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Abstract

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors with essential functions in lipid, glucose and
energy homeostasis, cell differentiation, inflammation and metabolic disorders, and represent important drug targets.
PPARs heterodimerize with retinoid X receptors (RXRs) and can form transcriptional activator or repressor complexes at
specific DNA elements (PPREs). It is believed that the decision between repression and activation is generally governed by a
ligand-mediated switch. We have performed genomewide analyses of agonist-treated and PPARb/d-depleted human
myofibroblasts to test this hypothesis and to identify global principles of PPARb/d-mediated gene regulation. Chromatin
immunoprecipitation sequencing (ChIP-Seq) of PPARb/d, H3K4me3 and RNA polymerase II enrichment sites combined with
transcriptional profiling enabled the definition of 112 bona fide PPARb/d target genes showing either of three distinct types
of transcriptional response: (I) ligand-independent repression by PPARb/d; (II) ligand-induced activation and/or derepression
by PPARb/d; and (III) ligand-independent activation by PPARb/d. These data identify PPRE-mediated repression as a major
mechanism of transcriptional regulation by PPARb/d, but, unexpectedly, also show that only a subset of repressed genes are
activated by a ligand-mediated switch. Our results also suggest that the type of transcriptional response by a given target
gene is connected to the structure of its associated PPRE(s) and the biological function of its encoded protein. These
observations have important implications for understanding the regulatory PPAR network and PPARb/d ligand-based drugs.
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Introduction

Peroxisome proliferator-activated receptors (PPARs) are nuclear

receptors with essential functions in lipid, glucose and energy

metabolism, cell differentiation as well as inflammatory and

metabolic disorders [1–4]. The PPARa, PPARb/d and PPARc
subtypes activate their target genes through binding to specific

DNA elements (PPREs) as obligatory heterodimers with the

retinoid X receptor (RXR). Their transcriptional activity is

modulated by certain lipids, fatty acid derivatives and subtype-

selective synthetic ligands that have been developed as potential

drugs for the treatment of human metabolic diseases [5]. PPRE-

bound PPAR complexes have two distinct functions, i.e.,

transcriptional repression and transcriptional activation. Agonistic

ligands induce a conformational change in PPARs that favors the

association with coactivators and the dissociation of corepressors

[6]. Several PPAR-associated corepressors have been identified

[7–12], but their precise function remains largely obscure.

Likewise, it is unclear whether all genes targeted by a given

PPAR subtype are regulated in a similar way, or whether distinct

regulatory mechanisms govern the expression of different sets of

PPAR target genes.

A genomewide binding site analysis of PPARc during adipocyte

differentiation by chromatin immunoprecipitation sequencing

(ChIP-Seq) revealed an exchange of PPARb/d for PPARc,

presumably switching from repressive to activating complexes on

the promoters of key target genes [13]. Bioinformatic analyses of

ChIP-chip data also revealed the interaction of C/EBP factors

with DNA elements in the vicinity of PPARc binding sites in

adipocytes [14], while in macrophages an interplay of PPARc with

both C/EBP and the Ets family member PU.1 was observed [15].

A recent ChIP-chip study of PPARa binding sites in HepG2

hepatoma cells provides evidence for a crosstalk between PPRE-

bound PPARa and SREBP signaling at some target gene

promoters [16]. The same study also points to an interaction

between PPARa and STAT transcription factors in PPARa-

mediated transcriptional repression, consistent with previous

observation made with individual target genes. In a different

context, PPRE-associated PPARb/d has been described to

interact with, and mediate the SUMOylation of KLF5, leading
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to NCoR/SMRT dissociation, CBP recruitment and consequently

transcriptional activation [17].

