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Magnesium (Mg) metals have been widely used in various fields as one of the

most promising lightweight structural materials. However, the low corrosion

resistance and poor mechanical properties restrict its applications. Surface

treatments are common approach to enhance the mechanical strength and

corrosion resistance of Mg metals. Among them, laser surface treatment

generates novel tissues and structures in situ on the sample surface, thereby

improving properties of mechanical strength and corrosion resistance. We

briefly describe the changes in surface organization that arise after laser

treatment of Mg surfaces, as well as the creation of structures such as

streaks, particles, holes, craters, etc., and provide an overview of the reasons

for the alterations. The effect of laser processing on wettability, hardness,

friction wear, degradation, biocompatibility and mechanical properties were

reviewed. At last, the limitations and development trend of laser treatment on

Mg metals research were further pointed out.
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1 Introduction

Since the first discovery in 1808, Magnesium (Mg) metals have undergone two

centuries of development and application. It takes an important role in the fields of

automotive (Kainer, 2003; Luo, 2013; Gupta and Wong, 2015), aerospace (Mordike and

Ebert, 2001; Huang et al., 2009), 3C products (Lorimer and Robson, 2008; Alaneme and

Okotete, 2017) and biomedical materials (Zhai et al., 2014; Chen et al., 2015; Wagener

et al., 2016; Li et al., 2018; Zoroddu et al., 2019). However, the low mechanical strength

and corrosion resistance of Mg limit its development (Wang et al., 2014). Researchers

have noticed that the mechanical strength and corrosion behavior of Mg metals are

decided by the physicochemical properties, such as surface composition, structure, and

roughness (Pardo et al., 2008; Lee et al., 2016). Therefore, appropriate surface

modifications are needed to decelerate the corrosion rate and raise the mechanical

strength and corrosion resistance of Mg metal.
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In recent years, researchers have been working on different

surface modification measures used for Mg metals, including

chemical conversion treatment (Huo et al., 2004; Zhang et al.,

2021a), anodic oxidation treatment (Xue et al., 2011; Jothi et al.,

2019), micro-arc oxidation (MAO) (Li et al., 2019c; Wang et al.,

2019a; Zhang et al., 2019b), laser surface treatment (Lee et al.,

2019; Park et al., 2021; Pou-Alvarez et al., 2021; Fajardo et al.,

2022), chemical plating (Correa et al., 2013; Liu et al., 2020b) and

electroplating (Wu et al., 2010; Arrabal et al., 2022), etc., Among

them, laser surface treatment has the characteristics of high heat

source power density and small heat input, which can realize the

rapid heating and cooling of surface without thermal

deformation (Majumdar et al., 2003; Liang et al., 2013; Wang

et al., 2019b; Wu et al., 2020). As technology advances, laser

beams can be precisely controlled by a computer to achieve

accurate processing of any local position on the workpiece

surface. When the laser beam irradiates a metal surface, the

electrons on the surface are rapidly heating, rising the surface

temperature of the irradiated and melting the metal surface.

Moreover, due to the narrow range, the laser action region cools

quickly after melting, which changes the structure and

morphology of surface. The modulation of Mg alloy surface

affects the metallurgy, mechanics, and physical properties,

improving the corrosion resistance, wear resistance and

biocompatibility (Pacha-Olivenza et al., 2020; Pulido-González

et al., 2020; Zhang et al., 2021b; Fajardo et al., 2022). Figure 1

schematically shows an experimental setup used for laser direct

writing in a sample, which consists of a laser, an expander, a

combiner, a visible light laser, a galvo and a computer. The laser

beam is passed through an expander for collimated laser to improve

the focus afterwards to ensuring a high beam quality. Combined

beam mirror is used to combine light and visible light for visualizing

the laser. The sample was placed on the process stage, and the laser

beam is focused on the sample surface and the processing path is

designed through direct computer control of the galvo and the laser.

In this paper, we summarized the latest progress on laser

treatment technology of Mg metals surface and analyzed

problems and solutions. It is expected to provide ideas and

references to solve the development and application of laser

surface treatment technology of Mg metals.

2 Effect of laser surface treatment on
organization and structure

2.1 Effect of laser surface treatment on
microstructure characteristics

The quick melting and cooling by laser irradiation will affect the

surface organization and structure of the Mg metals surface. It is

essential to understand the influence of different processes and

environments on surface organizations and structures of Mg

metals. Zhang et al. investigated the microstructure and grain

growth behavior in the molten layer of pure Mg after CO2 laser

surface treatment (Zhang et al., 2014a). The graded microstructure

and texture layer was formed in the surface layer due to the rapid

solidification and cooling after melting, as revealed in Figure 2. At the

bottom of melted layer, Mg grains after solidified showed <0001>
base fiber texture. While an almost equal number of particles are

detected in top melted layer, the underlying fiber structure is much

weaker. Solid and deformed twinning was found near the melt/

substrate interface.

