results are in line with previous 164 

studies showing left-lateralization of higher-order regions in linguistic processing (21, 22): lower-165 

level acoustic processing (according to ASR) is similar between hemispheres, while higher-level 166 

processing is biased towards the left hemisphere. 167 

Similar node-level linguistic encoding across the brain and ASR 168 

We used a regression-based method with temporal receptive fields (TRFs) (23) to measure the 169 

degree of encoding of different levels of linguistic information in individual nodes of the ASR 170 

model and individual neural sites (Figure 2A). In this method, we first predicted the neural activity 171 

of a site from a list of acoustic and linguistic features. Next, we determined the contribution of 172 

each feature in predicting the response by replacing it with a control variable and interpret the 173 

drop in predictive power as the contribution of that feature to the prediction. We repeated the 174 

replacement process for each linguistic feature 100 times and measured the t-statistic between 175 

actual and control features to determine the significance of the feature.  176 

Figure 2B shows the normalized fraction of nodes in each ASR layer that significantly encode each 177 

linguistic feature group (fractions divided by sum across feature/row). Figure 2C shows the same, 178 

but for normalized fraction of neural sites in each brain region. Figure S1 show the average t-179 

statistic without thresholding, normalized by the sum of each row (feature). We observed that 180 

the brain results show broader encoding of higher-level linguistic features in the nonprimary 181 

auditory cortex (PT and STG) compared to the primary auditory cortex (HG). This trend is also 182 

mirrored in the ASR model. These trends do not depend on the specific choice of the threshold 183 

value, as we can see a similar result using average t-values of groups instead of fractions. 184 

Figure 2D shows the temporal order of the encoding of these linguistic features in the ASR model 185 

and the brain. To measure the encoding latency for each feature, we first select the group of 186 

nodes/electrodes that significantly encoded that feature. For each node/electrode, we compute 187 

the latency of the peak absolute value of the TRF weight associated with that feature. We average 188 

the latencies to obtain a single latency value for each feature. Finally, using bootstrapping, we 189 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2025. ; https://doi.org/10.1101/2025.01.30.635775doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.30.635775
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

obtain 95% confidence intervals for the average latency of each feature. In line with prior findings 190 

in the human brain (24), the results show a particular temporal order of emergence for the 191 

different levels of linguistic information in both systems. 192 

 193 

Figure 2. Similar node-level linguistic encoding across the brain and ASR. 194 

(A) Determining node-level linguistic encoding. To measure which linguistic features are 195 

encoded in a given electrode site or ASR node, we use a similar approach to 1. We first predict 196 

the neural response 𝑟& to the stimuli 𝑆 from a set of time-aligned acoustic-linguistic features 197 

ℱ& = {𝑓(,&}, where 𝑓(,& is the 𝑗-th linguistic feature of the stimulus 𝑆. Then to find if feature 𝑓(  is 198 

encoded in the neural response, we replace it with 𝑓)R  and measure the difference between 199 

prediction score between the true and control cases. We repeat this process 100 times and 200 

compute a statistic of significance of encoding. (B and C) Node-level linguistic encoding in ASR 201 

layers and brain regions. The values denote fraction of nodes/electrode in a layer/region 202 

significantly encoding a given feature. Fractions are normalized by dividing each row by the 203 

maximum. (D) Temporal order of node-level linguistic encoding in the brain and ASR. Error bars 204 

indicate 95% confidence intervals obtained using bias-corrected and accelerated bootstrap 205 

(BCa; 𝑁 = 1000) on the mean latency of encoding across nodes/electrodes. 206 
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 207 

 208 

Population-level linguistic encoding in the ASR 209 

While the regression approach enabled us to compare the results between the two systems, it 210 

cannot capture population-level representations. This is especially relevant in the case of the ASR 211 

model, since we have full access to the entire neural population. To determine the patterns of 212 

linguistic encoding in the model, we decoded each linguistic feature from the activations of the 213 

model (Figure 1A). Because linguistic features are defined at different resolutions and linguistic 214 

units have different lengths, we performed a unit-aligned analysis. For example, to predict 215 

linguistic features that are defined at phoneme resolution—pitch, phoneme, biphone probability, 216 

lexical entropy and surprisal—we extracted a layer’s activations at time points {𝑝' + 𝛿}, where 217 

