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Abstract

Background: Stochastic fluctuations in the protein turnover underlie the random emergence of neural precursor cells from
initially homogenous cell population. If stochastic alteration of the levels in signal transduction networks is sufficient to
spontaneously alter a phenotype, can it cause a sporadic chronic disease as well – including cancer?

Methods: Expression in .80 disease-free tissue environments was measured using Affymetrix microarray platform
comprising 54675 probe-sets. Steps were taken to suppress the technical noise inherent to microarray experiment. Next, the
integrated expression and expression variability data were aligned with the mechanistic data covering major human chronic
diseases.

Results: Measured as class average, variability of expression of disease associated genes measured in health was higher than
variability of random genes for all chronic pathologies. Anti-cancer FDA approved targets were displaying much higher
variability as a class compared to random genes. Same held for magnitude of gene expression. The genes known to
participate in multiple chronic disorders demonstrated the highest variability. Disease-related gene categories displayed on
average more intricate regulation of biological function vs random reference, were enriched in adaptive and transient
functions as well as positive feedback relationships.

Conclusions: A possible causative link can be suggested between normal (healthy) state gene expression variation and
inception of major human pathologies, including cancer. Study of variability profiles may lead to novel diagnostic methods,
therapies and better drug target prioritization. The results of the study suggest the need to advance personalized therapy
development.
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Introduction

The studies of gene expression variability started relatively

lately, with the advent of high-throughput technologies of analysis

[1,2]. These studies revealed a striking and fundamental fact that

despite identical genotypes, individuals within the same species at

the same conditions express gene products at very different levels.

These quantitative differences span a range of several orders of

magnitude [3]. In a recent large scale study both extrinsic and

intrinsic character of such variations was shown [4]. Since

‘‘health’’ status can be defined as homeostatic balance, the ability

of fluctuations to propagate along regulatory chain is related to the

ability to induce dramatically different cellular states based on bi-

state/bi-stability model [5]. The effect of expression stochasticity

upon spontaneous differentiation of progenitor cells was studied in

[6]. According to the publication, stochastic fluctuations in the

turnover of two proteins, Notch and Delta, might underlie the

random emergence of neural precursor cells from initially

homogenous cell population. If stochastic alteration of the levels

in signal transduction networks is sufficient to spontaneously alter

a phenotype, can it cause a sporadic chronic disease as well?

A study was published comparing non-disease and disease

state, detecting de-regulation, as a signature of disease mecha-

nism [7]. Another study points to the link between excessive

expression of non-mutated protein in chromosomal trisomy and

the risk of Alzheimer’s disease development in the age of fifties for

the affected individuals [8]. The publication proceeds to

extrapolate this observation to the general causes of neurode-

generative disease. The review [8] also discusses the impact of

non-mutated gene expression upon the probability of sporadic

prion disease, taupathies, Parkinson and Alzheimer’s disease.

Many earlier publications also present the connection between

anomalous gene dosage and development of neurodegenerative

disease [9]. Such situation qualitatively differs from variations of

gene expression at normal gene dosage, making the work [8]

especially important, since it appears to produce such an

interpretation of variation vs. disease. The publications [10–13]

consider stochastic origin of diseases including tumors in the

condition of haploinsufficiency. In such cases a single gene copy

does not produce enough of a transcription factor (tumor

suppressor) to always ensure a concentration above the critical

[10–12]. Since the function of stochastically modulated signal
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transducer can be up-stream, the effect of such fluctuations is

exceedingly leveraged [13].

While providing a link between expression variability and

disease, the prior publications appear to be confined to particular

diseases (neurodegenerative, particular tumors) and certain genes,

thus they do not provide a global view of the possible connection

between normal gene expression variance and mechanism of

subsequent sporadic disease emergence. By contrast, this work

presents a genomic scale study into all major chronic diseases,

including aging and such a scope may be of interest.

Results

Elevated expression variability associates with disease
Figure 1 presents normalized levels of expression, consistency of

differential expression and integrated panel variability for 54675

probe-sets comprising the high density U133 Plus 2.0 microarray

platform by Affymetrix. For cancer-related genes (,2900 probe-

sets) variability is higher in norm as compared to random genes.

The same refers to differential expression and expression. For

prospective anti-cancer targets, the expression parameters corre-

late with the extent of clinical development, being higher for FDA

approved targets (black bars) as compared with the mix of target

and non-targets (striped bars, ‘‘cancer-related’’ category).

Since variability was measured in normal state, its link to the

propensity of a gene to become a successful target is significant.

Typically, participation in the essential mechanism of pathogenesis

establishes a gene as a target. On the other hand, the elevated

expression variation was measured prior to development of a

disease – hence it may be causative to the subsequent

pathogenesis. A concern exists that the extent of clinical

development may not objectively reflect the extent of mechanistic

participation of a gene but may be distorted by other factors, such

as market niche, the historical duration of study, dominant

opinions in the field etc. To ensure that the extent of variability

indeed parallels the objective extent of mechanistic participation,

the variability data were aligned with differential expression

consistency and metric of tissue-specific expression. Prior works

show that differential expression consistency is an objective metric

providing significant enrichment in the FDA-approved and

proposed anti-cancer targets [21]. Such a link provides indirect

measure of relevance to the disease mechanism. The criterion of

tissue-specific expression is another routine computational filter

[22] in target selection and is independent vs. non-mechanistic

(marketing) factors. Ideally, it seeks the target candidates over-

expressed only in a particular lineage and absent in all the rest.

