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Abstract: Cameras are widely adopted for high image quality with the rapid advancement of com-
plementary metal-oxide-semiconductor (CMOS) image sensors while offloading vision applications’
computation to the cloud. It raises concern for time-critical applications such as autonomous driving,
surveillance, and defense systems since moving pixels from the sensor’s focal plane are expensive.
This paper presents a hardware architecture for smart cameras that understands the salient regions
from an image frame and then performs high-level inference computation for sensor-level informa-
tion creation instead of transporting raw pixels. A visual attention-oriented computational strategy
helps to filter a significant amount of redundant spatiotemporal data collected at the focal plane. A
computationally expensive learning model is then applied to the interesting regions of the image. The
hierarchical processing in the pixels’ data path demonstrates a bottom-up architecture with massive
parallelism and gives high throughput by exploiting the large bandwidth available at the image
source. We prototype the model in field-programmable gate array (FPGA) and application-specific
integrated circuit (ASIC) for integrating with a pixel-parallel image sensor. The experiment results
show that our approach achieves significant speedup while in certain conditions exhibits up to 45%
more energy efficiency with the attention-oriented processing. Although there is an area overhead for
inheriting attention-oriented processing, the achieved performance based on energy consumption,
latency, and memory utilization overcomes that limitation.

Keywords: computation at sensor; CNN; computer vision; image relevance; FPGA; ASIC

1. Introduction

The pixel-parallel CMOS image sensor has an escalating performance in providing a
high frame rate with high-definition resolutions in video systems. This sensor has a signal
processor for every pixel, used to process and store the pixel data, and provides a frame rate
>10,000 frames/s [1,2]. Though the signal processors’ large footprint bounded the spatial
resolution in pixel-parallel design, the 3D stacking architecture allows us to overcome this
bottleneck by integrating pixel processors beneath each pixel [3]. These signal processors
compute comparatively simple operations, such as extract temporal contrast in each pixel,
low-level window-based imaging processing applications [4]. Here, the added benefits
are massive bandwidth available at the sensor interface, and it enables us to meet the size,
weight, and power (SWaP) constraints [5].

In contrast, high-level processing tasks like convolutional neural networks (CNN)
require massive operations, and we initiate that processing at the cloud while the sensor
works as a passive device. In that case, a camera collects pixels and then transfers every
pixel to the cloud sequentially, which is shown in Figure 1a [6]. The pixel values propagate
to the server through a channel that requires time ta. Here, both data dimensionality and
propagation time increase with the increase of image size. The bandwidth constraint acts as
a bottleneck for high-speed operations and creates a privacy concern. Some of the computa-
tions are performed at the sensor with a focal-plane sensor processor (FPSP) to improve the
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scenario [7]. The performance of the FPSP is limited to low-level functionalities. It increases
the efficiency of edge-cloud collaboration. Edge-cloud collaborative computation is an
excellent step to push computation at the edge [8]. Here, computational methodologies
have been investigated where the signal processors in the sensor are assigned to perform
more computationally expensive operations like convolution, and the host device performs
the remaining function (see Figure 1b). Though the image size decreases after convolution,
the number of channels increases, which further raises the image data volume. Therefore,
the communication channel between edge and host still refrains us to exploit the maximum
bandwidth available at the sensor interface.
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Figure 1. (a) Conventional image processing. Sensor is a passive device and continuously sends
image to the server or host for processing (b) Sensor and host collaborative computation. The vision
task is divided between the sensor and host platform (c) Full computation on the edge and the
sensor becomes active device (d) Data propagation delay in these three steps (e) Our approach of
attention-oriented relevant information processing at the sensor.

This study suggests embedding an efficient inference engine to process image data
at the edge device directly to collect useful information from the image (see Figure 1c).
Since effective information in an image is minimal, the system demands a negligible data
propagation time tc. According to Figure 1d, tc << tb and it justifies that the data trans-
portation time is no longer a bottleneck. This strategy further lessens the computational
burden on the central node or host. However, the major challenge is that inference compu-
tation is costly and requires a large memory and computation power. A vast amount of
parameters are associated with every learning method, presented in Figure 2. For instance,
the VGG-16 learning model has 136 million parameters [9], and storing these parame-
ters inside a vision chip is difficult. Aiming to mitigate all these problems, we propose
hierarchical attention-oriented region-based processing or HARP. The HARP presents a
hardware architecture to make an image sensor an active device by initiating hierarchical
parallel computation at the focal plane. The hierarchical processing enables sensor-level
information extraction instead of transferring raw data. Since the processing begins at the
focal plane, there is high bandwidth for computation, making HARP a suitable candidate
for high-speed applications.

Figure 2. Parameter expansion in different learning models.

Alternately, a real-time video system creates a data deluge with enormous redundant
information, and the system spends unnecessary time and power executing the redundant
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spatiotemporal information. The retina in our vision system receives billions of informa-
tion, but less than 1% data propagates to the central cortex. The retina performs some
preprocessing to determine the regions where the visual attention implies. Inheriting these
biological vision systems in vision applications provides the firmest connection to the
low-dimensional fixational space and high-dimensional features or object space [10,11].
Hence, computationally expensive operations can be triggered by lightweight algorithms
in the circuit to emulate vision systems [11]. This concept is tailored in the proposed HARP
architecture by dividing the image into small image patches and then investigating the
relevance of the image patches or regions. Figure 1e better illustrates this concept. The im-
age is split into sixteen regions, where four regions are identified as interesting from our
visual observations. HARP identifies these four regions with low-level image processing
algorithms and triggers these four regions for high-level operations. Therefore, we can
save power and increase throughput by enabling computation on the relevant regions only
and gives an optimum platform to accelerate vision applications.

The state-of-the-art works for salient point extraction involved complex computation
like color, orientation, and intensity computation in generating saliency map [12]. Deter-
mining spatiotemporal saliency is one of the common approaches to identify the relevance
of a region [13]. HARP utilizes some low-level image processing algorithms (edge, corner,
temporal contrast filter, predictive coding [14]) instead of complicated calculations. Our ap-
proach’s difference is that HARP does not generate a saliency map; instead, it investigates
a region’s possibility to be marked as relevant with a series of low-level image processing.
The major contributions of this paper are:

• We propose HARP architecture to perform low-level image processing and high-level
inference computation at the image sensor, making sensor-level information creation.

• HARP introduces attention-oriented processing in the circuit to prune redundant spa-
tiotemporal information and enables inference computation with a reduced amount
of relevant data.

• Our model breaks the conventional nature of sequential image processing and applies
massive parallelism to obtain high throughput by exploiting the large bandwidth
available at the image source.

• The proposed method mitigates the high on-chip memory requirement and lessens the
data movement among different layers. Furthermore, attention-oriented processing
reduces dynamic power consumption and latency.

• FPGA and ASIC prototypes of our architecture are analyzed with different situations
to observe the possible power and speedup.

The rest of the paper is organized as follows. Section 2 introduces previous works
relevant to our approach. We present our hierarchical attention-oriented processing archi-
tecture in Section 3. Evaluation procedures, performance analysis results, and discussion
are combined in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

We organize this section by describing different hardware architectures for accelerating
machine learning algorithms. GPU (Graphics Processing Unit) implementation, as well
as custom hardware implemented on FPGA (Field-Programmable Gate Array) and ASIC
(Application-Specific Integrated Circuit), have been explored to visualize the distinction in
this work [15–17].