{𝑝'} were the time points corresponding to phoneme centers and 𝛿 was a constant time lag. 218 

Similarly, for word resolution features—word frequency, semantic neighborhood density, 219 

contextual embedding—we extracted activations at time points {𝑤' + 𝛿}, where {𝑤'} were the 220 

time points corresponding to word centers and 𝛿 was a constant time lag. 221 

For predicting the categorical phoneme labels we fit linear Ridge classifiers, and for the rest of 222 

the features, Ridge regressors (24). The best time lag (𝛿) and regularization parameter (𝜆) were 223 

determined independently for each layer-feature pair by maximizing the 10-fold cross-validated 224 

prediction scores. 225 

We also decoded each linguistic feature from the 256-dimensional baseline predictor described 226 

earlier. Figure 3B shows the prediction scores of predicting each feature from each layer of the 227 

model, normalized per feature such that zero corresponds to the baseline prediction score and 1 228 

corresponds to the best score across all layers of the model. We can see that as we move deeper 229 

into the model, representations of higher-order linguistic information emerge. Based on these 230 

scores, we can associate each linguistic feature with a layer of the model and find the best lag for 231 

that layer-feature pair. As a result, we can describe the place of a linguistic feature in the speech 232 

recognition process by its time lag and layer depth (Figure 3C). Together, these results show a 233 
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pronounced emergent linguistic representation in the model through time and space and with a 234 

specific order, enabling a direct comparison with the results observed in the brain. 235 

 236 

Figure 3. Population-level linguistic encoding in the ASR. 237 

(A) Decoding linguistic information in the ASR model. To measure how strongly linguistic 238 

features are encoded at the population-level (layer embedding), we decode the features from 239 

the activations of the different layers of the ASR. We use a single-lag Ridge regressor or 240 

classifier. (B) Population-level linguistic encoding in different layers of the model. Shown values 241 

are min-max normalized between baseline (spectrogram) prediction score and maximum 242 

prediction score across layers. (C) Temporal order of population-level linguistic encoding in the 243 

ASR. For each linguistic feature, we find the layer of the model that best predicts it, then 244 
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similarly determine the best time lag where the feature was maximally predictable (see 245 

Methods). 246 

 247 

 248 

Effect of model training on linguistic representation 249 

Finally, we explored the conditions in which such a linguistic representation can emerge in the 250 

model. We tested two hypotheses: the emergent representation is training-dependent, and the 251 

emergent representation is language-dependent. To do this, we decoded the same list of English 252 

linguistic features from three different bi-directional RNN-T models: one trained on English, one 253 

on French, and a randomly initialized model which underwent no training (Figures 4A–C). We 254 

used bi-directional models for this analysis because we do not directly compare the models with 255 

the brain, and bi-directional models perform better and are more commonly used in ASR tasks. 256 

Additionally, the layers of the bi-directional models have more consistent latency which makes 257 

direct comparison between them more accurate, as we do next. The results show a stark 258 

difference between the English and random models, such that the random model does not show 259 

a strong linguistic representation for any feature compared to the baseline, especially for deeper 260 

layers. The French model shows an identical representation of pitch compared to the English 261 

model and a relatively strong representation of only phonemes, phonotactics, and word 262 

frequency compared to the random model.  263 

We can also compare these models more directly by computing the similarities of their 264 

representations to the same stimulus using centered kernel alignment (CKA) (25). We compared 265 

the representations of each layer of the English model to all layers of all three models (Figures 266 

4D–F). We observed that the English and French models share similar representations of their 267 

first 3 layers to a large degree, but steadily decrease in similarity over layers overall. In contrast, 268 

the random model has weak similarity to the English model, even from early layers. Put together, 269 

these results show that the emergent linguistic representation observed in the RNN-T is both 270 

training-dependent and language-dependent. 271 
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 272 

Figure 4. Effect of model training on linguistic representation. 273 

(A–C) Linguistic encoding in control ASR models. We perform the same analysis as in Figure 3 274 

on three bi-directional RNN-Transducers–a model trained to recognize English speech, a model 275 

trained to recognize French (“foreign”), and a randomly initialized model (“random”). For the 276 

foreign and random models we discard the prediction branch (P) activations, as they fail at 277 

transcribing speech so their top-down branch cannot be aligned to the bottom-up branch. 278 