FIGURE 1
The schematic of laser surface treatment.
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Mg-Al series alloys are widely applied in a variety of fields

owing to their excellent mechanical properties and have been

extensively studied by academics. Using the Nd: YAG laser

system, many scholars have investigated the influence of rapid

solidification after laser melting on the structural evolution of

AZ91 alloy (Guan et al., 2013a), AZ91D (Guan et al., 2009a; Guan

et al., 2010), and AZ31B (Wu et al., 2017) alloys. Results

demonstrated that, in the laser-melted region, the solidified

microstructure is mainly composed of α-Mg cell/dendritic

phase and a continuous network of β-Mg17Al12 (Taltavull

et al., 2013a). AZ91D alloy treated by a high-power diode

laser, the melt laser surface was obtained at high input laser

energy, while low energy induces only one phase modified on the

selective lase surface (Figure 3). The surface of AZ91 alloy

(Iwaszko and Strzelecka, 2016) was treated by a continuous

wave CO2 laser, in which the results showed that the remelted

surface has a strong degree of refinement, and the phase

distribution dominated by fine alpha-phase dendrites was

homogeneous. The laser surface melting (LSM) of AM60B

(Liu et al., 2015) and WE43 (Liu et al., 2016a) alloy by a

continuous wave CO2 laser similarly, results revealed that the

LSM-treated Mg alloys had uniform fine grains, abundant

alloying elements and intermetallic compounds. The

microstructure of the Mg-Zn-Gd-Nd alloy (Figure 4) treated

by fiber laser surface modification is likewise consistent with the

preceding results (Rakesh et al., 2020). In conclusion, the

remelting of Mg alloy after the laser surface treatment result

in an intense refinement of the surface organization and a high

homogeneous phase distribution, detailed comparisons for

various Mg alloys have been made in Table 1.

The mechanisms that changing the microstructure of Mg alloys

by different laser treatment are different. For the laser remelting

treatment technology, surface layer is rapidly melting in the laser

irradiation, and then natural cooldown. The melt pool emergences

during the surface remelting process, the melting effects varies with

the depth from the surface layer, so that the Mg alloy melt

microstructure show gradient changes. The laser shock processing

can also produce a gradient microstructure, which is due to the

FIGURE 2
(A) The schematic of laser surface treatment and (B) selected areas on the cross section analyzed by EBSD; (C) a typical EBSD orientation map
and (D) {0001} and {10–10} pole images of the initial sample; (E) EBSD OIM map of the bottom of laser melted layer, (F) the corresponding inverse
pole figure, and (G) {0001}, <11–20> and <10–10 > stereographic pole figures corresponding to area one in (E); (H) EBSDOIMmap of the top of laser
melted layer and (I) the corresponding inverse pole figure; (J) EBSD OIM map taken at the melt/substrate interface and the
{0001}, <11–20>and <10–10 > stereographic pole figures corresponding to area 1 (K) and area 2 (L) in (J) (Zhang et al., 2014a).
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FIGURE 3
Images of typical solidification microstructure of AZ91D alloy after laser irradiation: (A) three-dimensional image of the laser-melted zone; (B)
the boundary between laser-melted region and substrate; (C) the middle region; (D) the top surface. (Guan et al., 2010).

FIGURE 4
Cross-sectional SEM morphology of LSM samples processed: (A) microstructure of the melt pool (Rakesh et al., 2020).
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gradient characteristics of the laser impact blasting process, the grain

size decreaseswith the increase of distance from the surface (Montross

et al., 2002). When the shock wave propagates into the target, the

intensity gradually decreases, which leads to a decrease in strain and

strain rate, resulting in strain-induced microstructural changes (Hu

et al., 2006). There are many kinds of laser treatment methods for Mg

alloy, for example, laser remelting (Xiao et al., 2022), laser shock

processing (Zhang et al., 2010; Zhang et al., 2020b; Liu et al., 2020a),

laser alloying (Chen et al., 2010; Majumdar and Manna, 2010), laser

cladding (Li et al., 2020; Chen et al., 2016). Among them, laser

FIGURE 5
Surface morphologies. (A) AZ31B alloy surface after irradiation with progressive laser power of 110 W and high magnification images from the
areas (Guan et al., 2013b); (B) Laser-induced craters by nanosecond pulsed Nd: YAG laser irradiation (Guan et al., 2014a); (C) the laser structure of
AZ31 (Demir et al., 2014); (D) superhydrophobic AZ91 (Wei et al., 2019); (E) laser melted and LIPSS (Zhang et al., 2019a).

TABLE 1 Effect of laser surface treatment on the microstructure of Mg alloys.

Substrate After laser treatment

AZ91DGuan et al. (2009b) Bulk and lamellar β-Mg17Al12 phase distributed non-homogeneously
in a matrix of α-Mg grains

Solidification microstructure with a high degree of homogenisation
and refinement and presented a continuous network of β-Mg17Al12
phase precipitated at dendrite/cellular boundaries and the primary α-
Mg solid phase in the melted zone. The dendrite cell size was observed
to increase with the decrease in cooling rates from the top surface to the
bottom in the melted zone

Guan et al. (2010)

Coy et al. (2010)

Taltavull et al. (2013b)

Guan et al. (2013b)

ZE41 Khalfaoui et al.
(2010)