Thus both systemic and the lineage-related side-effects are

minimized.

Figure 2 illustrates a link between consistency of differential

expression in transition from norm to cancer and expression

variability in the norm. According to the Figure 2, the increased

tendency to be differentially expressed in cancer is directly

proportional to variability in normal state.

Figure 3 compares random genes and the populations of

prospective and approved anti-cancer targets selected by the

criteria of tissue-specific expression, see Methods and more

detailed presentation in Supporting materials (Text S1, pages

29–46). In the group of ,190 probe-sets simultaneously top

ranked by MAXc/AV, MAXc/MAXN, MAXc/VULNER-

ABLES the level of variability in the norm was by far the highest.

At the same time, this group of genes was strongly enriched in

FDA-approved targets and proposed target candidates, such as

MAGE (A3, A6, A2, A11), MS4A1, REG4, MSLN, IL1A,

ENPEP, TYR, RARA, FCLRA. The data by Figure 2 and 3

provide an additional link between anti-cancer target enrichment

Figure 1. Expression parameters of random genes vs the
parameters of therapeutic anti-cancer targets. Presented is a
comparison of expression parameters for random genes (grey bars),
cancer-related genes, both target and non-target (striped bars),
proposed and developing anti-cancer targets (checkered bars) and
successful anti-cancer targets (black bars). The parameters of expression
were estimated as described in the Methods. The differential expression
refers to the comparison between norm and cancer. The confidence
intervals were computed with the significance level a= 0.05
doi:10.1371/journal.pone.0005921.g001

Figure 2. Differential expression as an alternative criterion of
mechanistic involvement vs expression variation. Differential
expression consistency in norm vs cancer transition was aligned with
variability levels. Total population of random and disease-associated
genes was included in the analysis.
doi:10.1371/journal.pone.0005921.g002
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and variability, thus leading to propose variability’s mechanistic

role.

To ensure that these observations are not specific for cancer

alone, similar analysis was conducted for other classes of disease-

related genes, see Figure 4. Mining the database ‘‘Genes’’ at NCBI

with keywords corresponding to particular disorders produced

gene aliases associated with these disorders based on the analysis of

scientific and medical literature. The expression variability trend

first discovered for anti-cancer targets vs random genes was

confirmed for all major chronic conditions.

Figure 5 addresses a baffling phenomenon of a gene’s multiple

participation in several chronic conditions, most notably the

similarity between the set of genes active in neurodegenerative

disease and cancer [16]. Other multiple participation parallels

were observed, such as between obesity and depression [17,18].

While the latter link can be also explained by behavioral and

psychological changes, an alternative explanation calls for a

common signal pathway involvement [19,20]. The lists of gene

aliases (extracted as described in Methods) were aligned and the

Index of Multiple Participation was computed. According to the

data, each gene participated in ,2 chronic disorders on average

and thus our findings support the prior isolated observations that

genes active in the mechanism of a single disorder may be a part of

multiple disease mechanisms [16–20]. The expression parameters

of such multiple participants were plotted in Figure 5.A. The

degree of gene expression in norm (EN) and cancer (EC) was

increasing for disease participants vs. random genes. Even more

prominent trend was observed for differential expression consis-

tency (DEXCON) and variability (VAR) that were steadily

increasing in proportion to the Index of Multiple participation,

being maximal for multiple participants.

Figure 5.B presents the results of querying of a patent database

with Boolean keyword strings, comprising a combination of a gene

list and terms describing disease association (P3.2). Under

comparable conditions, the gene list selected from the highest

variability category produced 4–8 fold greater number of hits as

compared to the gene list of the same size selected from the least

variable category. Figure 5.B points to a strong correlation existing

between the level of expression variability and the extent of disease

association.

Validation of results
A possibility exists that the differences between random control

and disease-associated genes are not objective, but arise acciden-

tally due to a particular composition of the integrated panel. To

rule this possibility out, multiple (8) sub-panel compositions were

generated by random bootstrapping and in each composition

random genes were compared with therapeutic target genes (P3.3).

The difference between the groups under comparison exceeds the

relevant confidence intervals.

A hypothesis was advanced that the elevated variability in

disease-related categories may be a function of higher expression

also observed in these categories. To test this possibility, variability

as a function of copy-number was plotted (Figure 6.A) using

multiple brackets of copy number values (in arbitrary units). The

observed relationship pointed to higher variation at lower copy-

numbers, running counter to the above mentioned hypothesis.

Still another possibility of an artifact resides in the fact that a

very sensitive measure was employed as a variation criterion. A

propagated error, associated with a ratio of outliers can be very

significant and an additional test is needed to evaluate its

neutralization by aggregation of multiple datasets in a panel.

Coefficient of Variation (CV) was chosen as a less sensitive, but

more reliable alternative metric, taking into account the scattering

behavior of the entire population of N values in a project.