Values are min-max normalized between baselined (spectrogram) predictions score and 279 

maximum prediction score across all layers of all models. (D–F) Pairwise representation 280 

similarity analysis between ASR model layers. Each of the three panels shows the centered 281 
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kernel alignment (CKA) similarity between the activations of each of its layers and each of the 282 

layers of the English model. 283 

 284 

 285 

Discussion 286 
This study presents a detailed comparison of the linguistic representations in the human brain 287 

and an ASR model, specifically focusing on the hierarchical encoding of speech. By using a 288 

biologically plausible RNN-Transducer model, we demonstrate similarities and differences in how 289 

linguistic features are processed across systems. By selecting a model architecture that mirrors 290 

the causal and incremental nature of human speech processing, and incorporating a biologically 291 

plausible RNN architecture which processes the input at the spectrogram-level rather than the 292 

word-level, we provide a fair ground for comparing how each system encodes various levels of 293 

linguistic information, separating this study from prior works using transformer-based large 294 

language models or non-causal architectures (6–11). Our findings show a striking alignment 295 

between specific brain regions and ASR model layers. Both systems exhibit a hierarchical 296 

progression in the encoding of linguistic information, moving from low-level acoustic analysis to 297 

higher-level semantic understanding. The correlations between layers and neural regions 298 

reconstructs the dorsal and ventral streams of speech processing (26–28), with increasing 299 

alignment with deeper layers. Specifically, we find increasing correlation with deeper layers of 300 

the model along the dorsal pathway from mSTG to pSTG and finally to IFG, as well as the ventral 301 

pathway from mSTG to aSTG and IFG. The fact that IFG most strongly matches the later layers 302 

and particularly the prediction branch of the ASR model, which receives feedback from prior 303 

unified representations, suggesting its role in unifying lexical information from previous stages 304 

into a single high-level representation, as has been suggested by prior research (29). Our findings 305 

of the brain’s hierarchical representations support prior studies of the neural hierarchy of 306 

linguistic representations (26, 30–32), and we advance this knowledge by highlighting the specific 307 

regions and representational latencies at each stage of this hierarchy which are common across 308 

both the human brain and the ASR model. This functional congruence underscores the shared 309 
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mechanisms of linguistic processing in both the brain and ASR systems, revealing that artificial 310 

systems trained to emulate human behavior can mirror aspects of biological speech recognition 311 

across the full hierarchy of linguistic feature extraction. 312 

Our analysis of ASR models with foreign language training or no training also yielded new insights 313 

into how the linguistic feature hierarchy forms. We showed that in the French-trained model, 314 

only acoustic features like pitch were strongly represented, with higher-level linguistic 315 

representations of the English stimuli being weakly encoded, and features at all levels being 316 

weakly encoded in the random model. When comparing the representations of the models to 317 

each other, we found that the layer representations of the French model quickly diverged from 318 

those of the English model after the first two layers, demonstrating where the effects of training 319 

begin to compound. One recent study compared the processing of Chinese and English speech 320 

by unsupervised transformer speech representation models and the brain (6). They found that 321 

models trained on one language better predicted neural responses recorded in STG from native 322 

speakers of that same language, whether English or Chinese, and that this performance 323 

difference increased over the model’s layers. Our results support this and offer a more granular 324 

explanation by analyzing the encoding of higher-level linguistic features in biologically-plausible 325 

models and over deeper regions in the brain’s language processing pathway, showing that 326 

models trained on different languages (e.g. French) or untrained models do not exhibit the same 327 

level of linguistic representation for English speech as a native English model. These findings 328 

suggest that high-level linguistic representations are not simply a byproduct of deeper layers 329 

processing longer segments of speech (33) but are instead tightly linked to the model’s training. 330 

A closer look at the training process, which is akin to language acquisition in humans, could be 331 

utilized to study the development of spoken language processing in infants or second language 332 

learners. 333 

Despite these similarities, the RNN-T ASR model lacks the brain's top-down feedback connections 334 

and flexible, multi-directional communication between regions (34, 35). While the ASR model 335 

processes speech in a non-lateralized fashion, our results show that the brain shows a strong left-336 

hemisphere bias for higher-level linguistic tasks, in accordance with prior studies (21, 22). This 337 

lateralization highlights a key divergence between the two systems, which the current ASR 338 
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architecture cannot fully account for. These architectural differences suggest that while ASR 339 

models can emulate aspects of human speech processing, more biologically accurate models are 340 

needed to capture the full complexity of the brain’s hierarchical and interactive mechanisms. 341 