An α-solid solution and intermetallic particles along the grain
boundaries

α–Mg and Mg7Zn3(RE) phases same as untreated sample, but the
intermetallic particles reprecipitated along the grain boundaries of the
refined structure throughout the laser-treated zone, forming a refined
and continuous network of precipitates

AM60B Liu et al. (2015) α-Mg and eutectic mixture of α and β, as well as Al8Mn5 phases The grain refinement, the Al element enrichment and the intermetallic
compounds redistribution

AZ91 Iwaszko and
Strzelecka, (2016)

The presence of large α-Mg grains and α+β eutectics (β—Mg17Al12
intermetallic compound) in the alloy structure, and the presence of
secondary precipitations of β phase

Lead to a strong refinement of structure and a more even distribution
of individual phases, and very fine α phase dendrites are formed in the
structure of the surface layer, which are accompanied by β phase
located in the interdendritic spaces.

WE43 Liu et al. (2016b) α-Mg matrix and Mg14Nd2Y phase, as well as small amounts of Y-rich
and Zr-rich phases

In modified layer, grains were refined, alloying elements were enriched
in α-Mg matrix and intermetallic compounds were dissolved and
redistributed

AZ31B Wu et al. (2017) α-Mg Equiaxed refined grains of α-Mg surrounded by a continuous network
of β-phase (Mg17Al12) precipitated along the grain boundaries within
the laser-melted region

Mg-Zn-Gd-Nd Rakesh
et al. (2020)

Large equiaxed dendritic α grains with secondary phases (Mg12Nd)
that surrounds the α-phase in the semicontinuous network.

The large equiaxed grains at or near the surface transformed to a fine
grain network in the laser melted regions. And a transition occurs in
the grain morphology through the depth of the melt pool from
equiaxed to columnar.
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remelting and laser shock improve the Mg alloys properties by laser

action without metallic attachments. While laser alloying and laser

cladding both add components on the surface to fabricate a laser

alloyed layer. For different laser surface treatment techniques, there

are many factors affect the microstructure evolution, mainly the type

of laser, the wavelength of the laser, the processing power, the

processing speed, the processing environment, etc., (Singh and

Habimkak, 2012; Liu et al., 2017; Cao et al., 2006).

2.2 Effect of the structure after laser
surface treatment

Researches on the impact of laser surface treatment on Mg

metals have focused on the association between the process and

the structure changing, intending to upgrade surface character of

Mg metals by producing an ideal surface structure. Scholars have

constructed different structures on the surface of Mg metals by

various processing methods. Guan et al. utilized a nanosecond

pulsed laser to treat the surface of Mg alloy, resulting in

consistent projections at the treated groove places (Guan

et al., 2013b). Guan et al. (2014a) also prepared micron

craters on the Mg alloy by a nanosecond pulsed laser. Demir

et al. (2014) employed a pulsed fiber laser to prepare distinct

structures on an AZ31 surface and investigated the interaction

between procedure and surface structure. Other researchers have

used laser therapy to create various surface structures (Zhang

et al., 2019a; Wei et al., 2019). Structures are shown in Figure 5.

To improve the bonding of the coating, some scholars have

performed laser surface treatments by Q-switch Nd:YAG laser

system (Aulakh and Kaushal, 2019) and ytterbium femtosecond

laser (Park et al., 2018; Zhang et al., 2021b) on the surface of Mg

alloy, and structures are shown in Figure 6.

Since the external environment affects the laser processing

and changs the surface structure of metals, Hayat et al. (2019)

used a Ti: Sapphire laser to study the impact of laser energy

density, vacuum, and argon on the surface structure of Mg. In

Figure 7, the surface of Mg metals irradiated under vacuum

showed inhomogeneous nanospheres, nanocores, and

micrometer structures, whereas the surface of Mg irradiated in

Ar showed inhomogeneous micrometer cones covered by

nanospheres. It has been suggested (Guan et al., 2014a) and

explained that the micron-scale crater morphology produced by

nanosecond pulsed laser irradiation of AZ91D alloy is mainly

caused by laser-induced local boiling. The formation mechanism

of metal surfaces is shown in Figure 8. The nanosecond pulsed

laser irradiates the material surface and heating, causing the

material to melt and creating a superheated sub-stable liquid

layer on the surface, illustrated in Figures 8A,B. Motivated by the

pressure and temperature difference above the surface of

irradiation, the plasma is generated and expands, producing a

high pressure shock wave on the surface, as depicted in

Figure 8C. The highly superheated layer leads to mixed vapor-

liquid droplets, which result in explosive boiling and bubble

expansion. Nucleation of the gas phase occurs near the surface,

leading to these “micro-explosions” inside the target during the

incident laser pulse, causing volume expulsion of the material.

Although the generation of some laser surface morphologies has

been explained, however, there is a lack of in-depth research on

the causes of other morphologies produced by laser processing.

