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Ocular inflammation imposes a high medical burden on patients and substantial costs on
the health-care systems that mange these often chronic and debilitating diseases. Many
clinical phenotypes are recognized and classifying the severity of inflammation in an eye
with uveitis is an ongoing challenge. With the widespread application of optical coherence
tomography in the clinic has come the impetus for more robust methods to compare
disease between different patients and different treatment centers. Models can
recapitulate many of the features seen in the clinic, but until recently the quality of
imaging available has lagged that applied in humans. In the model experimental
autoimmune uveitis (EAU), we highlight three linked clinical states that produce retinal
vulnerability to inflammation, all different from healthy tissue, but distinct from each other.
Deploying longitudinal, multimodal imaging approaches can be coupled to analysis in
the tissue of changes in architecture, cell content and function. This can enrich our
understanding of pathology, increase the sensitivity with which the impacts of therapeutic
interventions are assessed and address questions of tissue regeneration and repair.
Modern image processing, including the application of artificial intelligence, in the context
of such models of disease can lay a foundation for new approaches to monitoring
tissue health.
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INTRODUCTION

Ocular inflammation is an important medical concern with a wide range of manifestations from the
easily treatable to sight threatening. It arises both as an ocular specific condition and in association
with systemic disease and it manifests as more than 30 defined uveitic phenotypes. The pathogenesis
is complex and multifactorial and there is a lively debate as to the relative contribution of subclinical
infection, autoinflammation and autoimmunity (1, 2). Conventional approaches to imaging do not
distinguish between these different causes.
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Animal models of uveitis are often autoimmune (e.g.
experimental autoimmune uveitis; EAU), inspired in the
mouse by early work identifying susceptible strains (3, 4) and
used widely to probe important aspects of immune function
including tolerance (5, 6), regulation (7, 8), microbiome (9),
lymphocyte dynamics (10) and macrophage/monocyte function
(11). But other models of ocular inflammation are also
important, including endotoxin induced uveitis (EIU) (12–14)
and primed mycobacterial uveitis (PMU) (15). Ocular infectious
disease can also be studied and has proven to be an informative
model of inflammation (16–18).

Over the last 15 years, techniques for imaging the mouse
retina have advanced substantially, first with fundal
photography, acquired by topical endoscopic fundal imaging
(TEFI) (19–21) facilitating clinical grading by individuals
blinded to the origin of the images. Then followed by
adaptation of clinical tools (12) and development of the
Micron system for imaging rodent eyes (Phoenix technologies,
CA). These advances have made acquisition of experimental
image data more accessible and routine (12, 22–24). The
application of optical coherence tomography (OCT) to the
mouse eye adds new information on changes deep in
the tissue. The eye offers unique advantages for imaging
studies of the autoimmune process in a target tissue,
permitting serial assessment, and sophisticated quantification
of different parameters of inflammation that go beyond more
general clinical scores used in models such as experimental
autoimmune encephalomyelitis.

Advances in image processing that have been developed in
patient populations can also find application in experimental
studies. There is potential for automatic segmentation of
structures (in which the boundaries between, for example,
different layers of the retina are identified in an unsupervised
process), quantification of infiltration and disease classification
by machine learning, which can be used to support unsupervised
clinical assessment (25, 26). This is seen in the recent application
of deep learning to EAU (27). Alternative powerful technologies
are also available; using bioluminescent reporters, can delineate
sequential cell population specific patterns of infiltration (28, 29),
and multi-optical imaging approaches can produce data on
phenotype and the spatial relationship between different cell
types (30). Objective measurements, that provide a more
granular multi-modal analysis of the state of the tissue, can
then form the basis for quantifying the impact of treatment on
ocular disease not limited to a single time-point but integrated
across a longer disease course.
OCULAR TISSUE AND INFLAMMATION

EAU is often studied with a focus on the acute inflammation that
occurs with the explosive influx of immune cells that flood into
the tissue in the first wave of clinical disease. But it has been
apparent for a number of years (31, 32) that it can also be used to
develop insights into the processes of persistent disease and
tissue remodeling. For example, memory cells that reside in the
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bone marrow are implicated in chronic retinal degeneration (33)
and persistent inflammation can lead to retinal angiogenesis
(34). In both mouse (35) and human (36), chronic disease can
drive the development of ectopic lymphoid like structures and is
accompanied by changes in the other lymphocyte populations
and vascular remodeling (10, 34). The ocular tissue can therefore
exist in a minimum of four well demarcated states (Figure 1).