GPUs are a popular choice for training and testing a learning model because they
give high speedup than Intel x86 architecture and excellent scalability in a large array
format. Since GPU is a power-hungry device, we need an alternate option than GPU [18]
for edge applications. Embedded GPU overcomes the drawback of high power demand,
but it is not suitable for near sensor integration. Here, significant time is designated for
data transferring, and it acts as a bottleneck. On the other hand, FPGA accelerators show
better performance than GPU when latency and power are critical constraints. For instance,
Spagnolo et al. proposed an energy-efficient hardware accelerator for CNN using heteroge-
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neous FPGA. Their system on chip (SoC) architecture is structured to support the efficient
Single-Instruction-Multiple-Data (SIMD) paradigm for computing both convolutional and
fully connected layers [19]. Since all computations are applied on the FPGA and controlled
by an embedded processor, they obtained better performance than the GPU. However,
UltraScale FPGAs give more space putting more logic, and there are more research works
in this direction to exploit UltraScale features. Authors in [20] used Kintex UltraScale
FPGA to increase the maximum frequency and speed of the design by increasing the array
of the convolutional processing elements. Inference computations are heavy operations,
and authors in [21] emphasized optimization techniques to improve the scenario. They pro-
posed an acceleration scheme for loop optimization with efficient dataflow and achieved
348 GOPs in Intel Stratix V FPGA. These hardware accelerators’ immediate attention is
essentially focused on keeping the multiply accumulation (MAC) units busy and increasing
the MAC units’ utilization factor.

Alternately, custom hardware architectures in ASIC overcomes some of the limitations
in FPGA. ASICs are specifically designed for specific learning method or an application.
They require a lower silicon footprint, lower latency, and power consumption than FPGA.
These make the custom devices a better candidate for accelerating vision applications when
low power consumption is demanded. Google designed Tensor Processing Unit (TPU)
dedicated to accelerating machine learning models, and it is an ASIC equivalent multi-chip
platform and a popular choice for CNN training [22]. Notably, TPU is more suitable in data
centers rather than for edge applications. Alternately, Intel has introduced a neuromorphic
chip Loihi [23]. It works with spiking neural network model with online learning capability,
and the success of Loihi is yet to be manifested. Since FPGAs are power efficient, researchers
are pushing them for edge computing [17,18,24]. Most of the hardware architectures follow
a coarse-grained systolic array to implement accelerators and reads pixels from memory
being at the edge. The systolic array type implementation gives a flexible design but
exhibits high data movement with off-chip memory dependency. Furthermore, limited
computation bandwidth is another hindrance to achieving high speed.

Hence, it is essential to overcome the limitations in data transportation time, and there
are some works for better utilize the bandwidth available at the image source [5,25,26].
A programmable vision chip Scamp5d is proposed by Chen et al. which has SIMD-like
parallel processing directly at the focal plane [25]. It has a 256 × 256 processing elements
(PE) array for 256 × 256 pixels and a microcontroller to control the system. The PE
includes light sensors, ALUs, registers, and local I/O buffers. This approach degrades
the fill-factor of an image sensor. Alternatively, Bose et al. followed the same approach
where using the Scamp5d demonstrated digit recognition using the MNIST dataset and
car tracking in real-time [5]. The performance of the vision chip for large-scale datasets
and CNNs is yet to be explored. It is challenging to have a complicated learning model in
a vision chip when assigned at the edge for near sensor computation. Edge platform has
limited resources with size, weight, and power constraints. Attention-driven strategy only
shows the optimal path to reduce the power, high on-chip memory demand, and time.
Event-based or selective change driven (SCD) cameras were introduced to demonstrate
the attention in the form of temporal change [27,28]. These cameras transfer positive or
negative events from a scene if there is a temporal change and do not carry the intensity
information. An external server collects these events and associated addresses, performs
image reconstruction, and then applies vision algorithms [29]. This process mitigates the
data transportation latency between sensor and server, but event cameras’ effectiveness for
time-critical vision applications is yet to be explored. Therefore, collecting the intensity in
interesting regions and processing at the collection point is inevitable to achieve the best
performance. Lee et al. had focus on the intensity with an attention-based strategy for
removing redundant spatiotemporal information from an image [13]. Later, Samal et al.
exploit this concept and proposed attention-based pruning from image to reduce the
amount of active information that can reduce the data flow in the hardware [30] based on
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each pixel. It is possible to achieve more optimization by doing region-level analysis. We
can make an entire region zero when a region has less relevance.

To the best of our knowledge, we are the first proposing HARP architecture where
we leverage visual attention procedures with pixel-parallel CNN operation tailored with
the region-based approach to push the overall computation directly at the image sensor’s
focal plane.

3. Proposed Architecture

This section describes the proposed HARP architecture of the pixel-parallel CNN
inference model at the sensor, illustrated in Figure 3. The HARP architecture demonstrates
hierarchical processing in the readout circuit of a pixel-parallel image sensor implemented
by Sony [2]. The execution procedure of HARP is split into two logical layers: Attention-
Based Preprocessing Layer (APL) and Inference Computation Layer (ICL). The sensor
performs readout after completing the hierarchical operations in these two layers. The
APL works on an M×N image which is logically split into M smaller image patches or
regions. Each region is identical and has a 2D array of N pixels. Here, these numbers are
design choices, and we can increase the degree of parallelism or throughput by increasing
the value of M or making smaller regions. The APL identifies the relevance of each region
by early feature extraction. Next, the ICL computational layer has an array of region
inference engines (RIE). Only the relevant regions are mapped into the RIEs. A fully
connected neural network (FcNN) sequentially receives the output from each RIE. These
hardware modules are combined with an embedded processor and create a system on chip
(SoC) environment. Figure 4 is a simplified flowchart of the proposed HARP architecture.
The detailed explanations of these logical layers are described in the following sections.
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Figure 3. Proposed HARP architecture for CNN integration at the image sensor. The sensor populates
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3.1. Attention-Based Preprocessing Layer (APL)

The hardware design of the APL is shown in Figure 3, which is the first design phase.
This layer takes pixels from a pixel-parallel image sensor, (implemented by [2]) directly.
It is a 2D array of M region processing units (RPUs) (see Figure 5a), and each RPU has N
(256 in this implementation) pixel processing units (PPUs) with an Attention Module (AM)
(Figure 5c). They collect pixels from the sensor in parallel, perform low-level operations to
find image relevance. The detailed descriptions are presented below.
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Figure 5. (a) Block diagram of an RPU at the Attention-based preprocessing layer (APL) (b) Parallel
image acquisition process in the sensor to initiate processing (c) Block diagram of a RPU (d) Block
diagram of the PPU.

3.1.1. Image Acquisition

The image acquisition process begins at the pixel level, and it is depicted in Figure 5b.
The PPU array receives the pixel value in parallel directly from the image sensor [1,2].
Each PPU broadcasts the received pixels in its east (E), west (W), north (N), and south (S)
direction. These four channels are used to transfer and receive neighboring pixels in
a time-shared manner. So, center pixel C receives the four pixels from four channels.
The operations assigned to the PPU also require the corner pixels in a 3 × 3 kernel. To get
corner pixels, every PPU acts as an active forwarding unit. After receiving the direct
channel pixel values, every PPU broadcasts its north and then south pixel. According to
Figure 5b, when W broadcasts its north pixel NW, the center PPU C receives the corner
pixel. Using this method, every PPU receives all neighboring pixels, and the acquisition
time is irrelevant to image size.

3.1.2. Lightweight Method of Relevant Region Detection

After the image acquisition process, every PPU in the array has the neighboring pixel
information, and we perform a certain number of operations to identify spatiotemporal
redundancies in the image. Every PPU executes in parallel, and its functionalities are
divided into several modules.

Figure 5d depicts every module in the PPU. The M0 module has a pixel and memory
register array to store the pixel values for a specified window at the time t and (t − 1),
respectively. If the comparator finds a notable change that is greater than a threshold in
the window, then it gives one as output to module M3 and updates the memory register.
The value one represents that the pixel has temporal saliency (TS). Alternately, the M1
module determines the spatial saliency (SS) associated with the pixel using the Sobel edge
detection algorithm. According to Figure 5d, M1 has the convolutional kernel to determine
whether the pixel lies on edge. M1 gives one as SS score if the pixel lies on edge and zero
otherwise. Simultaneously, the M2 module performs image enhancement applying the
Gaussian smoothing function. It helps to remove noise from an image.