Figure 6.B presents comparative variability for random genes and

disease-associated categories.

The Figure 6.B indicates that the trend, observed using MAX/

MIN is preserved while using CV (compare groups 1 and 3). High

confidence interval for the group 2 still allows confirmation of the

Figure 3. Comparative expression variation of random genes
and tissue-specific anti-cancer targets. The variability level in the
random gene class (grey bar) was compared with tissue-specific anti-
cancer target candidates and targets (striped bar). The latter sub-set
was formed by selecting genes expressed in a single tissue lineage and
over-expressed in cancer.
doi:10.1371/journal.pone.0005921.g003

Figure 4. Expression variability in chronic diseases. Averaged
panel variability of gene expression was measured for different chronic
disease states, including aging (250–500 probes-sets per a disease).
doi:10.1371/journal.pone.0005921.g004
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same trend in comparison with the group 4. Of note, variability

and especially measured by MAX/MIN is significantly greater in

cancer tissues, reflecting expression deregulation.

Quantitative ontological analysis
Per processing as discussed in Methods, total gene population

formed ,7500 functional categories, with 3900 of those having

non-zero population. Functional enrichments between the vari-

ability class and the total gene pool were computed (see folder P4

of Supporting online materials). The high variability class

displayed maximal enrichments for the genes controlling tissue

and organ development, proliferation, muscle contraction, che-

motaxis, ion channel functioning, neurotransmitter release and

processing, immune response. By contrast, low variability class

displayed enrichments for the genes controlling enzymatic

metabolic reactions, structural proteins, cell division, ribosome,

translation factors. The analysis of variability extremes was

followed by the study of individual diseases (Supporting materials,

section P4). The results indicate that the most-enriched functional

categories correspond to the currently accepted disease mecha-

nism. For example, tissue morphogenesis and proliferation

regulation was the dominant category for cancer, neurotransmis-

sion – for depression, etc. This result suggests that disease-

associated variability is concentrated among mechanistically

essential genes.

The FENR values were assembled in the panel, with two sub-

profiles in every populated functional category, one for random

negative control and another for the diseases being grouped

together. Such grouping allowed exploration of the features

generic to all chronic disorders using the rationale presented in

Methods. The functional categories ranked based on p-value of T-

test vs. random negative control were subjected to text-mining, as

well as the total list of categories. The results are given by Figure 7.

According to the plotting, top-ranking disease-related functional

categories respond to the keyword ‘‘regulation’’ twice as frequently

as the total population of categories and four fold more frequently

if compared with lowest-ranking categories (representing random

gene population). More surprising, however, was the finding that

positive regulation is much more prominent among top-ranking

disease-related categories as compared to the lowest ranking

categories or total list of categories. The total population of

categories appears to display approximate balance between

positive and negative regulation, according to our analysis. This

balance between positive and negative regulation appears to shift

in favor of positive regulation in the categories most associated

with disease and this observation suggests some fundamental

biological role.

Practical applications of the current project were explored

below. Figure 8.A compares the targets of FDA approved anti-

cancer drugs, proposed and developing anti-cancer targets, targets

of non-cancer disease therapies and random genes, plotted as a

ROC curve as a function of ranked variability score. The said

score is a combined variation metric, comprised of individual

features of MAX/MIN, CV, kurtosis and differential expression

consistency. In the context of Figures 1–4, it follows that anti-

cancer successful targets display higher variability than the

corresponding candidate genes and the magnitude of variability

may (to a point!) be a predictor of clinical success. In fact, the odds

Figure 5. Variation of gene’s expression correlates with the gene’s association with chronic disease. A. Relationship between
participation in multiple chronic conditions and parameters of expression. Striped bars – the genes participate in 0 chronic conditions, Checkered
bars – participation in 1 chronic conditions, grey bars – participate in 2–3 chronic conditions, black bars - participates in 4–7 chronic conditions. The
parameters of expression comprise EN – expression in norm; EC – expression in cancer, DEXC – differential expression consistency between norm vs.
cancer; VAR – variability of expression. B. In this computational experiment, three categories of gene expression were identified: highly-variable (black
bars), at average variation level (grey bars) and at minimal variation level (striped bars). The lists of genes of equal size (1000) were selected to be a
part of Boolean query of the structure: Group A: [(gene list) and ((biomarker* or (diagnostic adj marker*) or (prognostic adj marker*))]. Group B: [(gene
list) and (disease or disorder)]. Group C: [(gene list) and (longevity or mortality)]. Each gene list of differing variability was incorporated in the query of
a patent database (Micropatent by Thomson) and the numbers of hits were plotted for each group, designated as above.
doi:10.1371/journal.pone.0005921.g005
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of high-variation vs. low variation gene to be a target of anti-

cancer drug or si-RNA approach differ ,15–20 fold on the

opposing edges of a ranked dataset. The odds ratio reaches 5 fold,

comparing average variability and high variability candidates.

The trend observed for non-cancer targets appears to be the

opposite: the candidate genes (Figure 4) appear to be somewhat

more variable than the finally approved targets (Figure 8.A), while

the latter are somewhat more variable than random genes.