Healthy tissue resists insult and maintains normal visual
function. In the EAU model, there are a minimum of three
non-healthy states, which correlate with changes in immune cell
content and vascular function (31). Vulnerable tissue may be in
the prodromal phase of EAU, at peak of disease, with active
infiltration by many different leukocytes, or vulnerable but to a
greater or lesser extent recovered, which state is described as
post-peak. It is possible to observe experimentally that the pre-
peak state can resolve to a state of health, or progress to peak
disease. Tissue can reach peak disease from either the pre-peak
state or as a relapse from the post-peak state (37). But it is
unknown whether from peak or post-peak, tissue can ever return
to a healthy state. In the broader context, a useful framework for
these changes is found in the extensive literature describing the
development and resolution of inflammation, but here too, the
question of active resolution in the tissue and the mechanisms by
which it occurs remains controversial (38). While this review
focuses studies in the eye, it is evident that other diseases and
disease models, such as arthritis, can be fitted into a similar
framework (39).

One essential tool for advancing understanding of these
different tissue states is a rigorous method of clinical
assessment that separates healthy tissue from the vulnerable
and that also distinguishes between different states of the
vulnerable tissue. Such a scheme could then complement
studies describing gene expression in different forms of ocular
inflammation (13, 40). Recent advances in the range and quality
of techniques that can be applied to quantify ocular
inflammatory disease make such objective and transferrable
assessments increasingly feasible.
ASSESSMENT OF OCULAR
INFLAMMATION

The measurement of inflammatory activity is a core objective for
clinical studies of uveitis and has inspired work that seeks to
improve its ability to discriminate between lower levels of disease
as well as improving its sensitivity (41). Progress in this area can
also inform animal studies.

Clinical Scoring
In human eye disease, improvements in imaging have driven
diagnostic sensitivity and specificity (42, 43). Scoring systems
serve as tools for categorizing disease activity into ordinal groups
and as a convenient measure of clinical outcome and directional
change. The first aqueous and vitreous inflammation scoring
systems based on ophthalmic observation of cell counts in
patients were published in 1959 (44, 45), but consensus
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recommendations did not emerge until 2005, under the umbrella
of the Standardization of Uveitis Nomenclature (SUN) workshop
(46). For some diseases, for example Behçet’s disease, specific
scoring systems have proven useful is assessing treatment
response (47). It is a recognized concern with scoring systems
that there is a tension between precision and simplicity. Levels of
interobserver agreement remain modest and non-linearity in the
scaling can lead to poor resolution of differences in disease
especially at lower levels of inflammation (48–50). The use of
digital images, where biological data is quantified as pixel values,
expands the possibilities for analysis by computer imaging (25)
for example for automated grading of vitreous haze (51). Scoring
of clinical disease in EAU has evolved from early approaches
using slit-lamp aided visualization and semi-quantitative
histological scoring to more sophisticated scoring approaches
based on blinded assessment of fundal photographs (20, 21, 23,
52, 53) and most recently using machine learning. Scoring can be
on a simple ordinal scale (0–4) or can categorize disease into
three indicators of inflammation and one of structural damage
with inflammation and structural damage reported
independently or as a summary score (0–5) calculated as the
total or average score for the eye (10, 21, 54) (Table 1). When
applied as a summary score, this approach can be insensitive to
differences in aspects of the underlying pathology, for example in
Frontiers in Immunology | www.frontiersin.org 3
Figure 2, the two images, although clearly different, received the
same summary clinical score.

Complementing photography is optical coherence tomography
(OCT). Developed in the 1990s (55, 56) it has rapidly become the
state of the art for non-invasive retinal imaging. OCT is an
interferometric technique providing depth resolved cross
sectional images of the retina, known as B-scans. In normal eyes
the vitreous is optically transparent, retinal layers show different
degrees of backscatter, and in humans the RPE is one of the most
hyper-reflective layers. Modern OCT in humans can also go some
way to visualizing the choroid beneath the RPE (57). OCT can
resolve retinal substructure and its vasculature, can be important
in the diagnosis and image guided management of human uveitis
and can capture changes in the state of the tissue through time in
EAU (12, 24, 58, 59).