We need to transfer SS, TS, and pixel values produced at the PPU for the subsequent
processing. The output of the PPUs form a scan-chain shift register, and every clock cycle,
the AM dedicated for every region receives the output of the PPU group (see Figure 5c).
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M3 module in Figure 5d enables this function. At the first clock cycle, the data produced in
the PPU goes to the output, and the rest of the cycles, they only forward their data.

The AM, shown in Figure 5c, receives the SS and TS values and the region output buffer
(ROB) receives the pixel values in a sequence. The ROB is an asynchronous first-in-first-out
(FIFO) that maintains coherence between APL and ICL. The AM receives and accumulates
the TS and SS scores from every PPU and generates two one-bit tags: regional temporal
saliency (RTS) and regional spatial saliency (RSS). These tags are one if their corresponding
accumulation is higher than a threshold. If both tags are one, then we call the region as a
relevant region and irrelevant otherwise. The subsequent processing and output for that
processing depend on these values. Table 1 presents the impact of RSS and RTS. Operation
in the next layer for this region begins if and only if RSS and RTS are one. In this case,
the processor gains control of its output buffer. Alternately, if one of the two values is zero,
the corresponding processing is halted, and the output register value becomes dependent
on the tag values. When the RSS is one, and RTS is zero, we do not update the register
value. Because we calculate with the same set of pixels at the preceding time. Besides,
when RSS is zero, RTS becomes a donot care state. The attention module makes the output
zero and makes the region blank since it does not carry meaningful information. The main
difference with the existing works is that we determine relevance in every small region to
initiate region-based operations and obtain output in the irrelevant regions by skipping
the execution. We do not involve computationally expensive operations for generating a
saliency map.

Table 1. Impact of temporal and spatial saliency score for next layer processors.

RTS RSS Impact on the Next Layer

Region Processor Output from the Region

1 1 Active Driven by current state
0 1 Inactive Driven by previous state
1 0 Inactive Forced to Zero
0 0 Inactive Forced to Zero

We explore different datasets to estimate the benefit of the proposed method. The anal-
ysis for the MOT17-SD1 dataset is pictured in Figure 6 [31]. The dataset contains video
clip images (1920 × 1080) of people walking around a large square. The image stream
was captured with a 30 FPS camera. The dataset has 450 images arranged in sequence.
We consider 8 × 8 region size to analyze these datasets and make the regions with temporal
redundancy blank or zero. Notably, region size is a design choice. When the region size is
large, the interesting regions may contain a significant amount of redundant information.
In contrast, a smaller region size is effective in filtering redundant data but increases the
hardware cost. Figure 6b represents the analysis of inter-frame temporal redundancies.
In some cases, the redundancies are more than 90%, and on average 71% regions in the
450 images are redundant. Besides, we calculated the spatial redundancy on MNIST and
FashionMNIST dataset. These datasets contain ten thousand images, and we also split
each image into an 8 × 8 spatial region and apply the spatial saliency calculation methods.
In each region, we collect the number of pixels with information and define spatial saliency.
When a spatial saliency is less than a threshold, we prune a region. The pruned images for
different threshold values are tested with the pre-trained learning model. This analysis has
been tabulated in Table 2. We found that MNIST and FashionMNIST datasets have 50% and
29% regions are redundant on average. After pruning these regions, we did not concede
any accuracy drop. Adding to it, Ghani et al. also demonstrated a region-of-interest-based
image classification where they passed only the ROI data of an entire image for training a
neural network and achieved 100% accuracy [32]. Therefore, it is an effective solution to
prune redundant spatiotemporal information from images first and then apply the learning
method to expedite the overall processing with optimal computation cost.
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(a) (b)

(c) (d)

Figure 6. (a) An original image in MOT17-SD1 dataset [31] (b) Percentage regions with Temporal
redundancy in the dataset (c,d) image regions without redundancies (effective data volume is
very low).

Table 2. Impact of Attention Module Threshold (8 ×8 region size).

Threshold Value ≤5 ≤10 ≤15

Avg. Irrelevant regions (MNIST) 50% 62.5% 68.7%

Avg. Irrelevant regions (Fashion MNIST) 21.8% 29.3% 35.6%

Accuracy Drop (MNIST) 0% 0.9% 5.8%

Accuracy Drop (Fashion MNIST) 0% 0% 1%

3.2. Inference Computation Layer (ICL)

Inference computation is the second phase of our design, and the hardware design for
near sensor implementation is pictured in Figure 3. The submodules in ICL take a region
if the region has relevance (see Figure 4). Then ICL initiates the CNN processing with a
region-based approach using the data from a relevant region only.

According to Figure 3, the entire CNN operation is executed by a set of region infer-
ence engines (RIE) and a fully connected neural network (FcNN) module. An external
embedded processor is connected with the RIEs and FcNN. The embedded processor has
pre-trained weights organized in a defined pattern and gives an off-chip memory interface.
The RIE overview is presented in Figure 7a, where each RIE has two processing modules.
The first module is the first convolutional layer (FCL), and the second one is called the
second convolutional layer (SCL). The FCL and SCL perform convolution, max-pooling
(when required), and rectified linear (ReLu) operations in parallel. After the convolution
operations, FcNN performs the execution to generate the output. The novelty here is that,
among M regions, only relevant regions are mapped in the inference engines. In between
the APL and ICL, there is a scheduler (Figure 3), and the scheduler is responsible for
mapping the active regions into K inference engines. The scheduler mimics the concepts
of semaphore locking. It first serializes the active regions and creates a K-bit key. The K
regions out of all active regions in the image get the K inference engines and enable the
lock. When any one of the inference engines finishes the execution, it releases the key,
and another region in the pipeline gets access to the engine. The ICL has a tag register that
receives every region’s saliency scores from the APL through the scheduler.

3.2.1. Region Inference Engine (RIE) in the ICL

Here we describe how the RIE performs convolution operation, internal architecture,
and its configurable datapath.

(a) Convolution Computation Process in each RIE:

The FCL and SCL are the two modules in an RIE, and they perform convolution,
pooling (when required), rectification, and quantization operations.
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An RIE works in a small region if it is relevant. In general, every convolutional layer
in any learning model has multiple output channels. All these output channels increase
the data dimension, and data volumes increase as a consequence. The increased volume
is a serious issue because we need large on-chip memory to hold all the feature maps,
which is difficult to manage for an edge device like an image sensor. HARP has FCL and
SCL and jointly works on partial data-based computation to mitigate this problem. Lets
assume the first convolution layer in a learning model has p×q kernel size with r output
channels, where the second layer has the same kernel size with s output channels. In this
case, the FCL generates one output channel with the region data, and then the SCL acquires
that data and produces data for s channels. Here the data in the s channels represent an
incomplete feature map, and we call it partial data. Next, the FCL gives another channel’s
output, and the SCL makes another set of partial data and accumulates with the previous
partial data (see Figure 4). This process iterates until every channel in the first convolution
layer is executed. It is notable that the FCL always finishes the computation prior to
the demand by the SCL. When FCL or SCL finishes their computation, two intermediate
output buffers (IOB) collect their output data. An external memory fetches the data from
the second IOB (see Figure 7a). When RIE finishes executing on the first two convolutional
layers, then the FCL acquires data from this external memory to initiate processing in the
third and fourth convolutional layers. According to Figure 4, this method continues until
we process all layers.

FCL
SCL IO

B

IO
B

Weights Weights

(a)

(b)

EN

IO
B

M
U

X

R
S

S
R

TS

PPU
 PE

Ctrl U

R
P

U
/ I

O
B

/ E
xt

. M
em

Ext Mem.

Datapath

Figure 7. (a) Block diagram of an inference engine. There is configurable data-path between FCL and
SCL (b) Block diagram of the FCL/SCL.