3 Effect of laser treatment on the
surface properties of Mg metals

3.1 Wear resistance

Wear resistance is used to characterize the ability of a material to

resist wear during friction. Wear-resistant materials require low

friction factor, sufficient strength, strong compressive stress, and

FIGURE 6
SEM images of laser textured surface from (A) (Aulakh and Kushal, 2019), (B–D) (Park et al., 2018), and (E–G) (Zhang et al., 2021b).
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shear resistance, as well as certain toughness, oxidation resistance,

impact resistance, fatigue resistance, high temperatures resistance,

good thermal conductivity, and good wettability. In general, wear-

resistant materials have good comprehensive performance and

excellent wear resistance, surface treatment is a significant method

to improve the wear resistance of the material. Changes in surface

organization and structure are demonstrated to be the reason for

improving wear resistance of Mg metals. The laser surface treatment

FIGURE 7
SEMmicrographs revealing the surfacemorphology of the ablated regions of Mg under vacuum at different fluence: (A) 0.2 J/cm2 and (B) 3.2 J/
cm2 and under an Ar pressure of 20 Torr at a fluence of (C) 0.2 J/cm2 (D) 3.2 J/cm2, (A–D) overall ablated area, (E,G,H)magnified peripheral ablated
areas (F) and (I) magnified central ablated areas. (Hayat et al., 2019).

FIGURE 8
Schematic representation showing the stages of laser-induced crater formation: (A) surface absorption and thermal conduction; (B) surface
melting (boiling); (C) plasma expansion and shock waves; (D) cavitation bubble generation; and (E) bubble oscillation and crater formation (Guan
et al., 2014a).
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result in a high uniform (Yao et al., 2008), fine (Li et al., 2010), and

hard (Zhang et al., 2014b) surface organization, all of these led to an

increase in the wear resistance of Mg metals. Taltavull et al. (2013b)

used a high-power diode laser (HPDL) for surface treatment of

AM60B alloy, investigating the surface wear resistance and

presenting the wear mechanism of laser treated AM60B alloy, and

wear tests were carried out under dry sliding condition on a pin-on-

disc tribometre, and the wear test parameters were selected based on

the sliding wear mechanism map of the AM60B. At the applied load

of 10 N and the sliding speed of 0.1 m s−1, abrasion and oxidation

were the dominant wear mechanisms as observed. After increase in

the applied load (from 10 to 150 N) and sliding speed (0.1–0.3 m s−1),

delamination and oxidation were identified as the dominant wear

mechanisms. Continue increasing the sliding speed from 0.5 to

1m s−1 at 150–250 N, leading to plastic deformation. Many other

scholars have studied impact of laser surface modification on wear

resistance of Mg metals with different lasers and process parameters,

and results showed the wear resistance of laser-treated Mg alloys was

successfully improved (Zhang et al., 2008; Iwaszko and Strzelecka,

2016; Zhou et al., 2016; Zhang et al., 2019a; Zeng et al., 2019).

3.2 Mechanical property

3.2.1 Hardness
Hardness is an important performance index to measure the

softness and hardness of metals, indicating the ability of a

material to resist damage. Surface treatment is an effective

approach to higher the hardness of materials, and surface of

Mg alloy after laser surface treatment has different organization

and structure, changing its hardness. Studies have shown that

surface hardness of Mg metals increased mainly due to the grain

refinement of the metal structure after laser surface modification

(Khalfaoui et al., 2010; Iwaszko and Strzelecka, 2016; Pulido-

González et al., 2020; Rakesh et al., 2020). Nevertheless, since the

existence of the separated second phase (Li et al., 2019a),

fluctuating changes in hardness values may be caused. The

variation of surface hardness of laser modified Mg metals is

shown in Table 2.

3.2.2 Strength
As the lightest structural metal, Mg metals have been

important materials for automotive and aerospace applications

for many years, therefore, enhancing the mechanical properties

of Mgmetals has been the focus of attention in various fields. One

of the most widely used commercial Mg alloys is the Mg-Al

series, the microstructure of a typical Mg-Al binary system

consists of two main phases: α-Mg matrix and β-Mg17Al12.

The mechanical properties were reported to be adversely

impacted by existence of the brittle β-Mg17Al12 phase (Zhang

et al., 2015). Furthermore, some researchers believe that laser

surface treatment is an attractive method to promote the

mechanical behavior of Mg metals.

Taltavull et al. (2014a) performed three-point bending tests

by in situ scanning electron microscopy to monitor the fracture

process of SLSM-treated AZ91D alloy, results showed that

microstructural of brittle β-Mg17Al12 phase modification to

continuous network phase by SLSM treatment to prevent

brittle fracture, the fracture toughness was increased by 40.3%

compared with the AZ91D alloy.

Zhang et al. (2015) treated AZ91D alloy surface with

pulsed Nd: YAG laser, reducing the number of irregular

β-Mg17Al12 and crack nucleation sites, improving the

thermal fatigue resistance of the material. Meng et al.

(2017) treated the surface of Mg alloy with a laser and

performed tensile tests at room temperature and high

temperature. Results detected that the strength of LSM-

treated samples improved and the ductility decreased

compared to the reference samples. It is mainly due to the

non-dynamic recrystallization of the laser melting zone

deflecting the fracture cracks and affecting the stress

transfer, leading to an increase in the strength of the

LSM-treated samples at high temperatures. Meng et al.

(2018) also investigated the influence of laser treatment

on fracture behavior of Mg alloys at different

temperatures and strain rates, and results showed that the

mechanical properties of the LSM-treated samples were

better than those of the original samples.