Ocular Tissue Analysis
In contrast to the wealth of sophisticated imaging that can be
directed at the human eye in uveitis, access to human tissue is
severely limited. Enucleation of the globe in uveitis is rare and is
usually from individuals with long-standing disease (36). But in
the EAU model, histology was the first accepted standard for
disease assessment (60–62). Immunohistochemistry and
immunofluorescence of retinal tissue revealed the profound
FIGURE 1 | Tissue states in ocular inflammation. Healthy ocular tissue is ‘immune-privileged’ and under low-level immunosurveillance. Specific (ocular antigen driven) and
non-specific (extra-ocular inflammation) stimuli disturb this homeostasis and increase interactions across the blood retinal barrier making the tissue more vulnerable to the
development of disease. In uveitis following active immunization, this starts with the prodrome (8), which can resolve back to the healthy state. When the prodrome
progresses to clinical EAU in immunocompetent animals, there is an influx of cells to a maximum (peak) followed by a reduction in immune cell content, which does not
return to base line. The post-peak (in EAU described as secondary regulation) is distinguished from the pre-peak by changes in the relative proportion of different
lymphocyte populations (CD4 T regulatory cells, CD8 T resident memory cells). There is currently no evidence that disease proceeds directly from pre-peak to post-peak,
nor that eyes that have reached peak disease ever return to the normal healthy state.
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structural disruption that accompanies acute inflammation, and
was used, for example, to show how macrophages reciprocally
alter their expression of CD68 and arginase-1 during the
persistent (post-peak) phase of uveitis (34). For higher
dimensional analysis of cell infiltrate, investigators have used
multiparameter flow cytometry which can quantify many
Frontiers in Immunology | www.frontiersin.org 4
different cell populations (8, 63, 64). Sampling the cell infiltrate
at different time points has been instrumental in demonstrating
important changes in the relative frequencies of CD4 T
regulatory cells (65) and CD8 cells (10). In EAU this is strong
evidence that at the cellular level as well as in serial imaging
studies, the tissue and the immune infiltrate change and adapt
TABLE 1 | Scheme for scoring clinical ocular inflammation.

Score Optic disc Retinal vessels Retinal tissue infiltration Structural damage

1 Minimal inflammation Cuffing: 1–4 mild 1–4 small lesions or 1 linear
lesion

Retinal lesions or retinal atrophy involving 1/4 to 3/4 of
retinal area

2 Mild inflammation Cuffing: >4 mild or 1–3
moderate

5–10 small lesions or 2–3 linear
lesions

Panretinal atrophy with multiple small lesions (scars) or
≤3 linear lesions (scars)

3 Moderate inflammation Cuffing: >3 moderate >10 small lesions or >3 linear
lesions

Pan-retinal atrophy with >3 linear lesions or confluent
lesions (scars)

4 Severe inflammation Cuffing: >1 severe Linear lesion confluent Retinal detachment with folding
5 Not visible (white-out or extreme

detachment)
Not visible (white-out or extreme
detachment)

Not visible (white-out or extreme
detachment)

Not visible (white-out or extreme detachment)
A blinded observer assigns scores to retinal photographs for changes that relate to inflammation of the optic disc, retinal vessels and retinal tissue and a score for structural damage. These
scores can then be summed independently (score of 0-20) or given as a summary score of the average of all features (score of 0-5) (10, 21, 54).
FIGURE 2 | Clinical score can be insensitive to underlying pathology. Mouse eyes imaged using Micron IV with OCT (Phoenix technology group, CA). Two mouse
eyes (A, C) and (B, D) imaged using Micron IV (Phoenix technology group, CA) and assessed by fundal photography (A, B) and OCT (C, D). Retinal photographs
scored in a set of images by an observer blinded to the treatment groups, both received the same summary clinical score. Scale bar 100 µm.
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through time. Developing improved quantitative methods to
assess tissue health in EAU offers more sensitive and specific
approaches to analyze the impact of therapies for autoimmunity
and inflammation.

Quantitative Assessment of EAU
Using formal criteria, EAU can be assessed semi-quantitatively,
but interobserver disagreement and subjectivity limits the
usefulness of direct comparison between results from different
labs and even individual researchers (21). As with human clinical
graders, experience is required to achieve the highest levels of
interobserver agreement (66). Employing contemporary
technology has the capacity to improve on these limitations. In
addition, in EAU as in other medical images, these can be
annotated, with the results of end point tissue analysis added to
the meta-data associated with the image. This enriches their
interpretation and provides a resource that can be applied to
other studies. Pooling data from animal cohorts at selected
timepoints runs the risk of obscuring subtle patterns, and
overweighting the importance of the certain trends. This can be
countered by the use of analysis that exploits modern image
processing, with its scope for a higher degree of quantitation
(66–68). A critical element of complementary analysis is therefore
the use of non-invasive techniques and computational means to
maximize information retrieved from the data.