This strategy saves the high on-chip memory requirement and executes every second
convolution layer in a learning model without accessing memory. Generally, the first
two convolutional layers are more expensive; for instance, the VGG-16 network requires
3.2 Mbytes [9], where most of the data is not relevant. Therefore, our image feature-based
optimization method plays a vital role in reducing power and latency. The pairwise convo-
lution operation further reduces energy cost by fetching a region data from the external
memory and executes two convolutional layers in the FCL and SCL. Hence, the quantity of
external memory access drops by 50%. The RIE has a configurable datapath that allows
the SCL to read directly from the external memory (see Figure 7a). The configurability
brings flexibility in the design because many learning models have odd-numbered layers
(for example, VGG-16 learning model has 13 convolutional layers). In this case, the RIE
computes pairwise convolutional operations, and finally, the last layer of convolution
executes on the SCL.

Here, the external memory access does not cost time because the SCL execution time
is larger than the FCL. FCL fetches data from the external memory while the SCL remains
busy working with partial data. Thus, the design does not have any waiting time to fetch
data from external memory. Adding to it, we merge the saliency score in the tag register’s
content as we move up in the network. For instance, when the RIE works on the third and
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fourth convolutional layers, we redefine the saliency score. As we go deep in the hierarchy,
region size reduces for convolution and pooling operations. Each iteration brings the same
amount of data from the external memory to make the data compatible with the hardware
resource. The data that FCL fetches represent more than one region in the original image.
We redefine the saliency score by doing OR operation among the contributing region’s
saliency scores. Based on the new score, the system determines the operation on that set.

(b) Architecture of the FCL and SCL:

The operations in the FCL and SCL are essential to understand the architecture.
Their functionalities are similar, and Figure 7b represents the FCL/SCL block diagram.

The FCL or SCL is an array of pixel processing units (PPU) and processing elements
(PE). The PPUs in the FCL receive data stream directly from the content of active RPUs for
executing the first convolutional layer and then accesses the external memory to run the
other layers. Alternately, the SCL mainly collects its input from the FCL. The number of
PPUs in FCL or SCL is equal to the number of features they receive. However, for every
spatially distributed 2 × 2 PPU unit, the design considers a PE. The reason is, every PPU
finishes pixel acquisition in sequence, and we pipeline the processing in the PE to reduce
the number of required multiply accumulation (MAC) units for pixel parallel processing.
Furthermore, the four PPUs share their common pixels, and the mapping of these pixels in
a single PE keeps hardware overhead low. Hence, it exhibits optimization for latency and
area. The dataflow and the execution process are described below.

Image and weight propagation: Efficient image and weight propagation are vital
to improving the throughput of the design. Here we discuss the steps we have taken to
improve the scenario.

It is essential to have a fast data movement in the PPU/PE to increase the MAC units’
utilization. The first PPU in Figure 7b receives the image stream and transfers using two
channels to populate the PPU in its next row and column simultaneously. All PPUs in the
first column participate in the bidirectional distribution. Other PPUs, forward the stream
only to its right at every clock. The bidirectional data transfer expedite the streaming
process compared to the conventional system [6]. It needs (g × h + g + h − 1) clock cycles,
where g and h are the numbers of column and rows of that region. Alternatively, to perform
MAC operations, we also need to update weights prior to the demand. The weights in
Figure 7b is a small memory unit, and it fetches the corresponding weight set from the
global memory and remains updated before the execution demand.

Execution Process: Figure 8 shows the execution process of a PE. When the top-left PPU
for a PE finishes acquisition (Figure 7b), then PE takes that data and initiates MAC operation
in parallel on the given kernel size. After that, it loads the PPU data to its top-right direction
in the following cycle, and in this fashion, it continues the execution. Next, rectified linear
unit (ReLu) in Figure 8 receives the data after convolution and induces non-linearity by
inducing non-negative suppression. Here, the benefit of ReLu operation is straightforward
and exhibits less area overhead than popular sigmoid functions. The operands of the data
in the convolutional units are 14-bit wide. To achieve more computational correctness,
we make the intermediate signals signed 28-bits. These signals after the rectification are
transferred to the quantization unit to convert 14-bit data. Besides, if the convolutional
layer in a model requires the pooling operation, we can perform that operation before
quantization and skip the function otherwise (Figure 8). The pooling unit is configurable
to perform max-pooling, average pooling, or min-pooling. Hence, PE offers a flexible
design in the execution pipeline. Besides, the PEs in the SCL performs some additional
task. After the execution process, they do not transfer the data. Output register of each PE
store the data locally and perform addition and accumulation to add the partial data.

Writeback operation: The process of writing back to the intermediate output buffer
(IOB) is shown in Figure 7b. To achieve high-speed processing, it is also essential to collect
the outputs and make the unit ready for the next processing. The output of the PE works
as a scan-chain shift register. When output becomes ready, every PE sends their output
to the output register, and that value propagates sequentially to the IOB. FCL writes to
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its IOB after computing one channel. However, SCL writes to its IOB after generating the
complete data from the partial data. Notably, the output buffers are asynchronous FIFO.

Pixel	Array
(pxq)

Weights
pxq

MAC	
operation

Output
ReLU Pooling

Quanti-
zation

from previous PE

To the next PE

External	Memory

Figure 8. Block diagram of the Processing Unit (PE). It performs MAC operations, rectification,
pooling (when required), and quantization.

(c) Configurable datapath in between the FCL and SCL:

The FCL and SCL have a configurable datapath in between to execute multiple
convolutional layers. The FCL takes data from a region, executes that, and commits
writeback to the IOB. When there is new content in the IOB, the SCL starts receiving
the feature data to initiate the second convolution. The FCL or SCL can take or transfer
data to the external memory when required (Figure 7a). Mapping flexibility is one of
the design’s key features to adopt different learning models with different numbers of
convolutional layers.

3.2.2. Fully-Connected Neural-Network (FcNN)

A fully connected network is the last layer of the design, and it extracts information
that is transferred outside of the sensor by the readout circuit (ROIC) when that information
has relevance (see Figure 3). This layer is also close to the sensor. It is configurable to
adjust with different neural network models. Figure 9a shows the functional diagram of the
FcNN. Figure 9b represents a typical fully connected network which has P × Q nodes in
layer-1. This figure suggests that FcNN has a large number of weights but a small number
of operations, which makes the throughput for hardware primarily bounded by the off-chip
communication speed. Our method pictured in Figure 9c mitigates the bottleneck.

A FIFO provides one data and memory provides P number of weights to the FcNN
(see Figure 9a,c). The FcNN works like a systolic array of P MAC units. Layer-1 in Figure 9b
has P × Q nodes that needs P × Q multiplications on a single data. As a result, the process
iterates Q-times to complete executing each data. It is inefficient to keep the weights for
every pixel in memory; rather, we store 2 × P × Q weights. It emulates the dual buffer
technique and provides P weights to the MAC units at every clock cycle. The memory
keeps updating the weights from the external memory to avoid stalling in MAC operations
and using large on-chip memory. Alternately, the FIFO data contains a tag that represents
spatiotemporal redundancy. If the data is redundant, then we skip the MAC operation
for the pixel. Furthermore, we use the conventional approach of checking nonzero data to
allow multiplication. In Figure 9c, each MAC unit has a register that holds a Q number of
data to form P × Q nodes after executing layer-1. All registers also form a chain to shift
their content. When layer-1 finishes its task, the register content feeds the MAC units and
iterates until all multiplications in layer-2 are executed. We repeat this process to complete
the task in the fully connected layers. Adding to it, these MAC units perform multiply
accumulation, quantization, and rectification (Figure 9d).

We would like to note that, though we have an embedded processor in the architecture,
the computation does not depend on that processor. It mainly maintains configurable
communication signals, which does not degrade the performance. The processor works as
an interface to apply the sensor for different learning models. In summary, the HARP uses
hierarchical bottom-up processing, which begins at the pixel level. To save hardware cost
for high-level inference processing at the image sensor, low-level preprocessing prunes
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the irrelevant regions allows a set of regions with where our visual system may fixate.
The pixel-parallel operation with deep pipeline operations among the APL, RIE, and FcNN
on the reduced amount of information makes the overall design running at comparatively
low power and gives time savings while utilizing comparatively lower memory.
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Figure 9. (a) Block diagram of the fully connected layer (FcNN) (b) An example of FcNN in any
learning model (c) Functional diagram of the FcNN (d) MAC unit in the FcNN.