Figure 8.B presents the result of the study of E.coli gene

expression (Supporting Online Materials Text S1, p. 23–24; folder

P6). Different features, exploring expression variation (same as in

Figure 8.A) were applied to random genes and pharmacological

targets. Increased proportion of un-annotated genes was observed

in high-variation subset.

On the contrary, the population of successful antibiotic targets

displayed decreased expression variation, while displaying in-

creased evolutional conservation (defined as an ability to be

expressed in a profile comprised of selected species, Figure 8.C).

Discussion

A. The link between expression variation and disease:
putative novel diagnostic tests

The main result of the current research is in the finding that

expression variability of disease-associated genes is higher than

that of random genes. Several possibilities of an artifact were

considered (see validation section of Results) and found to be

absent. Assuming validity of these findings, the above trend was

observed in healthy state and a causal link to inception of

pathology may be hypothesized (hypothesis 1). An alternative

(hypothesis 2) calls for elevated variability to be a hallmark of a

gene’s disease-relatedness, but no direct role in pathological

mechanism can be attributed.

The references 5, 6, 8, 10–12, 21 support the hypothesis 1,

pointing to a possibility of disease inception due to dramatic

positive or negative variation in expression of a single gene.

Indeed, decrease in a single gene expression level due to haplo-

insufficiency of tumor suppressors is carcinogenic. Conversely,

engineered over-expression of a signal protein triggers cancer in

normal skin [21]. Apparently, similar outcomes can follow

anomalous expression due to stochastic variation of gene

expression level. Such variations may arise at pre-natal stage.

Epigenetic factors and accompanying stochastic noise may exert

fateful influence at the stage of zygote. At this point only a few

transcript copies are available per a locus and the disproportionate

consequences of random fluctuations may define systemic

expression profile [5]. Considering rapid onset of differentiation

in zygote, this profile may get permanently imprinted, exerting an

impact on future health, disease and longevity status of an

individual [22]. By this or by a combination of conceivable

mechanisms, the resulting cellular population becomes very

heterogeneous in terms of systemic expression profiles [23].

According to the hypothesis 1, a fraction of each population is

essentially pre-pathological due to insufficient or excessive gene

expression. The selective evolutional pressure (and likely existence

of controlling processes) requires the fraction of this borderline

sub-population to be small at least toward the end of reproductive

age. However, the systemic resilience appears to decrease after a

certain point in age, as a consequence the weight of the mal-

functional cellular population and the severity of this malfunction

increases with age. Thus, the link between disease and expression

variability can be qualitatively explained. If such interpretation is

Figure 6. Validation of results. A. Expression variability measured as a function of transcript copy-number. The 54675 expression values measured
on a single microarray chip were normalized, with the average copy-number set to 1. The normalized values were split into brackets, expressed in the
arbitrary copy-number units. B. Comparison of different expression variability metrics. The groups 1 and 2 represent MAX/MIN; the groups 3 and 4
represent Coefficient of Variation (CVx50), brought to the comparable scale. The groups 1 and 3 belong to variations measured in normal tissues,
while the groups 2 and 4 refer to cancer tissues. The black bars stand for the targets of FDA approved anti-cancer drugs, the grey bars stand for the
developing and proposed anti-cancer targets, striped bars indicate random genes.
doi:10.1371/journal.pone.0005921.g006
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correct, it suggests a potential application of variation measure-

ments as diagnostic tests for disease predisposition.

Indeed, increased cell-to-cell variation of a given gene

expression would indicate loose regulatory control and the

possibility that the given gene expression may reach extreme

values, high or low. Such extreme values are argued in this report

to be the ‘‘flashpoints’’ of sporadic disease. In some types of

pathology (cancer, sporadic prionic disease) only a single

‘‘extreme’’ cell may be sufficient to cause systemic effect. In other

pathologies (Alzheimer’s disease, atherosclerosis, stroke, heart

attack) a critical weight of deregulated population has to be

reached. In all cases, increased variability in expression levels

would facilitate reaching of the critical ‘‘triggering’’ parameters,

thus its direct measurement may have diagnostic and prognostic

value. A combination of instabilities in regulation of expression of

several mechanistically important genes may exert effects compa-

rable to mutations. Currently, the classifiers of disease etiology and

prognosis utilize SNP, microarray, proteomic and metabolomic

data aligning particular pattern signatures with clinical correlates

[24,25]. A recent trend is to use peripheral blood samples for such

purposes [26,27]. Mostly, the current methods rely on point

mutations (RFLP markers, SNP, polymorphisms). In this report we

propose measuring cell-to-cell variations of gene expression in the

peripheral blood sample taken from a given individual.

Variability studies performed over single monocytes of a

peripheral blood sample from the given patient and covering

the most informative high-variability gene subset may bring an

additional dimension to genetic marker methodology. Thus,

variametric component should enhance genetic polymorphism

analysis regarding predisposition to chronic disease, diagnostics

of congenial disorders, longevity, personalized diet and

therapy. On the technical side, multiple expression levels in

single cells comprising a sample can be measured by the novel

methods of single cell arrays, phosphocytometry and cellomics

[28,29].