Fundus photography, for example obtained by TEFI,
correlates well with disease scores from histopathological
analysis (20) but the images produce a 2D projection of 3D
semi-transparent biological tissue. Spatial information is only
available in two dimensions and artifacts are introduced by
flattening depth information onto a plane. More accurate
measures of infiltrate, oedema and structural changes, that are
important manifestations of disease, can be obtained with OCT
(24, 59). Because OCT produces a depth profile of different
features, it can be more sensitive than 2D fundus imaging in
monitoring the appearance and development of pathological
changes. In particular, cross sectional images are more
sensitive to early disease because they can visualize small
amounts of infiltrate around the optic nerve, and measure
changes in optic nerve diameter and retinal thickness due to
inflammatory oedema (23, 59, 66, 68).

Aqueous and Vitreous Assessment
A defining characteristic of uveitis is cellular infiltrate, and
grading is an important quantitative metric in preclinical
animal model research. In human disease, anterior uveitis
produces ‘flare’ which can be categorized by laser flare
photometry and which correlates well with conventional clinical
grading (69, 70) while in the vitreous, ‘haze’ is an accepted and
clinically validated proxy for inflammatory status in patients (51).
Moreover, these changes have a marked impact on visual acuity in
humans and so are biologically and clinically relevant outcome
measures (50).

In OCT, cells in either chamber appear as hyperreflective
dots, whose profile is a function of many variables (71–73). Cells
and exudate incrementally reduce the optical transparency of the
ocular media leading to the aqueous and vitreous becoming
Frontiers in Immunology | www.frontiersin.org 5
inhomogeneous as disease severity increases. These changes
reduce the contrast of object boundaries and the results of
qualitative or quantitative image analysis lose precision.

Because of difficulty in imaging the anterior chamber of small
eyes, literature for OCT based cell counting in these models is
relatively sparse (74). However, automated counts of absolute
cell numbers have been obtained with excellent correspondence
to manual image counts. This approach has been developed into
a fully automated pipeline for cell counting in volumetric OCT
images, achieving 98% congruence to manual slit lamp counts.
Importantly, the subjective manual element of the segmentation
step was eliminated. The automated segmentation step involved
removal of anatomical structures connected to image boundaries
(75). Compared with counts from histological sections, OCT
tended to undercount, which was attributed to insensitivity to
cell clumps, sediments and exclusion of the extremities of the iris
interface (74). It may also be contributory that histology is
unaffected by overlying opacities, whereas OCT is vulnerable
to signal degradation. However, histology introduces artifacts
and postmortem changes that themselves affect tissue
measurement (74).

Loss of precision becomes more evident when imaging the
vitreous, where the optical pathway traverses deeper through
affected media. Further complicating the analysis of the rodent
vitreous, is the anatomical vestige of the hyaloid artery (71, 76),
protruding upwards from the optic disc towards the lens. It
confuses the vitreoretinal boundary and can appear somewhat
discontinuous, with hyperreflective regions that are subjectively
indistinguishable from cell clusters.

Automated counting algorithms usually require a preceding
segmentation step, that defines a boundary for the area or
volume of interest. Variations in signal quality and the
ambiguity of discontinuous image features frustrate the
development of accurate, fully automated methods of rodent
image segmentation and analysis. Quantification of changes in
the vitreous has largely been restricted to human images, and
global signal parameters, as opposed to absolute cell counts.

To account for signal strength variations in human OCT
images, the average intensity of the segmented vitreous
compartment can be indexed relative to a hyperreflective
reference layer such as the RPE, providing a relative intensity
ratio. These ratios correlate moderately with clinical vitreous
haze scores, along with other surrogates of disease such as retinal
thickness (72, 77). This process has been fully automated using
rule-based algorithms for segmentation, reducing subjectivity.
The same operation was also performed using a textural
descriptor of the vitreous, which was marginally better
correlated to clinical scores than vitreous intensity (73). These
operations were performed on 2D datasets, obtaining an
averaged intensity ratio based on several B-scans and data
analyzed in 3D may potentially offer further improvements.