It has previously been shown that PPARs regulate the

differentiation, function and proliferation of myofibroblasts in

different model systems [18,19]. These include tumor-bearing

Ppard null mice, which show a hyperplastic tumor stroma

associated with a strongly increased differentiation towards

myofibroblasts [20]. A role for PPARb/d in myofibroblasts is

further suggested by an extensive crosstalk with transforming

growth factor-b (TGFb) signaling, which affects the composition of

chromatin complexes at common target genes [21,22]. In the

present study, we used human myofibroblast-like cells as a model

system for a genome-wide analysis of PPARb/d-regulated

transcription. By combining ChIP-Seq analysis with genome-wide

transcriptional profiling we show that, contrary to the prevailing

opinion, transcriptional repression and activation are not merely

determined by the availability of agonistic ligands, but are

governed by gene-specific mechanisms. Based on these data we

define different modes of transcriptional regulation by PPRE-

bound PPARb/d, and correlate these with the structure of

PPARb/d sites and the biological function of the encoded

proteins.

Results and Discussion

Genomewide identification of PPARb/d enrichment sites
in WPMY-1 cell chromatin

Standard quantitative ChIP-qPCR was initially used to analyze

chromatin from WPMY-1 cells for PPARb/d occupancy of the

well-characterized PPAR-responsive enhancer of the ANGPTL4

gene, which harbors a cluster of 3 functional PPREs in the third

intron at +3.5 kb relative to the transcriptional start site (TSS)

[21,23]. We found an ,20-fold enrichment of PPARb/d at the

PPRE-containing intronic enhancer and a low background signal

within 20 kb flanking the TSS (Kaddatz et al, 2010). Deep

sequencing of this DNA was then performed using an Illumina

genome analyzer II. A total of 20,777,020 reads mappable to

unique locations on the human genome were obtained. Analysis of

the ChIP-Seq data set using the MACS peak calling algorithm

(Zhang et al, 2008) identified a total of 4,542 enrichment peaks

(Dataset S1). This is exemplified by the profile for the ANGPTL4

locus in Figure 1A, and for the SLC25A20 and CDKN2 loci in

Figures S1 and S2. The ANGPTL4 ChIP-Seq data are in perfect

agreement with the pattern observed by ChIP-qPCR (Kaddatz

et al, 2010). Further validation was obtained by ChIP-qPCR for a

sample of 40 peaks, which also demonstrated the presence of

RXRa at the same genomic loci (Figure 1B and data not shown).

In order to assess the potential biological relevance of the

PPARb/d enrichment sites, we analyzed the 4,542 enrichment

peaks for associations with genomic loci (single nucleotide

polymorphisms; SNPs) linked to phenotypes via genome wide

association studies (GWAS) (Ramagopalan, 2010). Within this

dataset reflecting 47 diseases and other common traits there was a

significant enrichment in three groups (p, = 0.05; Benjamini-

Hochberg corrected), i.e., cholesterol, HDL cholesterol and

bipolar disorder (Dataset S2). This is in excellent agreement with

the known physiological role function of PPARb/d in lipid

metabolism [1,4] and its reported linkage with bipolar disorder

[24].

Most PPARb/d enrichment sites were found inside or

maximum 25 kb upstream of transcribed genomic regions

(n = 3,544; 78%; Ensembl 58). These sites were located close to

transcriptional start sites (25000 bp upstream or within the first

exon/intron of a TSS (n = 2,220; 49% of all peaks), within

intragenic regions (n = 868; 19%) or in non-transcribed upstream

sequences of the TSS (n = 456; 10%). The remaining 22%

(n = 998) were assigned to more distant regions (.25 kb relative

to the nearest TSS).

All peaks with an FDR = 0 were used for a de novo motif search

(MEME) [25], which yielded a 17-bp consensus sequence

(Figure 2C; bottom image and bottom line). This motif is

composed of a typical direct repeat 1 (DR1) flanked by a 4-bp

extension at the PPAR-binding 59-half site [26], which is consistent

with, and refines, the previously proposed consensus sequence

(Figure 2C; upper line) [27]. We then searched all 443 enrichment

peaks with an FDR,0.05 (‘high confidence peak set’; Dataset S3;

Figures 2A) for a 17-bp consensus sequence using MEME, which

yielded a similar motif matching 287 (65%) of the 443 sequences

(Figure 2C; top image).