B. The expression variation study and its relation to the
progress of anti-cancer therapy

Our data facilitate understanding of limitations existing in

cancer therapy and also suggest novel therapeutic possibilities. For

example, we demonstrate (Figures 1, 3, 8) that pharmacological

targets display increased expression variability.

The effect is especially striking for tissue-specific anti-cancer

targets that are in the current focus of research relying on

differential expression (Figure 6).

We have conducted a genomic-scale differential expression

study. The latter comprised 40 pairs of normal versus cancer

Affymetrix array datasets, covering most of tissue environments in

a single computational space. The goal was to observe cancer-

specific hyper-expression absent in the entire panel of norm. The

initial hypothesis stated that such hyper-expression would be a

reliable basis for high quality target candidates. Preferably, such

hyper-expression should have been tissue-specific. Surprisingly,

we observed that such target candidates display the highest

variability in all categories studied in this report (Figure 3). Based

on this finding, situations are possible when personalized

expression profile of a target dramatically differs from the

population average profile. The genes over-expressed in cancer vs

norm at population level and used as selective targets may be

down-regulated at the level of an individual. Conversely, the

genes mediating the side effects can be over-expressed in normal

tissues and be silenced in a tumor. Such combinations of

expression parameters are very likely to cause failure of therapy.

In this case extreme cancer target variability would play against

the patient. However, opposite situations are possible, when the

therapeutic target is extremely over-expressed in tumor, while the

side effect determinants in the normal tissues are rudimental.

Such situations may lead to increased chance of success. The fact

that cancer expression is poorly regulated is trivial. However, the

fact that this ‘‘regulation defect’’ is especially concentrated in the

subset of genes, proposed for anti-cancer therapy is very

meaningful.

We show (based on reliability theory) that the survival

probability would be impacted by these fluctuation factors in the

most dramatic manner. Consequently, we emphasize personal-
ized target visualization approaches taking into account increased

target variability described in this report. Some genes – such as

metalloprotease MMP12 – display very favorable variation profile,

being almost uniformly over-expressed in cancer and almost

absent in norm. Conjugating visualizing and therapeutic moieties

to MMP12 ligands may be promising. Similar use of other MMP

ligands can be considered. Attachment of colloid gold nanopar-

ticles to such ligands would enable selective gold build-up in tumor

sites with subsequent enhancement of therapeutic X-ray absorp-

tion. The long-term cancer survival rate in the presence of such

gold nano-particles during a systemic radiotherapy comprises 86%

Figure 7. Functional analysis of gene categories displaying
opposing extremes of expression variability. Comparative results
of key-word searching of the most and least disease-related functional
categories. The 7500 functional categories produced by AMIGO
ontological classification were filtered resulting in ,3900 with non-
zero population. Multiple randomly drawn sets of genes (500-1000 in
size) served as negative control. The functional enrichment coefficients
(FENR) were computed in the AMIGO-represented negative control and
similarly treated disease-related datasets. The strings of FENR formed
random and disease-related sub-profiles in each functional category.
The sub-profiles were compared by T-test and p-values were sorted.
The functional categories with the least p-values (best 10% of rank,
p,10–11) were termed ‘‘most disease-related’’ (black bars). The
functional categories with the highest p-values (.0.9) were termed
‘‘least disease-related’’ (striped bars). Grey bars stand for the total
population of AMIGO-derived functions. The most and the least disease-
related groups of functional categories were searched using the
keyword combinations, such as ‘‘regulation’’, ‘‘positive regulation’’ and
‘‘negative regulation’’. The fractions of the functions responding to the
keyword combinations were computed and plotted.
doi:10.1371/journal.pone.0005921.g007
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against only 20% with X-ray alone in mice [30]. The effect arises

due to local absorbance and scattering of X-ray energy on the

clusters of D-element atoms (gold in this case). In our differential

expression studies, some tumor types (glioma, melanoma, small

intestine cancer) displayed more tissue-specific over-expression

events, while many cancers did not. However, the MMP12

expression profile presented in this work was derived using lung

tissue data. This observation makes MMP-based approaches more

universal. For more detail see Supporting Materials, Text S1, pp

29–46.

The proposed therapy was described as an example of

approaches suggested by the results of our work. Currently,

significant investment in time and funds is consumed by the study

of molecular signaling associated with cancer targets. At the same

time, especially high expression variation associated with such

targets questions uniformity of their presence in malignant clonal

population and the significance of using blockers against such

targets. However, using over-expressing clones as attachment sites

for selective delivery of radioactivity appears to be bypassing these

difficulties. Absorption and scattering of radiation by such

attachment sites would create ‘‘killing zones’’, encompassing the

malignant clones that insufficiently express a particular target and

do not depend on it for survival.

C. The expression variation study and its impact upon
identification of successful pharmacological targets

The high cost of new therapeutics against chronic disease drains

the resources of society by forcing higher health care spending and

by detracting from the vital task of anti-infective development. In

the context of SARS outbreak and our new knowledge of

pandemic flu genesis it becomes imperative to produce compu-

tational signatures: of the anti-infective targets, of the successful

targets against chronic disease, and of the ligands capable of being

viable leads. Apparently, lagging in these technologies opens

vulnerabilities at global scale, considering the issues of microbial

drug resistance, bioengineering and bio-terror.