Future models incorporating binaural input, top-down feedback, and multitask objectives could 342 

provide deeper insights into the brain’s speech processing pathways. Additionally, ASR models 343 

are trained with only a speech recognition loss, forcing them to develop speaker-independent 344 

features which likely remove the speaker-specific information such as pitch, matching our finding 345 

that pitch is only strongly encoded in the early layers. This may influence the hierarchy of 346 

representations formed over layers and represents a point of divergence between ASR models 347 

and the brain (36, 37). Nonetheless, the insight that a high-performing ASR system represents 348 

linguistic features, from low-level acoustic to high-level contextual features, in a similar 349 

hierarchical manner to the brain suggests that similar recent parallels shown between language 350 

models and the brain (7–11) can arise in a system that is performing the same overall task as a 351 

human listener, from input sound waveform to output words. 352 

This study demonstrates a detailed correspondence between linguistic representations in the 353 

human brain and an RNN-Transducer model. The RNN-T’s causal and incremental processing 354 

mirrors key aspects of human speech processing, making it a reasonable proxy for investigating 355 

brain-like hierarchical encoding. While our findings are specific to this model, they likely reflect 356 

broader principles of linguistic processing shared across systems. The hierarchical progression of 357 

encoding observed here, from low-level acoustic to high-level semantic features, is consistent 358 

with patterns identified in prior studies using other architectures (38–40), suggesting robustness 359 

in the hierarchical nature of linguistic representation even if layer-to-region mappings vary. 360 

Crucially, our findings are grounded in empirical data from the human brain, providing a 361 

benchmark for comparison and aligning with known principles of neural processing, such as the 362 

ventral and dorsal streams of speech (27–29) and left-hemisphere lateralization (21, 22). Future 363 

work should explore whether these similarities extend to other biologically plausible ASR 364 

architectures to disentangle architecture-specific phenomena from universal principles. While 365 

model-specific details may vary, this study highlights that biologically inspired architectures can 366 
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reveal shared computational strategies between the brain and artificial systems, offering insights 367 

into the constraints and mechanisms underlying human and machine language processing. 368 

In conclusion, this study bridges neuroscience and artificial intelligence by revealing how both 369 

systems process speech in hierarchical layers. Our findings not only advance our understanding 370 

of the brain’s mechanisms for linguistic encoding but also offer valuable guidance for the 371 

development of more sophisticated and biologically informed ASR models. Moving forward, 372 

integrating more brain-like features into artificial systems may unlock new possibilities for 373 

understanding and enhancing human and machine communication. 374 

  375 
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Methods 376 

Data 377 

Participants, neural data, task, and stimuli 378 

Fifteen human patients (7 female, mean age: 36, range: 19-58) with drug-resistant epilepsy were 379 

studied. All patients were implanted with intracranial electroencephalography (iEEG) electrodes 380 

for epileptogenic foci localization. Twelve of the patients has stereoelectroencephalographic 381 

(sEEG) depth electrodes, while the other three had both depth electrodes and subdural grids 382 

and/or strips. All recordings were inspected by an epileptologist to ensure they were free of 383 

interictal spikes. The patients provided written, informed consent to participate in the research 384 

study prior to implantation, and the protocol was approved by the institutional review board at 385 

the Feinstein Institutes for Medical Research.  386 

The subjects listened to approximately 30 minutes of stories spoken by voice actors. Occasional 387 

pauses in the story were added, resulting in 53 trial segments, and the subjects were asked to 388 

repeat the most recent sentence before the pause to ensure they were paying attention. All 389 

subjects were able to repeat the sentences without issue. iEEG signals were acquired at 3 kHz 390 

sampling rate, and the envelope of the high-gamma band (70-150 Hz) was extracted with the 391 

Hilbert transform (41). This signal was then z-scored and resampled to 100 Hz. 392 