In summary, laser surface treatment of Mg metals mainly

changes the organization and structure through the rapid heating

and cooling effects, thereby changing properties of Mg metal.

After laser irradiation of the Mg alloy surface, rapid melting and

cooling of the action area occurs, resulting in a recrystallization

process. The intermetallic phases show grain refinement and

uniform distribution, which improves the mechanical properties

of the material. By laser surface treatment, the property of

wettability, hardness, wear resistance, and biocompatibility of

Mg metals can be improved, and the mechanical properties also

can be affected. However, studies on the influence of laser-treated

surfaces on the mechanical properties of Mg metals in complex

environments are not yet widespread.

3.3 Wettability

The wettability of the solid surface is determined by the

chemical composition and microstructure. The higher free

energy of the solid surface, the easier to be wetted by the

liquid. Therefore, the searching and preparing of solid

surfaces with high surface free energy or low surface free

energy become a prerequisite for the preparation of

superhydrophilic and superhydrophobic. Scholars (Demir

et al., 2014; Rakesh et al., 2019; Rakesh et al., 2020) used laser

surface treatment to change the surface organization or structure

of Mg metals, to achieve the purpose of changing the surface

energy for control the wettability.
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Rakesh et al. (2018) performed laser treatment on Mg-1Zn-

2Gd alloy and revealed that the changes in surface geometry,

grain size, and surface roughness of LSM samples affected their

surface energy and hydrophilicity. After low energy density laser

irradiation, grain refinement, and surface roughness reduction

occurred on the metal surface, resulting a better wettability of the

sample surface. Bhaskar et al. treated Mg-2.2Zn alloy using the

same method and obtained the same results (Manne et al., 2018).

To obtain a surface with extremely high surface energy, Wei et al.

(2019) prepared superhydrophilic and superhydrophobic

surfaces on AZ91 alloy by a combination of laser ablation and

annealing, and the laser ablated superhydrophilic surface was

transitioned to superhydrophobic with a water contact angle up

to 158.8 ± 2° after annealing at 160°C for 60 min. The shift of

wettability is mainly attributed to microstructure and absorption

of surface hydrophobic organics.

Most changes in the wettability of laser-treatedMgmetal surfaces

are attributed to the combined effects of the surface compound, the

organization, and microstructure after laser irradiation. For Mg

metals, the change of wettability affects the degradability of Mg

metals, however, the mechanism of the combined effect of

wettability as well as surface structure on the degradation behavior

has not been comprehensively investigated.

3.4 Corrosion property

The standard electrode potential of Mg is −2.37 V (SCE), So it is

chemically active and vulnerable to erosion damage in acidic, neutral

and weak alkaline media, hence the corrosion behavior of Mg metals

has been the focus (Chen et al., 2015; Liu et al., 2019; Jiang et al., 2020).

The corrosion behavior of Mg metals has two categories, uniform

corrosion and localized corrosion. The corrosion behavior ofMg alloy

can be modified by laser surface treatment which precisely controls

the surface treatment region. However, effects of different surface

treatment procedures on the corrosion behavior of Mg metals are

inconsistent.

The previous report on laser treatment of Mg alloys to retard

degradation came from Abbas et al. (2005) where LSM of Mg

alloys were performed using a 2 kW continuous wave CO2 laser.

Results showed that the weight loss of AZ31, AZ61, and

WE43 alloys was reduced by about 30%, 66% and 87%,

respectively, after laser surface treatment. The analysis showed

that rapid cooling of the alloy melt layer after LSM led to the

refinement of microstructure, the refined microstructure

promoted uniform corrosion. After the surface treatment, the

β-phase distribution was homogeneous, easy to accumulate and

form a barrier layer. A large number of scholars subsequently

performed different laser treatments on Mg metals to improve

their corrosion resistance, the results of corrosion rate are shown

in Table 3. Among them, Liu et al. (2015) used a 10 kW

continuous-wave CO2 laser to perform the surface melting of

AM60B Mg alloy to increase the corrosion resistance of AM60B

alloy. The improvement of corrosion resistance was mainly due

to the reduced corrosion susceptibility of the Al-Mg-rich matrix,

and the potential barrier effect formed by the homogeneous β-
phase distribution (Figure 9).

To achieve further improvement of the corrosion resistance ofMg

alloys, some scholars have used alternating magnetic field assisted

laser surface treatment (Zhou et al., 2016), grinding (Taltavull et al.,

2014b) or annealing treatment (Wei et al., 2019), they all significantly

improved the corrosion performance of Mg alloys.

Although studies have shown that the corrosion resistance of

Mg metals could be improved by laser surface treatment, Coy

TABLE 2 The variation of hardness on the surface of laser-modified Mg alloys.