Since the scan region is much smaller than the ocular globe,
one consideration is the selection of a representative and
informative region of interest (ROI) that must be equivalent
between scans and subjects. Within human images, landmarks
such as the macula can be located automatically and used
as a central anchor point for region boundary positioning (73).
June 2021 | Volume 12 | Article 630022
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In rodents, the optic disc is an obvious landmark choice, but the
presence of the hyaloid remnant, particularly in severely diseased
eyes warrants additional steps to remove its influence. Recently,
an automated method of quantifying vitreous inflammation in
clinical fundus photographs has been suggested (50, 51).

Retinal Layers
OCT of the healthy retina produces good definition of the
different layers of light sensitive tissue. In uveitis it can resolve
and localize lesions and pathologies, and identify vasodilation
and perivascular exudate (24, 59). Standard clinical OCT has an
axial resolution of less than 4 microns, which can produce images
with near histological detail. Thickness is ascertained from OCT
images by measuring the distance between two boundaries of
choice (Figure 3). Before measurements can be taken, the layers
must be defined.

Techniques for segmentation to define different retinal layers
have progressed through manual, semi-automated and fully
automated protocols, with work on human data leading rodent
OCT imaging. Both rule-based algorithms and learner-based
approaches have been applied to the problem and new
approaches are under active investigation. Retinal thickness
can be measured by OCT absolutely, using assumptions such
as an average tissue refractive index (78), or by fold change
compared to pre-disease measurements (66). Both are in high
agreement with histological measurements (24, 59, 66, 78, 79).
Several schemes exist for displaying changes in thickness. One
that is commonly used shows thickness at different distances
from the optic nerve head (Supplementary Figure 1).

Rule-based methods execute a pre-programmed set of
instructions, designed with the expected properties of the
image and the desired features in mind. Many image
properties can be analyzed, including intensity variation,
geometric contours and texture (80–84). The number of
Frontiers in Immunology | www.frontiersin.org 6
segmented layers defined varies between four and nine, and
depends on the approach, with the most successful techniques to
date being learner models (26, 80, 85–88)

OCT offers the potential of assessing layer deformation
without the artefacts that can be introduced by tissue fixation,
sectioning and staining (89). Mechanical deformation can also
introduce ambiguous artifacts, with likeness to retinal
detachments (78), and congenital abnormalities in the retina
may also confound the definition of anatomical normality (90).
The literature pertaining to automated quantitation of retinal
structure is more extensive than that related to infiltrate, because
retinal layer changes are associated with a wide variety of ocular
diseases (91, 92). The laminated reflectance profile of the retina’s
architecture also lends itself to image segmentation and the
measurement of quantitative indices such as layer thickness
and geometric descriptors. Protocols for automatic layer
segmentation developed for human studies have been tested
in different mouse strains. These performed well when assessing
the inner retinal layers, but were less successful in defining
the murine RPE, whose location displaced distally into
the sclera (68).

Longitudinal studies of retinal thickness have revealed details
about the kinetics of disease progression, with respect to other
important manifestations of pathology (59, 66). In the pre-peak
to peak phase of disease, retinal thickness increases rapidly due to
inflammatory oedema, correlating with inflammatory infiltrate,
measured longitudinally by OCT and confirmed by histology
(66, 78). In the post-peak resolution phase, the clearance of
exudate reveals features on OCT with greater clarity, such as
infiltrate, photoreceptor atrophy, retinal folds and choroiditis
(59). Photoreceptor damage persists beyond the peak phase of
disease as retinal oedema is slower to resolve than inflammatory
infiltrate. When the swelling does subside, the retina thins
to below pre-disease levels because of photoreceptor loss.
FIGURE 3 | OCT of the normal mouse retina delineates layers and allows retinal dimensions to be quantified. Scale bars are 100 microns and illustrate differences
in axial and lateral resolution. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer;
ELM, external limiting membrane; IS/OS, inner and outer segments; RPE, retinal pigment epithelium (68).
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OCT confirms that neither infiltrate or retinal thickness returns
to baseline in late disease or even after resolution is complete (20,
59, 78). Therefore, quantitative directional changes and relative
rates of change between retinal thickness and inflammatory
infiltrate can provide an additional metric for disease activity.

In severe uveitis, retinal layers are obscured by opacification
of the vitreous and aqueous due to infiltrate and proteinaceous
exudate (59) which presents a challenge for scoring systems, that
must be robust to substantial signal variation and may need to
incorporate metrics of opacity into the model as proxies
of inflammation.