Electrode selection 393 

Electrodes were projected onto the nearest cortical surface. We selected all electrode sites 394 

within the auditory cortex (AC; 𝑁 = 335) and the inferior frontal gyrus (IFG; 𝑁 = 191). Figure 1A 395 

shows the general location of IFG and the subregions of the auditory cortex on the FreeSurfer 396 

average brain (15). 397 

To determine whether an electrode site was speech-responsive, we first selected 53 pre-trial 398 

silence segments ([-1 s, 0 s] relative to segment onset) and using a 200 ms wide non-overlapping 399 

moving average window reduced it into 53 × 5 data points. We then selected 53 post-onset 400 

speech segments ([0.4 s, 1.2 s] relative to segment onset) and using a similar moving average 401 

window reduced it into 53 × 4 data points. We performed a two-sample t-test between the two 402 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2025. ; https://doi.org/10.1101/2025.01.30.635775doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.30.635775
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

distributions for each electrode to obtain a p-value, and then performed a Benjamini-Hochberg 403 

(false discovery rate) correction with an alpha of 0.05 to determine the speech-responsive 404 

electrodes. This method was observed to be more robust compared to some alternatives when 405 

viewing across the entire regions of interest which included electrodes inside and outside the 406 

auditory cortex with different response latencies. 407 

We limited our analysis to sites that were determined to be speech-responsive (𝑁 = 291/526). 408 

We labeled the neural sites in both hemispheres based on their anatomical region to enable 409 

population tests: posteromedial Heschl’s gyrus (pmHG; 𝑁! = 12/15, 𝑁" = 16/19), anterolateral 410 

Heschl’s gyrus (alHG; 𝑁! = 34/36, 𝑁" = 32/34), planum temporale (PT; 𝑁! = 9/12, 𝑁" =411 

18/20), middle superior temporal gyrus (mSTG; 𝑁! = 44/53, 𝑁" = 17/18), posterior superior 412 

temporal gyrus (pSTG; 𝑁! = 27/32, 𝑁" = 21/23), anterior superior temporal gyrus (aSTG; 𝑁! =413 

19/60, 𝑁" = 0/13), and inferior frontal gyrus (IFG; 𝑁! = 32/119, 𝑁" = 10/72). The electrode 414 

locations and their responsiveness are plotted in Figure 1 on the average FreeSurfer brain, where 415 

the color indicates whether an electrode is speech-responsive. 416 

 417 

RNN-Transducer 418 

To model the speech processing mechanism, we use an RNN-Transducer (RNN-T) (12), a 419 

recurrent neural network trained to perform automatic speech recognition, i.e., predicting 420 

graphemes from the speech spectrogram. The model consists of two branches—transcription 421 

and prediction (Figure 1C). The transcription branch, consisting of six uni-directional LSTM layers 422 

of 640 nodes each (T1–T6), acts as a bottom-up encoder. It transforms the input speech 423 

spectrogram into a representation used to predict the output labels. The prediction branch, 424 

consisting of a single uni-directional LSTM layer of 1024 nodes (P), acts as an internal language 425 

model. It stores an internal representation of the prior predictions of the model that, together 426 

with the encoder’s output, are used to make the next prediction. A joint network merges the final 427 

transcription branch layer with the prediction branch’s embedding and predicts text characters 428 

to generate the speech transcription. Bi-directional versions of the model were used for the 429 

analysis of training language dependencies since uni-directional models trained on French were 430 
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not available. The English network outputs are projected to 42 logits, corresponding to 41 431 

characters plus BLANK. Similarly, for French, we use 72 output units. The model is trained with 432 

the RNN-T loss on the Switchboard and Fisher datasets, which, put together, consist of about 433 

2,000 hours of English phone conversations (see (42) for training details). An additional 4-fold 434 

data augmentation was applied to the input spectrograms to allow better generalization of the 435 

model, bringing the duration of the unique training data to 10,000 hours. 436 

We computed layer activations for all layers of the model in response to the same 30-minute 437 

stimulus set that the human participants listened to. 438 

 439 

Time-aligning RNN-Transducer activations to neural data 440 

The processed neural data is sampled at 100 Hz and has shape 𝑇 × 𝐶, where 𝑇 is the number of 441 

time steps and 𝐶 is the number of electrode channels. The activations of the layers in the 442 

transcription branch of the RNN-T models are sampled at 50 Hz and have the shape V*
+
W × 𝐻*, 443 

where 𝐻*  is the number of nodes in each hidden transcription layer. These activation matrices 444 

can be trivially aligned with the neural data sampled through a resample with the integer factor 445 