4. Result

We organize this section with the evaluation infrastructure, detailed implementation,
experimental results, and performance analysis.

4.1. Evaluation Infrastructure

Maintaining the ASIC design flow, we develop the design specification and finally
obtain a GDSII file with a physical layout for the HARP architecture. It is a block-level
design implemented in 90 nm technology using the TSMC standard cell library. We describe
behavioral description in the SystemVerilog and verify in Synopsys VCS tool. Synopsys
Design Compiler gives a gate-level netlist, further verified by the equivalence checking
through Synopsys Formality. Finally, we obtain the GDSII file by performing place and
route in Cadence Innovus from the gate-level netlist and Synopsys design constraints.
HARP is also implemented in the Virtex UltraScale+ FPGA board (xcvu9p-flgb2104-2-i)
using Vivado design suite 20.1 for prototyping by maintaining the FPGA design flow.

4.2. Evaluation Metric

The HARP architecture can be evaluated for different classifiers and object detectors.
As a case study, we have used the VGG-16 classifier, which is challenging to push for near
sensor computation. Here, the image size is 224 × 224 and we divide that into 196 regions
where each region size is 16 × 16. We have also considered the neighboring pixels of every
region that makes the effective region size 18× 18. According to HARP strategy, RPU in the
APL has 16 × 16 PPU array, FCL and SCL in the inference engine have 16 × 16 and 14 × 14
PPU array, respectively. The FCL fetches 18 × 18 data for every region and generates an
output of 16 × 16 if there is no pooling. Here, these 68 additional pixels are neighboring
pixels of a region. We consider pre-trained weights in the external memory and maintain
fixed-point 14-bit precision. All these parameters have also been tabulated in Table 3.

Table 3. Parameters used in this design.

Parameter/Module Dimension Parameter/Module Dimension

Image Size (M × N) 224 × 224 No. of Regions (M) 196

Region Size with
neighboring pixels 18 × 18

Pixels in a
region (N) 256

RPU Size 16 × 16 No. of RIE 4

FCL Size 16 × 16 Kernel size (p × q) 3 × 3

SCL Size 14 × 14 PEs in FcNN (P) 100
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4.3. Implementation Details

The design has been prototyped in FPGA and ASIC using the aforementioned evalua-
tion metric. We analyze latency, area, and energy parameters for evaluating this design.
While designing, one of the objectives was to keep silicon footprint and power low as
much as possible without compromising latency. Besides, maximizing the system fre-
quency and minimizing the memory utilization are also our significant contributions to
this implementation.

4.3.1. Silicon Footprint Analysis

HARP architecture breaks the conventional sequential processing and introduces
parallelism with the pixel-parallel operation, leading to higher area demand. The design
stands to perform inference computation, but the APL layer serves a different purpose.
Hence, the area associated with the APL design is considered as an overhead.

We implement the overall design according to the description given in Section 3 using
our infrastructure. We obtain the optimized layout of this model in FPGA and ASIC,
presented in Figure 10. The layout extracted parameters for FPGA and ASIC have been
tabulated in Tables 4 and 5, respectively. The estimated chip area with four inference
engines is 8.34 mm2, and the APL layer is 11.34% compared to the overall design. When
compared with a pixel circuit, this area gives only 2.78% overhead. In this case, the pixel
circuit includes the photosensitive elements and an in-pixel analog to digital converter.
We estimate the area based on the most optimized ADC in the 90 nm technology [33].
We sacrifice the extra 11.34% resource to save latency, energy, and memory. The area
associated with the inference computation layer (ICL) represents four inference engines’
total area requirement plus the FcNN. As mentioned in Section 3 they work independently,
and among the engines, there are no dependencies. Hence, based on the system require-
ment, it is possible to determine how many RIEs need to be integrated for a particular
vision application.

IRE-1 IRE-2

IRE-3 IRE-4

Fc
N
N

APL

(a) (b)

Figure 10. Layout of HARP with four Inference Engines in ASIC using TSMC library at 90 nm
technology (a) and in the Virtex UltraScale+ FPGA (b).

Table 4. UltraScale FPGA Resource Utilization.

LUT FF DSP BRAM Power (W) Fmax

APL 154,404 210,744 0 - 2.044
RIE 318,016 450,896 2,048 - 7.876 320

FcNN 3,982 3,632 104 - 0.47 MHz
Overall 469,288 663,488 2,100 27 10.68

Utilization 39.68 (%) 28.06 (%) 30.70 (%) 1.25 (%) -



Sensors 2021, 21, 1757 14 of 20

Table 5. Layout extracted parameters of the HARP Architecture in ASIC.

Modules Area
(µm2)

Power (mW) Delay
µS

Wire Length
µm

Density
(%)

Fmax
MHzInternal Switching Leakage Total

APL 950,989 314.6 51.56 6.48 372.68 0.71 3,125,754 71.2

430
IRE 1,830,866 408.1 142.14 10.33 581.4 2.47 6,773,609 68.05

FCL 996,853 214.5 81.07 7.14 302.7 1.53 3,466,860 69.11

SCL 697,797 160.5 63.19 5.31 229.05 1.12 260,0145 68.8

FcNN 70,885.6 20.84 3.70 0.52 25.06 0.01 149,958 69.43

4.3.2. Analysis on Energy and Latency

Tables 4 and 5 also include the power consumption associated with each module.
The APL consumes 11.81% of the total power, which is an overhead. Nevertheless, the ad-
vantage is that HARP consumes only 11.81% power plus the leakage power by the inference
engines in the irrelevant regions without consuming 100% power that we report. Hence,
the dynamic power consumption stays low. Alternately, when the APL finishes reading an
image frame, it goes into the idle state. Because the ICL layer needs more time to execute
an image frame, and the data gets lost if that comes before they get ready. This gives the
possibility to keep the APL inactive, and they make data available prior to the demand of
new data by the inference engines in the ICL. We apply the clock gating method to reduce
dynamic power consumption, where the enable signal to enable the clock comes from the
attention modules. Using the power gating method, we can save leakage power but is it
beyond the scope of this paper. Leakage power is around 2.3% (see Table 5) for most of the
modules; we are not focusing on mitigating that.

We provide the time required to process a set of data by each module in Table 5.
The delay is an important metric to evaluate the performance of the design. The APL layer
delay is very low (0.710 µs), which is the only 17% of compared to the inference engine
computation time. Without the APL layer, a system would have spent more than 4.1 µs on
irrelevant regions to identify that there is no feature point. However, the APL layer predicts
that 5.2× faster than the inference engines. On the other hand, the delay in the FcNN is
0.01 µs, which represents the latency for a single data. It is an array of 100 MAC units,
and we iterate the computation to finish the required amount of multiplications in the fully
connected layer. However, the learning models have multiple convolutional layers. These
comparisons are made only for two computational layers to explain the benefits of our
architecture. Unlike APL, energy and time increase in the inference engines with the rise in
convolutional layers. Hence, APL’s importance is more prominent in a learning model of a
classifier or an object detector, which has a lot of convolutional layers.

4.3.3. Impact of Irrelevant Regions on Power and Execution Time

We have seen that the APL brings the advantage of saving power and time, and now
we quantify the benefit for some images with different percentages of redundancies.
Figure 11a represents the results with five images where the number of redundant re-
gions varies from zero to a hundred percent. In the Y-axis, we present the performance
of the HARP architecture with and without the APL layer. The HARP without the APL
layer performs execution continuously, but with the increase of redundant regions, both
execution time and latency go down. When there is 0% redundant information, this ar-
chitecture with the APL layer draws more power and needs more time. However, we
have discussed in Section 3.1.2 that the overall natural image has huge redundant infor-
mation. Execution time drops by 70.1% with 25% relevant information when we apply
attention-oriented processing. This processing also saves significant power, as illustrated
in Figure 11a. For example, if every region is redundant, power consumption drops by
76.34%. As a result, the power consumption and latency are always lower when we con-
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sider attention-oriented hierarchical processing. Therefore, the APL integration in the
HARP is crucial for accelerating vision applications in resource constraint edge devices.