Based on the findings of this report, we rationalized and

advanced the criteria of target prioritization, previously published

in [31]. In the latter publication we show that the future

therapeutic success of a prospective target can be predicted a-

priori in large integrated datasets, based on the gene’s expression

behavior. In the current report we attempted to rationalize this

link.

Ontological analysis reveals that the genes of high variability

class may require more sophisticated orchestration of their

functions (P4.13-P4.14). At the same time low variability genes

(enzymes, cytoskeleton components, ribosomes) appear to be

Figure 8. Analysis of pharmacological target efficiency in the context of expression variability. A. Resolution of successful anti-cancer
targets (black squares), developing anti-cancer targets (black triangles), non-cancer disease targets (black diamonds) as a function of a combined
variation score. The score is obtained by integrating MAX/MIN, coefficient of variation, kurtosis and differential expression criteria of expression
variation. The genes were ranked by the combined score in the descending order and at each fraction of the rank the fractions of random genes and
the corresponding targets were computed. The results are presented as ROC curves. B. Resolution of successful antibiotic targets, developing targets
and random genes as a function of variation. The ROC curve presents ‘‘false positives’’ – random population (black diamonds) ranked in ascending
order by MAX/MIN of transcription profile, 0 corresponding to the minimal MAX/MIN, 1 corresponding to the maximal. ‘‘True positives’’ refer to the
targets of successful antibacterial drugs (black triangles) and developing antibiotic targets (black squares). The integrated numbers of true and false
positives, reached at a particular fraction of the ranking were counted, converted into fractions and plotted vs. fraction of the ranking. C. Distribution
of successful antibiotic targets (black bars), developing antibiotic targets (striped bars) and random genes (grey bars) as a function of evolutional
conservation. The conservation is defined by a fraction of organisms in a phylogenetic profile expressing the orthologs of the given target. The profile
comprises 26 bacterial species according to Cluster Of Ortholog Groups database (COG at http://www.ncbi.nlm.nih.gov/COG/, 2004 edition).
doi:10.1371/journal.pone.0005921.g008
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regulated in a more static (conservative?) manner. Such a result is

in agreement with external variability model published in [4]. The

functions that require more coordination are statistically more
error-prone and thus the link between variability and disease

can be rationalized at mechanistic level. Namely, the most of

variations occur in the expression levels of genes carrying out

sophisticated regulatory functions.

As an example, genes expressed only in a particular tissue

lineage display more variable expression than the genes expressed

systemically (compare Figure 1 and 3). Tissue-specific expression

imposes an additional level of control and leads to increased

sophistication of transcription regulation. Disease-related gene

classes are 4-fold enriched in regulatory functional categories vs.

random genes (Figure 7). As compared to random genes,

regulators are subject to more sophisticated orchestration due to

downstream systemic leverage. The regulators are sought as

pharmacological targets, if other criteria are met. Therefore, high

variability of a gene’s expression may point to the complexity of

regulation that is indicative of its signal or adaptive role.

At the same time, broad variations in the levels of the most

upstream regulators are unlikely to be compatible with life -

therefore distribution of variation across the tiers of significance

should be optimized, by maximized population survival. One can

observe these principles following the trends discovered in target

success analysis (Figures 8.A–C). Indeed, the goal of non-cancer

therapy is to normalize the cell population of interest. The effects

of such therapy are typically not cytotoxic and thus may be

mediated by signal transducers carrying the maximal systemic

impact. Such transducers appear to be provided with stricter

expression stability controls, and such controls may override the

putative increased variability of signal networks. As a result,

average variation of successful targets against non-cancer disease

(Figure 8.A) is below the one observed for the candidate genes

(Figure 4), although also above the random level.

The goal of anti-cancer therapy is to eliminate the cell

population of interest and such therapies – in final reckoning –

are cytotoxic. Using the uppermost significance tier of signal

transducers for such purposes would endanger normal cells. The

signal transducers of lower significance tiers may be more

important for tumor than norm and a therapeutic window opens.

However, at this level of significance the expression stability

controls are less strict and the inherent increased expression

variability of signal transducers prevails in this tier. As a result, the

expression variability of successful anti-cancer targets exceeds the

one for candidate genes (Figure 1 and 4). This hypothesis suggests

that anti-cancer ‘‘targeted’’ therapy displays fundamental limita-

tion, since the best anti-cancer targets are located in the secondary

tier of significance, not in the primary one.

The goal of antibiotic therapy is to eliminate the bacterial

population too. Due to wide evolutional (and structural)

divergence, there is a ‘‘luxury’’ of inhibiting the most significant

tier of functional elements in the prokaryotic cell with minimal risk

to normal human tissues. Correspondingly, the prokaryotic targets

display increased evolutional conservation and decreased expres-

sion variability as compared to random genes (Figure 8.B, C).