Vasculature
Important changes in the vasculature occur in uveitis, including
ischemia, neovascularization and retinal/choroidal vasculitis
(93). In disease models these are assessed less commonly than
structural changes, but as in humans they are often interrogated
by angiography. Confocal scanning laser ophthalmoscopy (SLO)
can be coupled to fundus fluorescein angiography (FFA) to
quantify vessel diameter and leakage in EAU. When average
vascular dilation was measured immediately prior to sacrifice
and histology, major vessel diameter was well correlated with
retina-choroid thickness and with clinical and histological scores.
This indicated that inflammatory vasodilation of superficial
vasculature was a novel measure of EAU severity (66).
Complementary to dye-based angiography are OCT based
methodologies. Vascular dilation and perivascular exudate
attributed to retinal vasculitis can be localized to specific
retinal layers during the course of EAU (23, 59) and OCT has
been used for imaging vasculature disturbances, such as
choroiditis and retinal vasculitis (43). Blood flow can be
visualized and depth resolved (94) using OCT angiography
(OCTA) and this has been used to assess retinal microvascular
changes (95, 96).

Many methods of segmenting retinal blood vessels from
fundus photographs have been published (97). A much smaller
number of approaches have been successfully devised using OCT
images, which include the use of multimodal imaging
(corresponding fundus photographs) and learner models (98,
99). In humans, segmentation of fine capillary networks has
been achieved in OCTA enface images (100) while in mice
segmentation of retinal vasculature using OCTA has been
reported for longitudinal monitoring of angiogenesis (101).
Current advances applying deep learning to vessel segmentation
continue to improve the performance of these methods and this
has been helped by the public access to data sets (102).

Functional
As EAU progresses, electroretinogram (ERG) amplitudes change.
There is a dramatic reduction in function (a and b wave), that
accompanies early disease (103), presenting before morphologic
changes. These findings indicate that functional loss could be
mediated by inflammation rather than just physical damage, and
that retinal function is potentially a sensitive early indicator (59,
66). However, photoreceptor damage continues while
inflammation is receding and in the post-peak phase, ERG
amplitudes are correlated with OCT measures of retinal
Frontiers in Immunology | www.frontiersin.org 7
thickness. As swelling diminishes, photoreceptor atrophy
becomes apparent and results in an overall retinal thinning
compared to baseline. Neither retinal thickness nor functionality
ever fully recover (59, 103).

Taken together, multimodal quantitative measures can
provide information on perceptually subtle, but biologically
significant changes whose quantification would aid clinical
grading and pre-clinical research.
A

B

D

C

FIGURE 4 | Multimodal analysis of EAU. Mouse eyes were imaged at day 0
and day 13 after the induction of EAU and one representative image of the
same eye is shown (A–C). Clinical disease can be assessed by photography
(A), measurements of retinal thickness and optic nerve diameter at three
points from the temporal, nasal and optic nerve regions of the OCT B-scans
(B), 3D-reconstuction of retinal infiltrate (C) and summary data of retinal
scores from all groups (D). Summary scores are assembled from
unsupervised quantitative assessment of vitreal involvement, manual
segmentation and measurement of inner and outer layer thickness and optic
nerve diameter transformed and represented as Z-scores.
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EXAMPLES OF MULTIMODAL
MEASUREMENT

A multimodal approach to assessing uveitis is outlined in
Figure 4. EAU was induced by the transfer of pathogenic
autoantigen reactive T cells. Sequential imaging of all eyes was
carried out by fundal photography and OCT. B-scans were
segmented manually and measured by an observer blinded to
treatment conditions. Measurements of retinal thickness were
made at baseline from all eyes (n=11) and these were compared
as a Z-score expressing the magnitude of change in thickness on
day 13 color coded as the number of standard deviations from
baseline (Figure 4D). Figures 4A–C shows images from a
representative single eye at baseline and day 13. The retinal
photographs (Figure 4A) show that at day 13 there is an enlarged
optic nerve, sheathing of the vessels due to cell infiltration (white
arrow) and infiltrates in the tissue (black arrow). B-scans
(Figure 4B) through the optic nerve, were assembled from
multiple averaged frames and are displayed with the
accompanying 100 micron scale bars that were used to
generate measurements of the retinal thickness following
manual segmentation using ImageJ (104). At day 13 it is easy
Frontiers in Immunology | www.frontiersin.org 8
to see objects in the vitreous around the optic nerve. The 3D
image (Figure 4C) is prepared from 512 sequential B scans,
processed using code in MATLAB (Natick, Massachusetts: The
MathWorks Inc) and ImageJ (26) adapted for use with murine
images and rendered using ImageJ (1.53 3D viewer plugin).
These pictures give a better appreciation of the spatial
distribution of the vitreal infiltrate and can be used to make a
semi-quantitative estimate of the degree of vitreal infiltration.