Substrate Melt
layer

Enhancement Laser system Process parameters

MEZ Majumdar et al. (2003) 35 HV 100 HV 2.86 a continuous wave CO2 laser Q = 1.5 kW, V =
200 mm/min

ZE41 Khalfaoui et al. (2010) 72 HV 124 HV 1.72 a Lambda Physik excimer laser Ep = 100 mJ, V = 50 μm/s

AZ91D Taltavull et al, (2013a) 69.1 HV 107.5 HV 1.56 a continuous wave high-power diode laser Q = 600 W V = 90 mm/s

AZ91 Iwaszko and Strzelecka, (2016) 60 HV 93 HV 1.55 A continuous wave CO2 laser Q = 900W, V = 33.3 mm/s

MB26 Li et al. (2019a) 70 HV 105 HV 1.5 nanosecond pulsed fiber laser p = 1.20 × 107 W/cm2

AZ80 Li et al. (2019a) 80 HV 100 HV 1.25 V = 200 mm/s

AZ91D Meng et al. (2017) 60 HV 112 HV 1.87 A solid state Nd3+: YAG laser Ep = 18

J, v = 1 mm/s

Mg-1Zn-1Ca Pulido-González et al.,
2020)

61.7 HV 76.4 HV 1.23 A High Power Diode Laser Q = 743 W, V = 85 mm/s

Mg-3Zn-0.4Ca (Pulido-González et al.
(2020)

60.7 HV 77.3 HV 1.27 A High Power Diode Laser

AZ31B Xu et al. (2018) 55 HV 109 HV 1.98 The ultrasonic vibration-assisted laser surface
melting system

Q = 600 w V =
600 mm/min
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TABLE 3 Comparison of corrosion rate in different solutions after laser treatment.

Materials Substrate
(A/cm−2)

Laser
treatment
(A/cm−2)

Solution Laser Process Parameters

AZ91D 7.22 × 10−5 7.50 × 10−6 SBF a Lumonics JK704 Nd:YAG laser system Guan et al.
(2009b)

Ep = 3.82 × 104 W/cm2, V =
10 mm/s

1.20 × 10−6 5.50 × 10−7 3.5 wt%
NaCl

a Lumonics KrF pulsed-excimer laser Coy et al. (2010) p = 6.0 J/cm2

AM60B 4.48 × 10−6 5.98 × 10−7 3.5 wt%
NaCl

a continuous-wave CO2 laser Liu et al. (2015) in Ar, V = 1000 mm/min p =
89 J/mm2.

WE43 2.93 × 10−5 8.51 × 10−6 0.62 M NaCl a continuous-wave CO2 laser Liu et al. (2016a) In Ar, Q = 3000W V =
1000 mm/min

AZ31B 2.17 × 10−4 1.10 × 10−7 3.5 wt%
NaCl

a continuous wave fiber laser Xu et al. (2018) Q = 600W V = 600 mm/min

1.214 × 10−5 5.82 × 10−6 SBF a continuous-wave 3-kW Nd:YAG laser Wu et al. (2017) p = 3.18 J/mm2 V = 500 mm/s

Mg-Zn-Gd 8.0 × 10−6 1.3 × 10−6 Hanks a continuous wave Ytterbium doped fiber laser Rakesh et al.
(2018)

p = 0.535 J/cm2 V = 2 mm/s

Mg-Ca-Zn 1.97617 × 10−5 9.3619 × 10−6 Hank’s a ytterbium fs laser (Park et al., 2018) p = 5.2 J/mm2; V = 200 mm/s

Mg-Gd-Ca 5.54 × 10−5 2.07 × 10−6 Hank’s a Ti:sapphire chirped-pulse regenerative amplification laser
system Zhang et al. (2019c)

Ep = 2.04 × 106 W/cm2, V =
60 mm/s

MB26 5.6.8 × 10−5 3.12 × 10−5 3.5 wt%
NaCl

a nanosecond pulsed fiber laser Li et al., (2019a) Ep = 1.20 × 107 W/cm2 V =
200 mm/s

AZ80 9.60 × 10−5 3.79 × 10−5 3.5 wt%
NaCl

a nanosecond pulsed fiber laser (Li et al., 2019a) Ep = 1.20 × 107 W/cm2 V =
200 mm/s

Mg-10Li-
3Al-3Zn

3.00 × 10−5 7.63 × 10−7 0.1 M NaCl a Nd: YAG laser Zhang et al. (2020a) Q = 3500 W V = 10 m/min

FIGURE 9
Schematic diagrams for the corrosion process of the as-received (A,B) and LSM treated (C,D) AM60B alloy (Liu et al., 2015).
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et al. (2010) detected the corrosion performance of polymer LSM

of die-cast AZ91D alloy and showed that increasing the number

of laser pulses enhanced the porosity of the metal surface and

formed microcracks in the overlapping areas, which reduces the

corrosion resistance of the laser-treated alloy.

Corrosion is generally considered to be avoided, although

applications like batteries and biodegradable implants would

benefit. Some researchers (Pou-Alvarez et al., 2021) guide the

corrosion process of Mg alloys through local control of laser

surface treatment. Depending on the local control afforded by the

laser treatment, corrosion can be restricted to the region of interest

and driven in a specific direction by selectively adjusting the overall

corrosion rate in each region. Results demonstrate the applicability of

themethod and provide a reference for the design of customdegraded

implants to suit the different tissue requirements and environmental

conditions in different areas of the implant (Figure 10).