Instructively, several penicillin-binding proteins exist in E. coli, but

only dacB (the actual penicillin target) displays low expression

variation. The target candidates in development appear to behave

similar to random population in this regard and appear to be less

evolutionally conserved (Figure 8. B and C ). Our research

comprises integrative, multi-facet analysis, and recent years show

the progress in this field [32,33]. Thus, our study identifies

additional criteria of optimized antibiotic therapy design and

prepares ground for a cost-efficient and rapid development of such

a therapy, see Supporting data, Text S1, p 23–24. In this report we

did not set a goal of employing all possible classification features

and achieving maximal resolution. Rather, it was a demonstration

that successful targets in each category display specific trends. In a

broader context, this comparative study of therapeutic target

variability provided important insight in the limitations of anti-

cancer targeted therapy and in the link between disease on-set and

variation.

The limited volume of a journal publication does not allow

answering all numerous questions raised by our findings. First, there

is a paradox: according to Figures 1–7, expression variation does

parallel chronic disease. On the other hand, according to the analysis

of Figures 8.A–C an anti-variation mechanism appears to protect the

most significant tier of biological functions. How a fledging disease

overrides such a mechanism of expression stability control?

The answers to this and other questions are provided in

Supporting material, Text S1, pp 7–28.

Supporting Data
The Supporting data are available online at the link: www.

mayburd.com

The primary data and processing files in Excel format are

designated by letter P. They comprise initial downloads (the

folders P1), datasets covering tissue environments in norm (P2

folder ‘‘Norm alone’’) and in cancer (P2 folder ‘‘Cancer alone’’).

The file P2.4 comprises integrated panel of differential expression.

The supporting materials further comprise assembled panel of

variability (folders P3.1, P3.2), alignment of expression parameters

(including variability) with target mechanistic data (P3.3, P3.4), the

files P4 supports ontological analysis. Each Excel file is also

described and annotated in its top left part.

Supporting material in Word format is referred to by Text S1 in

the text and contains all details not included in the up-front

manuscript as well as description of the supporting data.

Methods

Datasets and Databases
Large-scale microarray profiling of disease and norm as well as

smaller scale datasets were downloaded from Global Expression

Omnibus (GEO) platform at NCBI [34]. In particular, Expression

Project for Oncology (expO) was downloaded as record GSE2109

at GEO database [35]. The data for normal expression (Human

Body Index project) were downloaded as GSE7307 and GSE3526

[34]. Multiple smaller projects describing either cancer expression

alone or in comparative norm vs. cancer setting were extracted. In

this report U133 Plus 2.0 Affymetrix Array (Santa Clara, CA) was

used for all major measurements (see GPL570 platform at GEO

for more detail and annotation). Prokaryotic data were derived in

Affymetrix GeneChip E. coli Antisense Genome Array platform

(GPL199, dataset GDS1827).

Experimental noise reduction
Aggregating of multiple microarray experiments by diverse

authors poses unique challenges due to a significant component of

technical noise, overlaid with biological variability. Several steps

were taken to maximize the benefits of dataset aggregation in

terms of signal-to-noise ratio.

a) Selection of high quality dataset components of the

integrated panel. Low quality datasets were excluded from the

analysis if they presented low levels of signal (that may indicate

insufficient hybridization to the probes), evidence of missing genes,

imputed data, datasets that are too small (,4 samples).
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b) Minimization of technical variability within a single

project component of the panel. The results pertaining to N

samples identically processed were defined as ‘‘project’’. The

averages for each sample were computed among 54670 probe-set

readings comprising all genes included in U133 Plus 2.0

microarray by Affymetrix (Santa Clara, CA). Each individual

gene expression value in the column of 54670 probe-sets was

normalized by that average. Variability was measured as a ratio of

maximal and minimal outliers in the profile of N normalized

samples obtained under identical conditions and representing the

same tissue lineage. The ratios (MAX/MIN) were combined in a

large-scale panel of 80 values per each gene, each value

representing a dataset (project) component of a panel

(Supporting materials, folder P3.1.1; Text S1, tables 1–2, page 8).

c) Minimization of disproportionate contributions in the

integrating panel by ‘‘noisy’’ projects. The MAX/MIN

value refers to a project of N samples. MAX/MIN ratios were

converted into Z scores:

Z~ XI{XMð Þ=sM ð3Þ

Where XI is the given MAX/MIN value for the i-th probe-set; XM

is the average MAX/MIN among 54675 values, sM is the

standard deviation of MAX/MIN among 54675 values (probe-set

population of a microarray). Xi, Xm and sM all refer to ranked

values of MAX/MIN. This procedure allows integrating

experiments where levels of variability were very different and

thus prevents skewing of the resulting panel data in favor of

accidentally higher variability values (Supporting materials, folder

P3.1.3; Text S1, table 3, page 10)

d) Maximization of signal-to-noise ratio by exemption of

noise-rich subpopulation. The Z scores were plotted using Q-

Q plotting procedure against a theoretical model based on normal

distribution [37]. The empirical relative frequencies of high Z

score values were compared with the ideal probability values based

on the assumption of normal distribution. The concordant regions

of Z scores were discarded, since signal-to-noise ratio in such

regions is low. The discordant regions of Z scores (on positive side,

Z.2) were preserved. Such regions contribute comparatively

higher signal-to-noise ratio. The Z scores in the range .2 were

summed up and averaged across the panel of 80 expression

datasets (P3.1.4; P3.15).

e) Minimization of technical noise by comparing large

groups of genes. All compared groups and subgroups

comprised .150 genes. Finer sub-divisions were avoided.

f) Confirmation of trends in related groups. All trends

established in this research were confirmed in multiple groups, for

example the difference between FDA-approved anti-cancer targets

and random genes was supported by the difference between

proposed anti-cancer targets and random genes.