Correlation of PPARb/d enrichment sites with promoter
regions

The conventional, simple approach of associating peaks with the

nearest gene defined in a database often yields uncertain results,

because frequently multiple genes are found in the vicinity of an

enrichment peak, and transcriptional start sites in databases can be

incorrectly assigned. To circumvent this problem we took a

different approach. In parallel to PPARb/d ChIP-Seq, we

performed global analyses of histone H3 lysine-4 trimethylation

(H3K4me3) and RNA polymerase II enrichment (Datasets S4 and

S5) as markers for active or inducible proximal promoters [28,29].

These ChIP-Seq data were aligned with the data set of high

confidence PPARb/d enrichment peaks, as shown for the HSDL2

locus in Figure 1C and two other loci in Figures S1 and S2. This

correlation led to the delineation of 414 peaks with H3K4me3

clusters within 200 kb of the PPARb/d binding sies (PPAR/H3K4

peak set; Figure 2A), corresponding to 93.5% of all high

confidence peaks (Figure 2D). The majority of these genomic

regions also showed the presence of RNA polymerase II (70%;

Figures 1C, 2D, S1 and S3). Those PPARb/d ChIP-Seq peaks

that did not co-localize with H3K4me3 clusters may be associated

with enhancers [28], located in genes switched off in myofibro-

blasts, or result from non-functional interaction sites [30].

Identification of PPARb/d target genes by combining
ChIP-Seq and transcriptional profiling

For genomewide expression profiling of PPARD-depleted

WPMY-1 cells, we used a pool of validated, PPAR subtype-specific

siRNAs, which in a previous study was shown to inhibit PPARD

expression in WPMY-1 myofibroblastic cells by .80% and to

interfere with the recruitment of PPARb/d to the ANGPTL4 PPREs

in vivo [21]. This siRNA pool also inhibited the transcriptional

activation of a PPRE-luciferase reporter construct by the PPARb/d
agonist GW5101516, which was rescued by PPARb/d overexpres-

sion, arguing against potential off-target effects (Figure S3).

Microarray analysis of WPMY-1 cells exposed to control or PPARD

siRNA and, in parallel, in the presence or absence of GW501516

(Datasets S6 and S7) enabled the delineation of a subgroup of 118

expression-correlated peaks in the PPAR/H3K4 set, corresponding

to 112 genes (Figure 2A, Dataset S8). These genes (‘‘target gene set’’)

showed a $1.5-fold change in expression after PPARD knockdown

or a $1.2-fold change after application of GW501516, and were

therefore considered bona fide PPARb/d target genes (Figure 2E).

Surprisingly, only a fraction of genes (n = 13; 12%) were both

induced by PPARD siRNA and activated by GW501516, suggesting

that an agonist-induced switch between repression and activation is

not the rule.

Global Analysis of PPARb/d Target Genes
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We next determined the location of PPARb/d enrichment sites

relative to the linked gene within the target gene set. As expected,

there was a slight increase in sites near or within transcribed genes

(Figure 2F; 83% TSS-flanking, intragenic or upstream within

25 kb) compared to the unfiltered peak set (Figure 2B; 78%).

Panther Biological Pathway term analysis [31] via the DAVID

knowledge database [32] showed that the majority of the 10 most

enriched terms describing biological processes affected by

PPARb/d were associated with lipid and carbohydrate metabo-

lism (Figure 2G; Dataset S9). This expected result further supports

the target gene set defined in the present study. The same analysis

also identified several other groups of target genes that are of

potential interest in view of PPARb/d’s non-metabolic functions,

including hematopoiesis and muscle/heart development.