The degradation properties of Mg metals can be influenced

by building different surface structures. Microstructures of recast

layer explains the corrosion changes of the treated samples. Mg

alloys with laser recast layer possess a dense protective layer,

which will improve the corrosion resistance. In contrast, a

porous/broken laser layer on the sample surface accelerates

the corrosion of Mg metals. The increase in corrosion

resistance of laser-treated Mg alloys is mainly due to the

hindrance of galvanic corrosion. The galvanic coupling

corrosion of Mg alloys is caused by the adjacent α-phase and

the potential difference of the intermetallic compound. While the

β-phase in the alloy plays a dual role in corrosion, acting as a

current cathode or barrier, depending on its size, distribution and

fraction. After laser-treatment, the fine-grained intermetallic

compound is uniformly distributed in the α-Mg matrix, which

reduces the potential difference and alleviates galvanic corrosion.

The uniformly distributed β-phase after laser treatment formed

an almost continuous mesh in the corrosive environment, which

further hindered the corrosion (Liu et al., 2015). Applicating

different processes to guide and regulate the degradation, by

precisely constructing different surface structures on the surface

of Mg metals, opening the door for laser-guided corrosion

control concepts to be applied to other areas where corrosion

of controlled materials is needed.

3.5 Biocompatibility

Biocompatibility refers to the biological properties of medical

implant materials that can withstand the action of various host

FIGURE 10
Macroscopic degradation performance of untreated and tailored-treated bone fracture fixation plates (Pou-Alvarez et al., 2021).

FIGURE 11
Image of typical iridescent effect on the irradiated surface by
femtosecond laser (Guan et al., 2014b).
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systems, and maintain a relatively stable state without being

rejected or destroyed during the dynamic changes in the

organism. The biological reaction of human tissues to the

implants usually occurs at the interface between the material

and the contacting organism, including cell surface-extracellular

matrix, cell surface-implant surface, etc. (Muskovich and

Bettinger, 2012). Cells are the basic unit for sustaining life

and the basic substance for tissue repair (Janes et al., 2002).

Therefore, biocompatibility is not only dependent on the

material itself but also closely related to the properties of the

material surface in direct contact with human cells, including the

structure, composition, surface morphology, hydrophobicity and

energy state of surface (Curran et al., 2005). Improving the

surface properties through biological, chemical and physical

methods, significantly improves the biocompatibility of

medical implants with living organisms without changing the

in situ physical properties of material. From the perspective of

materials science, the microstructure on the surface of

biomaterials determines the properties, so the biocompatibility

of implants can be improved by preparing microstructures on the

surface to influence cellular behavior, which was previous

reported by Harrison (1912). Since then, a large number of

studies have a focused on using surface morphology to guide

cell growth and development. In recent years, ultrafast lasers have

successfully induced micro and nanostructures on the surface of

medical biomaterials and devices to influence cellular behavior,

thus improving their biocompatibility (Brunette et al., 2001).

Although Mg metals have received a lot of attention as

degradable biomedical materials, not much research has been

carried on the biocompatibility of Mg metals after laser surface

treatment. This is mainly because although the laser layer can

retard corrosion in the pre-corrosion stage, it can accelerate the

degradation of Mg metals, after immersion in the solution for a

period due to increasing the specific surface area. Lu et al.

investigated the biomineralization behavior of laser treated

samples in simulated body fluids with laser surface treatment

using a continuous-wave Nd: YAG laser on AZ31B alloy (Lu

et al., 2019). Results showed a significant improvement in

biomineralization at an optimum laser fluence of 3.286 J/mm2.

Zhang et al. proposed a hybrid laser surface modification method

of laser melting and laser surface texturization on Mg-Gd-Ca

alloy to study the adhesion and growth behavior of MC3T3-E1

cells in vitro (Zhang et al., 2019a). Results showed that the

submicron surface structures produced by the femtosecond

laser on the melting surface could provide durable mechanical

stimulation to the cells, thus allowing controllable cell shape. The

micron surface structure produced by the picosecond laser on the

melting surface affects the cell distribution owing to the cell

rejection effect. The effectiveness of the hybrid laser approach to

improve the biocompatibility of Mg-Ca alloys.

Although the biological application of Mg Metals is a hot

research topic in recent years, the research on the

biocompatibility of Mg alloys is not comprehensive enough,

there is a lack of study on the relationship between

microstructure of surface, degradation behavior and

biocompatibility, for example, the effect of changes in surface

structure during degradation on cell adhesion, proliferation, and

differentiation. Therefore, futuristic works can be conducted to

investigate effect of degradation processes of Mg alloys with

different surface structures on the cellular behavior, by

constructing in vitro biological models.

3.6 Effect of surface absorbance

The laser induced light absorbance effect is an important

phenomenon in Mg alloys offering potential engineering

applications in product identification, photocatalysts and bio-

optical implants (Guan et al., 2013b; Guan et al., 2014b; Guan

et al., 2014c; Shi et al., 2015). The structure and composition of

the laser-treated surface affect the light absorption of magnesium

alloys, causing a color change in the metal surface.