4.3.4. Pipeline Processing for Faster Operation

From the delay analysis in Table 5, we can visualize that the design spends more
time in the inference engines. The delay in the ICL layer increases with the increase of
convolutional layers and channels in each layer. Hence, an efficient pipeline is required to
increase the processing speed. Figure 12 presents some of the simulation results to illustrate
the pipeline processing, and Figure 11b demonstrates the clock cycle-based presentation
of FCL and SCL. In Figure 11b, X-axis represents the FCL or SCL’s repeating operation,
and the Y-axis shows that clock-cycle. An RPU takes 359 clock cycles to determine a
region’s saliency and makes the load “true” for the ICL. When the load becomes true,
the FCL starts fetching data from that region and executes the first output channel. When
the first channel data is available then the SCL initiates execution (see Figures 11b and 12).
Time requirements associated with image fetch, execute, and writeback for FCL/SCL are
presented in the inscribed Figure 11b. The initial pixel acquisition time for the FCL is longer
and takes 359 clock cycles to populate the PEs, which is 1.81× faster than the conventional
streaming process. The SCL also achieve this speedup to read 256 data and populate
196 PEs by 288 cycles. The FCL remains unused for a certain period of time, and we
update weights in the weight-buffer for the MAC operations to make the design more
efficient. In addition, we also illustrate in Figure 11b that the FCL always makes partial
data ready to avoid stalling in the SCL. The SCL takes the output from FCL to produce a
partial result and then performs writeback in the last iteration when the complete feature
map becomes ready. Therefore, HARP architecture executes does not require accessing the
off-chip memory to execute the second convolutional layer. Hence, this pipeline exhibits
an additional acceleration by minimizing the dependency with the off-chip memory.
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Figure 11. (a) Percentage change of power and time with image relevance (b) Pipeline processing
system for image convolution for one image patch. (Inscribed: Time required to fetch, Exe and WB
for different modules).

Figure 12. Simulation Result of HARP.

4.3.5. Memory Optimization

The proposed architecture aims to reduce the memory overhead while doing the
computation of a neural network. The VGG-16 has a very high memory requirement- it
needs 96 Mbyte total memory [9]. It is very challenging for any small chip. The partial-data-
based implementation strategy requires only 128.5 Kbyte memory for storing the features



Sensors 2021, 21, 1757 16 of 20

in every RIE output. It is 1.99× less than the on-chip memory requirement for computing
two convolutional layers. Besides, the added benefit of two convolutional layers is that we
reduce the amount of on-chip to off-chip communication.

4.3.6. Maximum Frequency

We achieve high-performance by ensuring that the design runs at a high operating
frequency. Both FPGA and ASIC prototypes have been taken into our consideration to
maximize the frequency. The design is comparatively large, with many independent
modules. Each layout in Figure 10 forms asynchronous boundaries in the SoC design
and assigns a separate clock for every module. When a data faces the clock domain
crossing, there is a high chance for metastability [34]. We avoid metastability by dual-port
asynchronous FIFO. Furthermore, we use a synchronizer for the control signals among the
modules [34]. We split the modules among the three super logic regions (SLRs) available in
the Virtex UltraScale+ FPGA [35]. Then we use the built-in phase-locked loop (PLL) in the
FPGA to maintain synchronization among the clock domains. Like ASIC, asynchronous
FIFO and synchronizer prevent the metastability in the FPGA [34]. While designing these
modules, we perform static timing analysis. We work in the critical paths and reduce the
combinational logic delay to fix the setup time. All these steps help to avoid setup and
hold time violations. Finally, we achieve 320 MHz in the FPGA and 430 MHz in ASIC.

4.4. Case Study on Classifier

We analyze the VGG-16 learning model as a case study with the ades and culez
mosquito species image dataset [36]. The reason we choose the dataset is that it has higher
redundant information with high image resolution. However, this HARP architecture’s
scope is not limited to these classifications; instead, we can use this model for other
real-time applications. We logically split the images into equal 196 regions where each
region size is 16 × 16. The preprocessing for spatial saliency makes the 28% homogeneous
irrelevant regions blank. We develop the software modeling of the HARP architecture
with the VGG-16 learning model. The model uses transfer learning and is trained with
the original and our modified datasets. Notably, there is no accuracy drop for pruning the
irrelevant regions.

The VGG-16 learning model for the HARP has seventeen layers. The first layer is
the APL layer, then thirteen convolution layers followed by three fully connected layers.
Figure 13 summarizes energy consumption and latency associated with each layer. This
figure presents three test conditions: (Case-1) all regions are relevant, (Case-2) 50% relevant
information, and (Case-3) 10% relevant data. Here, case-1 is an overestimation, but case-2
and case-3 are common for a natural scene or real applications. According to this figure,
HARP shows that case-1 exhibits the highest energy consumption and latency among the
three cases in every layer. With the decrease of relevant regions, the energy and latency
requirements drop sharply. We achieve improvement up to convolution layer 3-2 (which is
the sixth convolutional layer in VGG-16), and after that, the improvement is not significant.
The reason is that after so many convolutions, the image becomes small (28 × 28) and
data becomes too sparse, and then we cannot eliminate a region from being processed
unless 100% data is redundant. This situation has a small impact because the last four
convolutional layers are not expensive (see Figure 13). When HARP discards a region, that
gives huge benefit to save latency, it directly saves the memory access time to fetch data
of a region. For instance, the first convolution layer is 15.82× faster when there are 10%
relevant regions. We would like to note here that when every region is redundant, then
the energy and latency will be close to zero in every layer. The APL remains active in this
particular case and performs surveillance to obtain a possible object in the image.

Overall, we save 45.82% energy and expedite the system by 35.63% when we have 10%
relevant information in the image. Hence, attention-oriented processing has a huge benefit.
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Figure 13. (a) Energy consumption at the different stages in the processing hierarchy. (b) Time
required to perform computation at every stage for the VGG-16 model. The analysis is made under
three different 100%, 50%, and 10% relevant regions.

4.5. Performance Comparison

This section summarizes some state-of-the-art competitors when executing the VGG-
16 model or runs CNN at the edge platform.

We compare our work with GPU, FPGA accelerators, and some recent works where
CNN is implemented at the sensor and tabulate in Table 6. The peak performance or
computation roof of a hardware design is obtained by the maximum number of operations
when every required data is available in on-chip [37]. The computational roof is hardly
gained by a design because MAC units may remain underutilized for the dependency
with external memory, data-dependency, or memory contention. While we are making
the performance comparison, these issues were taken in our consideration. GPU popular
choice for CNN operation. VGG-16 is a vast network, and a powerful GPU like GTX Titan
Black achieves 7.8 frames per second [9]. Here, HARP gives 3.68× better performance
than the state-of-the-art of GPU implementation. The table also includes the comparison
with some of the novel FPGA accelerators. The motivation of the authors in [19–21,38],
was optimizing a design to obtain higher GOPs, maximize the performance, or reducing
power consumption. On the contrary, our focus is to increase the frequency and keep
inference engines idle to save dynamic power consumption. The drawback of HARP is that
it needs more resources than others, and we justified the demand for more resources by
Figure 13. Notably, the reported GOPs in Table 6 exclude the APL computations to make
the comparison fair. We did not consider their latency associated with the data transfer
time from the sensor to the GPU or FPGA.