Different modes of target gene regulation
The response of PPARb/d target genes to GW501516 (relative

to solvent) and PPARD siRNA (relative to control siRNA) was

verified by RT-qPCR for a total of 53 genes (Dataset S10), as

illustrated by the examples in Figure 3A–C. Based on these data,

we defined three different transcriptional responses (Figure 4):

upregulation ($1.5-fold) by PPARD siRNA, but no induction

(,1.2-fold) by ligand (type I; n = 25; red data points); upregulation

by PPARD siRNA and induction by ligand (type II; n = 14; blue

data points); down-regulation by PPARD siRNA, and either no

response or weak induction by GW501516 (type III; n = 14; green

data points). This categorization was also reproducible with a

different PPARb/d agonist (L165,041), and ligand induction was

abolished by PPARD siRNA (data not shown).

The data also indicate that the magnitude of induction by ligand

approaches the effect of PPARb/d depletion for individual genes

showing a type II response (Figures 3A–C, 4). Since the

concentration of GW501516 used (0.3 mM) causes the maximally

achievable transcriptional induction (our unpublished observa-

tion), this suggests that ligand-induced transcription results to a

large extent from the release of a PPARb/d-RXR repressor

complex. This postulated PPAR subtype-specific repressive

function is consistent with the observation that the siRNA-

mediated depletion of PPARa or PPARc did not have any

detectable effect on ANGPTL4 expression (Figure 3D). Further-

more, a triple knockdown of all three PPAR subtypes had a similar

effect as the selective PPARb/d knockdown (Fig. 3D), suggesting

that PPARa and PPARc do not activate target genes that are

normally repressed by PPARb/d. This finding is important in view

of the fact that PPARb/d depletion leads to a compensatory

upregulation of PPARa and PPARc (Figure S4).

To obtain further evidence for a direct role of PPARb/d in both

ligand-induced and ligand-independent responses, we analyzed

the effect of PPARD siRNA on the chromatin association of

PPARb/d at representative target genes, i.e., IMPA2 and MLYCD

(type I) and ANGPTL4 and SLC25A20 (type II). The data in Fig. 3E

shows that in each case siRNA treatment led to clear loss of

PPARb/d irrespective of the different transcriptional outcomes

(Fig. 3A, B). These results support the conclusion that ligand-

independent responses are directly linked to the recruitment of

PPARb/d to the respective target genes.

The ligand-independent activation of type III response genes by

PPARb/d may suggest a role for endogenous ligands produced by

WPMY-1 cells. This is, however, unlikely in view of the fact that

type II response genes are activated by GW501516 under the

identical experimental conditions (Fig. 3B, C). Furthermore, a

typical type III response was also seen in HepG2 hepatoma cells

with several tested genes, including BIRC3 and AHNAK (our

unpublished observation). Finally, a clear transcriptional induction

of ANGPTL4 was also seen with agonists that have a substantially

lower affinity than the synthetic GW501516, such as 15-HETE

[33], arguing against the possibility that WPMY-1 cells produce

particularly high levels of endogenous PPARb/d ligands.

Structural features associated different types of response
This validated gene set was used for the identification of

potential response-selective DNA sequence motifs within the

associated ChIP-Seq peaks. De novo motif search in peak areas

associated with both type I and type II responses identified motifs

(Figure 5A) that closely resembled the consensus DR1 sequence

defined above (see Figure 2C). However, only the type II-

associated motif perfectly matched both the DR-1 motif and the 59

extension. In contrast, no correlations were found between the

type of response of a given gene, the position of PPARb/d
enrichment peak(s) and the number of PPREs (Figure 5B). It is

therefore tempting to speculate that the structurally different

PPREs may contribute to the distinct type I and II responses, for

instance by inducing binding site specific conformations of the

interacting protein complexes, as reported for the thyroid

hormone receptor [34]. This is conceivable, since the 59 extension

characteristic of type II-associated PPREs has been shown to

contribute to PPARc-RXR binding by contacting a region

adjacent to the zinc finger of the PPAR protein [26].

In contrast to genes showing type I or II responses, a clear

consensus motif search in type III-associated peaks did not yield a

defined consensus motif, but frequently imperfect PPREs or

extended PPRE half-sites could be identified (Figure 5A; Dataset

S10), suggesting that the role of PPARb/d may be to assist other

factor(s) in transcriptional activation. However, at present we do not

know whether these PPRE-like sequences are functionally relevant.