Guan et al. (2014b) reported the microwave ripples and

nano ripples on the surface of AZ31B alloy irradiated by

femtosecond laser and explored the femtosecond laser beam

induced iridescence effect on a large radiating surface. The

results indicated the color effect was mainly due to the

extensive period distribution of the nano ripples as

diffraction gratings, while the intensity of the structural

color was strongly influenced by the morphological

evolution of the microwave ripples after laser treatment.

Subsequently, scholars have structured the surface of Mg

alloy by using nanosecond, excimer, and femtosecond lasers,

and the results all show that the darkening effect on the

surface of Mg alloy after laser treatment is a joint effect of the

laser-treated structure and the increased oxygen content in

the laser-treated region (Guan et al., 2013b; Guan et al.,

2014c; Shi et al., 2015). Due to the different absorbance rates

of laser treatment surface structures, the absorption and

reflection of light. By modulating the laser characteristics

to the thermal properties of the material, the technique can

be widely employed, providing potential for the development

of new magnesium-based bio-optics and color displays. The

image of typical iridescent effect on the irradiated surface

was shown in Figure 11.

Although the simple laser surface improved mechanical

properties and corrosion resistance, it is hard to meet all the

needs of practical applications to achieve a single function. In

recent years, a large number of scholars have shown great interest

in building laser composite coatings.

4 Laser surface composite coating

To improve surface properties for the applications, it is often

necessary to construct composite coatings on Mg metals (Patel
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et al., 2010). It is critical to select the right coating/substrate

interface for taking advantage of coatings. The bond strength of

the coating on the metal substrate is enhanced by creating micro-

and nano-patterns changing the surface morphology of the Mg

alloy. The surface patterns produced by laser treatment increase

the surface area and enhance the mechanical engagement at the

bonding interface (Zhang et al., 2021; Park et al., 2021). For

degradable polymer biofilm layer, the surface energy of Mg alloys

has a great influence on the bonding force of the film layer to the

substrate. Laser treatment regulates the surface energy of Mg

metal, controls the wetting state of polymer film layer solution

and substrate surface, to achieve the purpose of controlling the

film layer and substrate binding force.

To enhance the corrosion resistance of Mg alloys, some

scholars (Chen and Thouas, 2015; Li et al., 2019b; Zhang

et al., 2019) have performed LSM pretreatment and micro-arc

oxidation (MAO) composite treatment on Mg alloys. The LSM

pretreatment results in a thicker and more refined and

homogeneous MAO coating. It is favorable to the formation

of MAO coating, increases the bonding force and the corrosion

resistance of Mg alloy.

Liu et al. (2016b) and Aulakh and Kaushal (2019) used laser

texturing as a substrate preparation technique to prepare ceramic

coatings by PEO and thermal spray surface treatment techniques,

respectively, which not only increased the bonding strength of

the coating, but also satisfactory improved the corrosion

resistance.

Biodegradable polymer coatings are usual as barriers to

further enhance the advantages of implantable materials, and

also require pretreatment of metal surfaces to enhance the

adhesion strength of polymers to the metal surfaces.

Researchers (Ali et al., 2015; Zhang et al., 2021b; Park et al.,

2021) have further improved the biocompatibility andmodulated

the degradation behavior of Mg alloys by surfaces laser treatment

to enhance the bonding strength of polymer coating.

There have been many studies on the construction of

composite coatings by laser performed coatings, which

achieved their intended purpose. However, most of the studies

have focused on the overall large area coating construction,

lacking the combination with precise laser control. In the

future, the construction of composite coatings at specified

locations can be realized by precisely controlling the laser

processing area to meet the practical application requirements

of complex conditions.

5 Conclusion and overviews

In current researches, mechanistic studies on the effect of

laser on magnesium alloys have been reported, but there are still

limitations. The effect of laser processing on the surface

organization and structure of Mg metals needs to be explored

in depth. Secondly, the mechanical properties of laser treated Mg

metals have been studied, but they are not comprehensive

enough, especially in corrosive environments. Although there

are many studies on the degradation behavior of Mg metals after

laser surface treatment, the explanation of the reasons for the

change in degradation behavior is not perfect and lacks

mechanistic understanding. While as the most promising

biodegradable metal, Mg metals is a hot spot for research, but

the current researches on the biocompatibility of laser treated Mg

are not comprehensive enough. There is a lack of research on the

relationship between microstructure, degradation behavior and

biocompatibility, for example, the effect of microstructure on

biocompatibility during degradation. For future research

directions of laser treatment of Mg metal surfaces, the

following possibilities are conjectured:

1) To establish a model of the influence of laser treatment on the

surface organization and structure, and to clarify the effect

law of laser treatment on the evolution of the surface

organization and structure.

2) In-depth study of the effect of laser surface treatment on the

mechanical properties ofMgmetal, especially the corrosion fatigue

resistance behavior, under realistic experimental conditions.

3) Establish the three-dimensional controlled degradation model to

study the degradation behavior of surface laser treatment

modulation, and establishing a network of relationships

between laser surface structure and degradation behavior of

magnesium alloys. Thereby, applying the controllable

degradation developed to three-dimensional devices to provide

a reference for practical applications.

4) Construct the complete database for the relationship between

surface morphology and surface properties produced by

different lasers treatment, which facilitate the rapid

retrieval and selection of engineering applications.
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