2. The activations of the prediction branch, however, have shape 𝑈 × 𝐻,, where 𝑈 is the number 446 

of output graphemes and 𝐻, is the number of nodes in the hidden prediction layer. These 447 

activation matrices cannot be directly aligned with the neural data since they are based on 448 

graphemes instead of time. To make this alignment possible, we need to find the most likely 449 

“time warping” between output grapheme indices (1 ≤ 𝑢 ≤ 𝑈) and time (1 ≤ 𝑡 ≤ V*
+
W). We run 450 

the forward-backward algorithm defined in section 2.4 of Graves (12) on the grapheme output 451 

probability lattice produced by the model to obtain this “time warping” between the two 452 

sequences. We then use the 𝛼:	𝑡 → 𝑢 alignment to stretch the activation matrix 𝑍, with shape 453 

𝑈 × 𝐻, into a matrix 𝑍,-  with shape V*
+
W × 𝐻, where 𝑍,- [𝑡, : ] = 𝑍,[𝛼(𝑡), : ]. Since 𝑍,-  has the same 454 

shape as transcription layer activations, we can trivially align it to the neural data. 455 

 456 
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Linguistic features of speech 457 

Pitch 458 

As a measure of pitch, we computed the pitch contour (F0) of the speech signal using the 459 

PyWORLD python package, which is a python wrapper for the WORLD vocoder (43). We then 460 

averaged the value across the duration of each phoneme to obtain a phoneme-average pitch. 461 

Phonemes 462 

For phonetic features, we used the categorical (one-hot encoded) representation of ARPAbet 463 

phonemes. We chose this because it allows classification in the layer-level analysis. 464 

Phonotactic features 465 

Phonotactics represent phoneme transition probabilities, so we used the biphone probability 𝑃./ 466 

for phoneme bigram 𝑎𝑏: 467 

𝑷𝒂𝒃 =
𝐟𝐫𝐞𝐪𝐚𝐛

∑ 𝐟𝐫𝐞𝐪𝒂𝒑𝒑∈𝑺
 468 

   469 

where 𝑆 is the set of all ARPAbet phonemes. To compute the frequencies of each biphone, we 470 

used the CMU dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) to convert words to 471 

phoneme sequences and counted the occurrence of each biphone using the SUBTLEX-US corpus, 472 

which is an English word frequency dataset calculated from movie subtitles (44). Since biphone 473 

frequencies were calculated from a word frequency dataset and without access to word 474 

transition probability information, we counted the first phoneme transition of words separately 475 

from non-first phonemes. For example, the biphones for the phrase “red hat” are the following: 476 

/#r/, /re/, /ed/, /#h/ (not /dh/), /hæ/, and /æt/. The frequency of a phoneme bigram represents 477 

the degree of exposure of an average native listener to the bigram and measures its probability 478 

in natural speech. We purposefully chose a non-position-specific measure of phonotactics (as 479 

opposed to the more common approach (45)) to maximally dissociate this effect from lexical 480 

processes. This level represents the expectation and surprisal of the listener when hearing a new 481 
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phoneme, based on the immediate past. This prelexical phonotactics feature could indicate 482 

predictive coding mechanisms that operate on the phonemic level (46–49). 483 

Lexical-phonological features 484 

To measure the lexical-phonological effect, we used lexical entropy and surprisal. These values 485 

were calculated for each phoneme within a word from the previous phonemes in that word. The 486 

surprisal caused by phoneme ϕi, S(𝑖), in word w=ϕ1...ϕK indicates the improbability of hearing 487 

phoneme ϕi based on the previous i−1 phonemes that came before it in the word and is 488 

calculated as follows: 489 

S(𝑖) = −log+
freq(cohort')
freq(cohort'78)

 490 

where freq(cohort') is the summed frequency of all words that start with the phoneme 491 

sequence ϕ1...ϕi. On the other hand, the lexical entropy, E(i), for phoneme ϕi, is the entropy 492 

within all words that start with the phoneme sequence ϕ1…ϕi (the cohort) (50): 493 