It is, therefore, also possible that PPARb/d enrichment at some of

the type III response genes is due to PPRE-unrelated mechanisms,

resulting for instance from an interaction of PPARb/d with other

DNA-binding transcription factors.

Cell type-specific determinants
Several lines of evidence suggest that the regulation of PPARb/d

target genes is not only determined by the genomic context, as

shown in the present study, but also by cell type specific

determinants. First, a comparison with published data shows that

some genes characterized by a ligand-independent type I or type III

response in WPMY-1 cells (Fig. 3A; Dataset S7) are inducible by

PPARb/d agonists in other cell types, for example IMPA2 in diploid

human fibroblasts [22] or HMOX1 in endothelial cells [35]. Second,

the PDPK1 and ILK genes, which are ligand-inducible in mouse

keratinocytes [36], are unresponsive to ligand in WPMY-1 cells

(Dataset S7). Although both genes respond to PPARD siRNA

(Dataset S7), our ChIP-Seq analysis did not show an enrichment of

PPARb/d binding at these loci (Dataset S1), suggesting that the

siRNA effect in WPMY-1 cells is due to secondary events. Third,

the ANGPTL4 gene is strongly induced by PPARb/d in WPMY-1

cells (Fig. 3A) and other cell types [21–23,33,37,38], but shows a

type I response in HepG2 cells, even though other PPARb/d target

Figure 1. Genomewide identification of PPARb/d binding sites in WPMY-1 cells by ChIP-Seq. (A) PPARb/d enrichment at the genomic
ANGPTL4 locus determined by ChIP-Seq. (B) ChIP-qPCR analysis of PPARb/d and RXRa binding at 12 genomic loci identified by ChIP-Seq. (C) PPARb/d,
H3K4me3 and RNA polymerase II enrichment peaks detected by ChIP-Seq at the HSDL2 locus.
doi:10.1371/journal.pone.0016344.g001

Global Analysis of PPARb/d Target Genes
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Figure 2. Genomewide identification of PPARb/d target genes by combining ChIP-Seq and transcriptional profiling. (A) Flow chart
showing consecutive steps of bioinformatic analysis for the definition of high confidence PPARb/d-regulated genes (target gene set). These genes are
characterized by one or more peaks with an FDR,0.05 that is/are located within 200 kb of a database-defined gene (Ensembl release 58), a cluster of
H3K4me3 marks, RNA polymerase II enrichment and transcriptional responsiveness to PPARD siRNA and/or the agonist GW501516. (B) Distribution of
genomewide PPARb/d binding for all 4,542 peaks identified by ChIP-Seq. TSS flanking is defined as regions from 25000 bp to the 39 end of the first
intron, upstream regions are located within 225 kb of a transcriptional start site (TSS). (C) Consensus sequence identified by de novo motif search
(MEME) [25] of ChIP-Seq in high confidence (top) and FDR = 0 peaks (bottom). The line beneath shows the published consensus sequence [27]; the
bottom line (boldface) shows the refined sequence derived from the present study. (D) Overlap between high confidence PPARb/d peaks, H3K4me3
marks and RNA polymerase II enrichment detected by parallel ChIP-Seq experiments. (E) Venn diagram showing the overlap between genes
regulated by PPARD siRNA or activated by GW501516. (F) Analysis of PPARb/d peak distribution for the target gene set. (G) Panther biological process
(BP) classification of the target gene set. The 10 most enriched BP terms describing biological processes affected by PPARb/d are shown.
doi:10.1371/journal.pone.0016344.g002
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genes (like ADRP or CPT1A) show a similar response in HepG2 and

WPMY-1 cells (our unpublished observation). Taken together, these

findings suggest that the cell type dependent availability or

expression level of factors functionally and/or physically interacting

with PPARb/d is an important co-determinant of the type of

response of PPARb/d target genes.