Next, we compare our work with the works for near sensor processing. Authors in [39]
developed edge-cloud collaborative operation exploiting the visual attention. They im-
plemented a 144-PE array at the sensor with a JPEG encoder and reported efficiency in
every layer. The HARP architecture shows more energy efficiency compared to their work.
For instance, we need 28.5% less energy than their first convolutional layer (see Figure 13a).
The authors in [40] presented CNN inference architectures embedded on a pixel processor
array (PPA) near the vision sensors aiming to execute CNN at the sensor, and it represents
the example Figure 1c. They have a high speed up, and the near sensor processing allows
them to achieve a 3K frame rate for the MNIST dataset using the LeNet5 model. However,
VGG-16 is more complicated than LeNet5.

Based on the performance comparison, HARP demonstrates that it can compete with
the other state-of-the-art. However, we have the added benefit of reducing the reported
latency and power based on the input image feature.



Sensors 2021, 21, 1757 18 of 20

Table 6. Performance Comparison.

[9] [19] [21] [38] [20] [40] [39] HARP

Medium GPU Xilinx FPGA Intel FPGA Xilinx FPGA Xilinx FPGA Cust. Hard. ASIC Xilinx FPGA ASIC

Device GTX Titan
Black

Zynq
XC7Z045

Arria10
GX1150

Zynq
XC7Z045

Kintex
KU060

Image
Sensor

28 nm
Tech.

Virtex
XCVU9P

90 nm
Tech.

Model VGG-16 VGG-16 VGG-16 VGG-16 VGG-16 LeNet5 VGG-16 VGG-16 VGG-16
Precision 32-bits 8-bits 16-bits 16-bits 16-bits 13-bits 16-bits 14-bits 14-bits
Logics/Area ∼ 30 K 138 K 218 K 433 K ∼ 1.079 mm2 469 K 9.2 mm2

Fmax ∼ 167 MHz 200 MHz 100 MHz 200 MHz ∼ ∼ 320 MHz 430 MHz
Latency 128.62 ms 84.75 ms 43.2 ms 95.48 ms ∼ ∼ ∼ 47.19 ms 34.78 ms
GOPs ∼ 135 30.95 57.31 45.07 ∼ ∼ 49.92 58.28
FPS 7.8 11.8 23.14 10.47 ∼ 3000 ∼ 21.18 28.75

Overall, pushing the inference computation at the sensor node is challenging for
the low area, power, and timing budget. The implementation demonstrates that we can
integrate the HARP architecture close to the sensor. Though the area overhead is large, we
have seen that HARP lessens the of-chip communication while demands lower on-chip
memory. Furthermore, the gradual degradation of image data volume and energy with the
increase in irrelevant regions is another promising feature of this architecture. We present
necessary results and performance comparisons to validate our claim for achieving high-
performance.

5. Conclusions

This work presents HARP, an efficient hardware architecture that supports time-
critical applications by integrating hierarchical processing directly at the sensor interface.
Since the processing begins at the image source, machine vision applications experience
high speedup by exploiting its large bandwidth. We inherit attention-oriented processing
found in the visual systems in the HARP to prune spatiotemporal redundancies and
enable high-level processing with salient regions of an image. Pruning the redundancies
does not impact the accuracy; instead, it gives energy-saving up to 45.82% with 35.63%
speedup under certain conditions. This dynamic energy-saving is crucial for edge devices
like image sensors to maintain SWaP constraints. Furthermore, the deployment of visual
attention in the circuit brings area overhead, but the increased throughput overcomes the
drawback. Moreover, the pairwise convolution operation in the inference engines also
reduces the on-chip memory requirement and lessens the number of communications with
off-chip memory. Therefore, the HPRP provides high speedup with comparatively less
memory requirement while saves energy based on the image feature and enables high-level
processing at the sensor for sensor-level information creation.
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Abbreviations
The following abbreviations are used in this manuscript:

AM Attention Module
APL Attention-Based Preprocessing Layer
FcNN Fully Connected Neural Network
FCL First Convolutional Layer
HARP Hierarchical Attention oriented Region-based Processing
ICL Inference Computation Layer
IOB Intermediate Output Buffer
PPU Pixel Processing Unit
RIE Region Inference Engine
RPU Region Processing Unit
ROB Region Output Buffer
ROIC Readout Integrated Chip
RSS Regional Spatial Saliency
RTS Regional Temporal Saliency
SCL Second Convolutional Layer

References
1. Kleinfelder, S.; Lim, S.; Liu, X.; El Gamal, A. A 10000 frames/s CMOS digital pixel sensor. IEEE J. Solid-State Circuits 2001,

36, 2049–2059. [CrossRef]
2. Sakakibara, M.; Ogawa, K.; Sakai, S.; Tochigi, Y.; Honda, K.; Kikuchi, H.; Wada, T.; Kamikubo, Y.; Miura, T.; Nakamizo, M.; et al.

A back-illuminated global-shutter CMOS image sensor with pixel-parallel 14b subthreshold ADC. In Proceedings of the 2018
IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 11–15 February 2018; IEEE: New York, NY,
USA, 2018; pp. 80–82.

3. Goto, M.; Hagiwara, K.; Iguchi, Y.; Ohtake, H.; Saraya, T.; Kobayashi, M.; Higurashi, E.; Toshiyoshi, H.; Hiramoto, T. Pixel-parallel
3-D integrated CMOS image sensors with pulse frequency modulation A/D converters developed by direct bonding of SOI
layers. IEEE Trans. Electron Devices 2015, 62, 3530–3535. [CrossRef]

4. Debrunner, T.; Saeedi, S.; Bose, L.; Davison, A.J.; Kelly, P.H. Camera Tracking on Focal-Plane Sensor-Processor Arrays. In Pro-
ceedings of the Workshop on Programmability and Architectures for Heterogeneous Multicores (MULTIPROG), Vancouver, BC,
Canada, 15 November, 2019.

5. Bose, L.; Chen, J.; Carey, S.J.; Dudek, P.; Mayol-Cuevas, W. A Camera That CNNs: Towards Embedded Neural Networks on Pixel
Processor Arrays. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea,
27–28 October 2019; IEEE: New York, NY, USA, 2019; pp. 1335–1344.

6. Bobda, C.; Velipasalar, S. Distributed Embedded Smart Cameras: Architectures, Design and Applications, 1st ed.; Springer: New York,
NY, USA, 2014.

7. Eklund, J.E.; Svensson, C.; Astrom, A. VLSI implementation of a focal plane image processor-a realization of the near-sensor
image processing concept. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1996, 4, 322–335. [CrossRef]

8. Garcia Lopez, P.; Montresor, A.; Epema, D.; Datta, A.; Higashino, T.; Iamnitchi, A.; Barcellos, M.; Felber, P.; Riviere, E. Edge-centric
computing: Vision and challenges. ACM SIGCOMM Comput. Commun. Rev. 2015. [CrossRef]

9. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
10. Schwartz, E.L.; Greve, D.N.; Bonmassar, G. Space-variant active vision: Definition, overview and examples. Neural Netw. 1995,

8, 1297–1308. [CrossRef]
11. Bhowmik, P.; Pantho, M.J.H.; Bobda, C. Bio-inspired smart vision sensor: Toward a reconfigurable hardware modeling of the

hierarchical processing in the brain. J. Real-Time Image Proc. 2021, 18, 157–174. [CrossRef]
12. Itti, L.; Koch, C. Feature combination strategies for saliency-based visual attention systems. J. Electron. Imaging 2001, 10, 161–169.

[CrossRef]
13. Lee, M.; Mudassar, B.A.; Na, T.; Mukhopadhyay, S. A Spatiotemporal Pre-processing Network for Activity Recognition under

Rain. In Proceedings of the BMVC, Cardiff, UK, 9–12 September 2019; p. 178.
14. Bhowmik, P.; Pantho, M. J. H.; Bobda, C. Visual cortex inspired pixel-level re-configurable processors for smart image sensors. In

Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June 2019; pp. 1–2.
15. Strigl, D.; Kofler, K.; Podlipnig, S. Performance and scalability of GPU-based convolutional neural networks. In Proceedings of

the 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, Pisa, Italy, 17–19 February 2010;
IEEE: New York, NY, USA, 2010; pp. 317–324.