E(i)	=	 −	v p(word)	log+p(word)
word	∈	{cohort!}

 494 

where p(word)	indicates the relative frequency of the word within the cohort. These two 495 

parameters together encode the incremental lexical competition among all phonologically 496 

consistent candidates as a word is being heard, weighted by their frequency. To compute lexical 497 

surprisal for the word-initial phoneme, we assumed a transition from the entire lexicon, i.e., how 498 

surprising it is to hear a word starting with phoneme p given the frequencies of all the words in 499 

the lexicon. 500 

Lexical-semantic features 501 

To study the encoding of semantic information, we represented each word with its semantic 502 

neighborhood density (SND) obtained from the English Lexicon Project (51, 52), which refers to 503 

the relative distance between a word and its closest neighbors based on a global co-occurrence 504 

model (51, 52). The neighborhood density can encode the degree of activation of semantically 505 

related words in the lexicon upon hearing the target word. 506 

 507 
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Contextual embedding 508 

We used the embedding obtained from the last hidden layer of a pre-trained GPT-2 XL model 509 

obtained from Hugging Face (53). This 1.5B parameter version of GPT-2, a transformer-based 510 

language model was pretrained using a causal language modeling (CLM) objective on English 511 

language data. CLM is a training goal where the model predicts the next token in a sequence 512 

given its preceding tokens, ensuring that the prediction for a position can only depend on known 513 

outputs at previous positions. 514 

To associate contextual embedding to words in the analysis data, we concatenated the 515 

transcripts for all 53 trials, in the same order the participants heard them. Then, for each word, 516 

we gave the model the last token of the target word and the 511 tokens preceding it (if available) 517 

to obtain a contextual embedding for that word. The total 512 tokens are half the maximum 518 

context window size of GPT-2 XL and correspond to about 3 minutes of context in the experiment 519 

data. 520 

 521 

Predicting neural responses from ASR activations 522 

We predict the neural activity recorded at each electrode from each of the layers of the ASR 523 

model (Figure 1). We map ASR layers instead of ASR nodes to electrodes, because the high-524 

gamma envelope of an iEEG electrode represents a readout of the activity of neighboring neural 525 

populations consisting of thousands of neurons rather than individual neurons. 526 

To predict a neural response from a layer of the model, we fit a linear single-lag Ridge regressor 527 

that predicts the electrode activity from the layer activations in response to the same stimuli. 528 

Discounting a constant lag term 𝛿, the output at time 𝑡 is predicted only from the input at time 529 

𝑡 + 𝛿. In other words, 𝑦 = 𝐴'CD𝛽 + 𝜀, where 𝑦 is the 𝑇 × 1 neural response vector, 𝐴'CD  is the 530 

𝑇 × 𝐻 activation matrix for layer 𝑖 of the ASR model with 𝐻 nodes shifted by 𝛿 time steps across 531 

its first dimension, 𝛽 is the 𝐻 × 1 regression model that maps 𝐴'CD  to 𝑦, and 𝜀 is the regression 532 

error. 533 
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We use the Ridge regressor from the python scikit-learn package to fit these models. The optimal 534 

lag value (𝛿) and ridge regularization parameter (𝜆) are chosen independently for each electrode-535 

layer pair by maximizing the prediction score through 10-fold cross-validation. 536 

 537 

Predicting neural responses and ASR activations from linguistic features 538 

We used a temporal receptive field (TRF) (23) framework to measure the extent to which 539 

different linguistic features are encoded in the neural responses recorded from the brain and 540 

activations extracted from the ASR nodes (Figure 2). We used a broad spectrum of acoustic and 541 

linguistic features as predictors: spectrogram, acoustic edges, pitch (phoneme-average F0), 542 

phonemes, phonotactics (− log𝑃./), word frequency, lexical-phonological (lexical entropy and 543 

lexical surprisal), and lexical-semantics (semantic neighborhood density). The enormous 544 

dimensionality of the contextual embedding feature prevented its use in this framework. 545 

To produce a distribution of shuffled models for statistics, we replaced each linguistic feature 546 

with a shuffled version—one at a time—100 times and measured a t-statistics of encoding, using 547 