Validation of variability panel data
To exclude a fortuitous panel composition as a source of results,

bootstrapping procedure was applied to produce 8 random sub-

panels (P3.3). In each sub-panel variability was computed. The

procedure produced two sets of 8 values for FDA-approved anti-

cancer target variability and random gene variability. The

reproducibility in the sets of bootstrap-generated values was

assessed by plotting confidence intervals at a = 0.05.

Alternative metrics of variability
The metrics comprised: a) coefficient of variation (CV) defined

as the ratio of variance in the profile to the average of the profile b)

kurtosis (measure of deviation from normal distribution in the

profile)

Expression and differential expression consistency
(DEXCON)

To compute gene expression levels, each dataset component of

the integrating panel was normalized as described above (each

sample divided by array average intensity). The paired panels of

31 matching cancer and normal datasets produced a profile of

differential expression values for each probe-set. Those values that

exceeded 3-fold up-regulation were preserved and the rest were

replaced by zeros, to maximize signal-to-noise ratio. The resulting

indexes of consistent up-regulation were computed for the panel of

data (P2.3, P2.4).

Metrics of tissue-specific expression
Microarray data were organized in gene expression panels, each

composed of M experiments, each experiment comprising N

samples. The expression data were normalized as described above

and averaged for each experiment. Thus Normal Expression panel

and Cancer Expression panel contained M1 and M2 averaged

values each. Several criteria of tissue-specific expression were

defined. The MAXC is the maximal expression level in the panel

of M2 normalized cancer environments; MAXN is the maximal

expression level among M1 normalized disease-free tissue

environments, AV is the average level in the norm (average of

M1 experiments) and VULNERABLES is the average level

measured in the sub-panel of normal tissues most often suffering

from side effects of therapy. Cancer expression was characterized

by ratios of MAXC/MAXN; MAXC/AV; MAXC/VULNER-

ABLES. Simultaneously high ratios indicate a potentially cancer-

specific expression level, only minimally expressed in norm. Such

profiles were assumed to indicate potential target candidates,

specific for a particular cancer lineage and minimally expressed in

normal tissues (P5, RIT1).

Definition of disease-related genes and alignment with
expression parameters

The disease-association status follows key-word querying of the

database ‘‘Genes’’ at NCBI [38]. The database is filled by text-

mining of biomedical literature and comprises all grades of

association. No prioritization within the gene list was performed.

To produce a query, the most common name of a disease was

used, for example ‘‘diabetes’’, ‘‘atherosclerosis’’, ‘‘aging’’, etc. The

search results were exported and gene aliases were aligned with the

variability, gene expression and DEXCON (P3.2).

Quantitative ontological analysis
The genes comprising the datasets of study (,54675 probe-sets)

were ranked based on variability and the highest and lowest

groups by rank were selected, ,500 probe-sets in each. The classes

were compared by GO-MINER methodology [39,40]. The

statistically representative random group (,30000 genes, the

entire array population) was selected to produce the ‘‘total’’

required by GO-MINER algorithm. The functional enrichment

coefficients were computed as ratios:

FENR~ Ci=Pið Þ Ct=Ptð Þ ð4Þ

Where FENR is functional enrichment coefficient; Ci is population

in the category of interest generated by a studied sub-set of genes;

Pi is population in the studied sub-set of genes; Ct is population in

the same category of interest generated by a total sub-set of genes;
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Pt is population in the total subset of genes. The FENR for high

and low variability groups were compared. The FENR were also

computed for individual diseases and FDA-approved target

datasets. The values of FENR were organized in profiles, each

functional category corresponding to N values for major human

diseases.

To rule out the possibility that any given FENR arises

accidentally and does not have a biological meaning, 12 randomly

selected sets of genes of the size 500–1000 were processed by GO-

MINER, establishing a negative control. These values of FENR

were also organized in profiles per each functional GO-MINER

category. The sub-profiles for random genes and diseases were

compared using T-test and the resulting p-values were ranked.

The most disease-associated functional categories were defined by

difference between negative control FENR profiles vs. disease-

related FENR profiles (p,10211). With the T-test p-values being

sorted in ascending order, this category forms the top 10% of a

rank.

To produce the minimal p-value (the strongest T-test), the

disease-related FENR profile has to display minimal scattering,

thus the highest ranking belonged to the functional categories

corresponding to the most generic features of chronic disease,

equally displayed by all pathologies and absent in the negative

random control. For illustration see P4, file ‘‘Analysis’’ in SM. The

top-ranking and lowest-ranking functional categories, as well as the

total list were text-mined with the keywords of interest and the

data were plotted.

Supporting Information

Text S1 Supporing text and in-depth presentation

Found at: doi:10.1371/journal.pone.0005921.s001 (0.61 MB

DOC)
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