16. Li, Z.; Wang, L.; Guo, S.; Deng, Y.; Dou, Q.; Zhou, H.; Lu, W. Laius: An 8-bit fixed-point CNN hardware inference engine.
In Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE
International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), Guangzhou, China, 12–15 December
2017; IEEE: New York, NY, USA, 2017; pp. 143–150.

http://doi.org/10.1109/4.972156
http://dx.doi.org/10.1109/TED.2015.2425393
http://dx.doi.org/10.1109/92.532033
http://dx.doi.org/10.1145/2831347.2831354
http://dx.doi.org/10.1016/0893-6080(95)00092-5
http://dx.doi.org/10.1007/s11554-020-00960-5
http://dx.doi.org/10.1117/1.1333677


Sensors 2021, 21, 1757 20 of 20

17. Solovyev, R.A.; Kalinin, A.A.; Kustov, A.G.; Telpukhov, D.V.; Ruhlov, V.S. FPGA implementation of convolutional neural networks
with fixed-point calculations. arXiv 2018, arXiv:1808.09945.

18. Feng, G.; Hu, Z.; Chen, S.; Wu, F. Energy-efficient and high-throughput FPGA-based accelerator for Convolutional Neural
Networks. In Proceedings of the 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology
(ICSICT), Hangzhou, China, 25–28 October 2016; IEEE: New York, NY, USA, 2016; pp. 624–626.

19. Spagnolo, F.; Perri, S.; Frustaci, F.; Corsonello, P. Energy-Efficient Architecture for CNNs Inference on Heterogeneous FPGA.
J. Low Power Electron. Appl. 2020, 10, 1. [CrossRef]

20. Zhang, C.; Sun, G.; Fang, Z.; Zhou, P.; Pan, P.; Cong, J. Caffeine: Toward uniformed representation and acceleration for deep
convolutional neural networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 38, 2072–2085. [CrossRef]

21. Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.s. Optimizing the convolution operation to accelerate deep neural networks on FPGA. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 1354–1367. [CrossRef]

22. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, Toronto, ON, Canada, 24–28 June 2017; Association for Computing Machinery: New York, NY, USA,
2017; pp. 1–12.

23. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A
neuromorphic manycore processor with on-chip learning. IEEE Micro 2018, 38, 82–99. [CrossRef]

24. Possa, P.D.C.; Harb, N.; Dokládalová, E.; Valderrama, C. P2IP: A novel low-latency Programmable Pipeline Image Processor.
Microprocess. Microsyst. 2015, 39, 529–540. [CrossRef]

25. Chen, J.; Carey, S.J.; Dudek, P. Scamp5d Vision System and Development Framework. In Proceedings of the 12th International
Conference on Distributed Smart Cameras, Eindhoven, The Netherlands, 3–4 September 2018; Association for Computing
Machinery: New York, NY, USA, 2018.

26. Du, Z.; Fasthuber, R.; Chen, T.; Ienne, P.; Li, L.; Luo, T.; Feng, X.; Chen, Y.; Temam, O. ShiDianNao: Shifting Vision Processing
Closer to the Sensor. In Proceedings of the 42nd Annual International Symposium on Computer Architecture, Portland, OR,
USA, 13–17 June 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 92–104.

27. Gallego, G.; Delbruck, T.; Orchard, G.; Bartolozzi, C.; Taba, B.; Censi, A.; Leutenegger, S.; Davison, A.; Conradt, J.; Daniilidis, K.;
et al. Event-based vision: A survey. arXiv 2019, arXiv:1904.08405.

28. Boluda, J.A.; Zuccarello, P.; Pardo, F.; Vegara, F. Selective change driven imaging: A biomimetic visual sensing strategy. Sensors
2011, 11, 11000–11020. [CrossRef]

29. Delbruck, T. Frame-free dynamic digital vision. In Proceedings of International Symposium on Secure-Life Electronics Advanced
Electronics for Quality Life and Society, Tokyo, 6–7 March 2008; Citeseer: State College, PA, USA, 2008; Volume 1, pp. 21–26.

30. Samal, K.; Wolf, M.; Mukhopadhyay, S. Attention-Based Activation Pruning to Reduce Data Movement in Real-Time AI: A
Case-Study on Local Motion Planning in Autonomous Vehicles. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 306–319. [CrossRef]

31. Leal-Taixé, L.; Milan, A.; Reid, I.; Roth, S.; Schindler, K. Motchallenge 2015: Towards a benchmark for multi-target tracking. arXiv
2015, arXiv:1504.01942.

32. Ghani, A.; See, C.H.; Sudhakaran, V.; Ahmad, J.; Abd-Alhameed, R. Accelerating retinal fundus image classification using
artificial neural networks (ANNs) and reconfigurable hardware (FPGA). Electronics 2019, 8, 1522. [CrossRef]

33. Murmann, B. ADC Performance Survey 1997–2020. Available online: http://web.stanford.edu/~murmann/adcsurvey.html
(assessed on 2 August 2020).

34. Karimi, N.; Chakrabarty, K. Detection, diagnosis, and recovery from clock-domain crossing failures in multiclock SoCs. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 2013, 32, 1395–1408. [CrossRef]

35. Xilinx. UltraScale Architecture Configurable Logic Block. Available online: https://www.xilinx.com/support/documentation/
user_guides/ug574-ultrascale-clb.pdf (accessed on 20 September 2020).

36. Aungmaneeporn, M.; Patil, K.; Chumchu, P. Image Dataset of Aedes and Culex Mosquito Species. IEEE Dataport 2020. [CrossRef]
37. Williams, S.; Waterman, A.; Patterson, D. Roofline: An insightful visual performance model for multicore architectures.

Commun. ACM 2009, 52, 65–76. [CrossRef]
38. Wang, Y.; Xu, J.; Han, Y.; Li, H.; Li, X. DeepBurning: Automatic generation of FPGA-based learning accelerators for the neural

network family. In Proceedings of the 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA,
5–9 June 2016; IEEE: New York, NY, USA, 2016.

39. Ko, J.H.; Na, T.; Amir, M.F.; Mukhopadhyay, S. Edge-host partitioning of deep neural networks with feature space encoding for
resource-constrained internet-of-things platforms. In Proceedings of the 2018 15th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, 27–30 November 2018; IEEE: New York, NY, USA, 2018;
pp. 1–6.

40. Bose, L.; Chen, J.; Carey, S.J.; Dudek, P.; Mayol-Cuevas, W. Fully Embedding Fast Convolutional Networks on Pixel Processor
Arrays. In Proceedings of the 16th European Conference on Computer Vision, ECCV 2020, Glasgow, UK, 23–28 August 2020.

http://dx.doi.org/10.3390/jlpea10010001
http://dx.doi.org/10.1109/TCAD.2017.2785257
http://dx.doi.org/10.1109/TVLSI.2018.2815603
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1016/j.micpro.2015.06.010
http://dx.doi.org/10.3390/s111111000
http://dx.doi.org/10.1109/JETCAS.2020.3015889
http://dx.doi.org/10.3390/electronics8121522
http://web.stanford.edu/~murmann/adcsurvey.html
http://dx.doi.org/10.1109/TCAD.2013.2255127
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
http://dx.doi.org/10.21227/m05g-mq78
http://dx.doi.org/10.1145/1498765.1498785

	Introduction
	Related Work
	Proposed Architecture
	Attention-Based Preprocessing Layer (APL)
	Image Acquisition
	Lightweight Method of Relevant Region Detection

	Inference Computation Layer (ICL)
	Region Inference Engine (RIE) in the ICL
	Fully-Connected Neural-Network (FcNN)


	Result
	Evaluation Infrastructure
	Evaluation Metric
	Implementation Details
	Silicon Footprint Analysis
	Analysis on Energy and Latency
	Impact of Irrelevant Regions on Power and Execution Time
	Pipeline Processing for Faster Operation
	Memory Optimization
	Maximum Frequency

	Case Study on Classifier
	Performance Comparison

	Conclusions
	References