𝑡 = 19 as the threshold of significant encoding. Special care was taken for each type of feature 548 

to ensure that the shuffling did not alter the influence of lower-level features in the hierarchy, as 549 

described below. 550 

Pitch features 551 

We grouped all the words within our 30-minute data based on their number of phonemes. Then 552 

we shuffled the word-to-pitch sequence association map within each group. 553 

Phonetic features 554 

We took the CMU pronunciation dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict), 555 

grouped words by their length measured in phonemes, and then shuffled the word-to-phoneme 556 

mapping within each group. As a result, each word will have a consistent pronunciation at ever 557 

occurrence, but words that share phonemes will have independent pronunciations, e.g. /kæt/ 558 

and /bæt/ no longer share two of their three phonemes. We constrained the reassociation to 559 

words of same length so that we kept the phoneme alignment information intact and because 560 
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words of the same length are more similar in frequency of occurrence (i.e. shorter words tend to 561 

be more frequent). This is a rather strict control, since shuffling pronunciations with other actual 562 

English words maintains the proper syllabic structure for English words. 563 

Phonotactic features 564 

To generate controls for phonotactic features, we shuffled the bigram-to-frequency associations 565 

(i.e. the look-up table for bigram frequencies), which means that each bigram was associated 566 

with the frequency of a randomly chosen bigram from the true distribution. This control scheme 567 

maintained consistency across multiple occurrences of the same bigram. To counter the effect of 568 

the separation caused by the first vs. non-first phoneme grouping, we perform the above 569 

shuffling separately for first phones (ones starting with #) and non-first biphones, so that any first 570 

vs. non-first effect will be maintained in the control, and thus discounted. 571 

Word frequency 572 

We grouped words based on their phoneme length and shuffled the word-to-frequency 573 

associations within each group. 574 

Lexical-phonological features 575 

We grouped all cohorts based on the length of their shared phoneme sequence and shuffled the 576 

cohort-to-frequency associations within each group. We used this constrained shuffling to keep 577 

the effect of secondary information, such as the phoneme position in the word and word length, 578 

unchanged. This control scheme also satisfies consistency, i.e. if two words share their first k 579 

phonemes, the cohort information for their first k positions would be the same because the same 580 

cohorts are mapped to the same information. 581 

Lexical-semantic features 582 

The control for the semantic condition was constructed by grouping words based on their 583 

phoneme length and shuffling the word-to-SND associations within each group. 584 

 585 
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Predicting linguistic features from ASR activations 586 

We predicted different linguistic features from each of the layers of the ASR model. Because 587 

linguistic features are defined at different resolutions and linguistic units have different lengths, 588 

we performed a unit-aligned analysis. For example, to predict linguistic features that are defined 589 

at phoneme resolution—pitch, phoneme, biphone probability, lexical entropy and surprisal—we 590 

extracted a layer’s activations at time points {𝑝' + 𝛿}, where {𝑝'} were the time points 591 

corresponding to phoneme centers and 𝛿 was a constant time lag. This 𝑁 × 𝐻 activation matrix, 592 

where 𝑁 is the number of phonemes and 𝐻 is the number of nodes, was multiplied by an 𝐻 × 𝐷 593 

linear decoder to predict the 𝐷-dimensional linguistic feature. Similarly, for word resolution 594 

features—word frequency, semantic neighborhood density, contextual embedding—we 595 

extracted activations at time points {𝑤' + 𝛿}, where {𝑤'} were the time times corresponding to 596 

word centers and 𝛿 was a constant time lag. 597 

For predicting the categorical phoneme labels we fit linear Ridge classifiers, and for the rest of 598 

the features Ridge regressors. The best time lag (𝛿) and regularization parameter (𝜆) was 599 

determined independently for each layer-feature pair by maximizing the 10-fold cross-validated 600 

prediction scores. 601 

 602 

Representation similarity of ASR model layers 603 

We use two methods to compare representations of two ASR layers. The first is to compare their 604 

linguistic decoding results. The second is to compare the representations directly with the 605 

centered kernel alignment (CKA) method, which is used to measure the similarity between two 606 

sets of high-dimensional vectors, especially representations learned by neural networks (25). For 607 

this comparative analysis, we used three bi-directional LSTM models with a similar architecture 608 

to the causal one described earlier: a model trained on the same English data; a “random” model 609 

that has the same architecture as the English model, but randomly initialized and untrained; a 610 

“foreign” model that was trained on a French ASR task and was not exposed to English. We chose 611 

bi-directional models for the between-model analysis because the layers of the bi-directional 612 

models have more consistent latency which makes the CKA layer comparison more accurate. 613 
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 614 

Code availability 615 

Code for preprocessing neural data, selecting responsive electrodes, and creating brain 616 

plots is available in the naplib-python package (54).  617 
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