Following changes in disease scores through time, it is useful
to display the aggregate data from the multiple images, and this
has been used to produce a color-coded map of the retina, with
changes normalized to baseline scans (usually on day 0) and
scaled by Z-score. Retinal maps are also useful when comparing
the pattern of pathological change between different disease
models. For example, compare Figure 4D, which shows that at
day 13 the major impact of uveitis is found in the vitreous and
the optic nerve with Figure 5 which shows the does dependent
effect of intra-vitreal instillation of paraquat, a model of oxidative
stress, in C57BL/6 mice. This induces neuronal degeneration
which varies with stain (105) and in this case particularly impacts
the inner retina, seen as a negative Z-score increasing in
magnitude with dose. But quantitative analysis also reveals that
FIGURE 5 | Changes in retinal thickness in mouse eyes following intra-vitreal paraquat instillation were measured on day 10. Images were visualized by OCT,
manually segmented, and measured at three points in the temporal, nasal, and optic nerve regions. Measurements are expressed as positive and negative Z-scores
relative to a PBS injected control group. Changes in the inner and outer layers are decoupled.
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at higher concentrations of paraquat, this is accompanied by an
expansion of the outer segments, due to inflammation. This
finding, using multimodal analysis is in agreement with a
previous report showing more pronounced TUNEL-positive
cells in the inner retina than in the outer retina of C57BL/6
mice treated intravitreally with paraquat (105).

Opportunities for Automation
Machine learning has made an impact in human clinical care in
recent years because of its ability to reach expert-level diagnosis.
The automated analysis of ocular disease has led the way in
carrying these methodologies into the clinic, but they have been
less extensively utilized in disease models (106, 107).

Images are inherently data rich because in theory each pixel
can be regarded as a separate input parameter (106). This offers
opportunities for uncovering novel aspects of pathological
processes but also challenges, especially in assembling well
annotated data sets that are large enough to avoid
overparameterization when they are used to train classification
algorithms in a machine learning framework. Advances in
predictive statistical methods may in time alleviate the need for
such extensive input data. One helpful approach, applied in
OCT, is decoupling the methods for segmentation from artificial
intelligence driven disease classification (108). This moves
practice towards device-independent representation of the
disease process, which may aid in comparison between studies
carried out by different investigators.

Recently the field has advanced with the application of a deep
learning model to analyze photographs of the retinas of mice
with EAU. Using a data set of images that was extended by data
augmentation, disease images were divided into three categories
and by applying deep learning methods (convolutional neural
networks) the overall performance assessed by area under the
receiver operating characteristic curve (AUC) when the model
was applied to an external dataset of 33 images was
approximately 0.90 (27).

Another area of opportunity in multi-modal ocular imaging is
the fusion of information from different modalities such as
fundal photography and OCT (109, 110). Image fusion aims to
yield a more complete, accurate and efficient account of an object
by combining different visualizations together. Integrating this
methodology into the assessment of experimental clinical disease
will inform our ability to distinguish between different states of
tissue health (Figure 1).
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CONCLUSION

Persistent ocular inflammation is a significant and challenging
clinical entity that is associated with long term changes in the
retina and serious sight threatening complications (111).
Experimental models of non-infectious and infectious ocular
inflammation have been widely and successfully deployed. But
fundamental insights regarding how tissue homeostasis is
perturbed and how it might be restored are still needed (112).
Such concerns are important in a much broader context than
uveitis. Restoring complex tissues, damaged by persistent
inflammation, to normal physiological function will have wide
application. Multimodal and quantitative imaging of the eye, in
an experimental context, has potential to advance our
understanding of the kinetics, cell biology, transcriptomic and
proteomic architecture of how this multifactorial process is
regulated. By providing non-invasive techniques to probe the
underlaying nature of the tissue, there is an opportunity for a
more precise and comprehensive discrimination between
different states that can be used to stratify information
gleaned from detailed examination of the transcriptome and
microbiome, multiparameter flow cytometry and proteomics.
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