Correlation of the type of response with the biological
function of target genes

Intriguingly, most validated genes showing a type II response

(10/15; 67%) are directly associated with lipid metabolism, which

is clearly different from the type I and III groups (5/24 and 0/0,

respectively, corresponding to 21% and 0%). Likewise, Panther BP

term classification identified a single significant hit across all three

groups of genes, i.e. ‘‘lipid, fatty acid and steroid metabolism’’ for

the type II response group with a P value of 0.0002 (Benjamini-

Hochberg corrected) compared to P = 0.29 for type I response

genes. These observations clearly point to a link between the

biological function of PPARb/d target genes and their integration

into a regulatory network.

Conclusions
Our genomewide binding and expression studies with human

myofibroblasts strongly suggest that PPRE-directed regulation by

PPARb/d is not governed by a single mechanism. While

repression in the absence of an agonistic ligand is commonly

observed (with both type I and II responses), only the type II

response involves an upregulation by ligand, which appears to be

mediated to a major extent by release from transcriptional

repression. Inspection of PPREs mediating type I and II responses

suggests that their structure correlates with the differential

response of the associated genes to ligands. On the other hand,

genes showing a type III response are activated by PPARb/d in

the absence of exogenous ligand, pointing to fundamentally

different regulatory PPARb/d complexes. This scenario is

reminiscent of the Fabp4 gene in murine adipocytes which is

Figure 4. Correlation of PPARD siRNA and GW501516 mediated gene regulation for the validated gene set. Red: type I response,
upregulated ($1.5-fold) by PPARD siRNA and unaffected by GW501516; blue: type II response, upregulated by PPARD siRNA and induced by
GW501516 ($1.2-fold); green: type III response, down-regulated ($1.5-fold) by PPARD siRNA. Each data point represents the average of 4 biological
replicates as in Figure 3A–C.
doi:10.1371/journal.pone.0016344.g004

Figure 3. Identification of different types of transcriptional responses to PPARb/d depletion and ligands. (A–C) Differential responses
to GW501516 and PPARD siRNA of PPARb/d target genes, classified as type I (A), type II (B) and type III (C) responses. WPMY-1 cells were treated as
indicated and analyzed as in Figure 1. Data from four biological replicates are shown. Individual data points represent the average of 3 technical
replicates. Horizontal lines indicate the median of 4 biological replicates. (D) PPAR subtype-specific repression of the ANGPTL4 gene by PPARb/d.
WPMY-1 cells were transfected with PPARA, PPARG or PPARD siRNA pools, or a combination of all three pools (triple knock-down), and relative
ANGPTL4 mRNA levels were measured by RT-qPCR. The efficiencies and subtype specificities of the siRNA pools are shown in Figure S4. (E) Effect of
PPARD siRNA treatment on PPARb/d recruitment to the IMPA2, MLYCD, ANGPTL4, SLC25A20, BIRC3 and GPR180 genes.
doi:10.1371/journal.pone.0016344.g003
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constitutively activated by PPARc in the absence of ligand, while

under the same conditions the Gyk gene is ligand-dependent [9].

However, similar gene-specific responses have not been described

for PPARb/d to date, although an agonist-independent associa-

tion of PPARb/d with coactivators is structurally conceivable [39].

The existence of different modes of regulation suggests that

PPARb/d is able to exert different biological functions, which is

determined by the presence of ligands, its own expression level and

the availability with specific coregulators. This hypothesis is

supported by the results of our biological term classification, which

showed that ligands affect primarily genes involved in lipid

metabolism, suggesting that the biological function of PPARb/d
target genes is indeed linked to the mode of their regulation.

Taken together, these observations have important implications

for elucidating the global PPARb/d signaling network and for

understanding the function of ligand-based drugs in physiological

and disease-related processes.

Materials and Methods

Cell culture and ligands
WPMY-1 cells [40] were obtained from the ATCC and

maintained as described [21]. GW501516 and was from Axxora

(Lörrach, Germany) and L165,041 from Calbiochem (Merck,

Darmstadt, Germany).

siRNA transfections
Cells were seeded at a density of 56105 cells per 6 cm dish in

4 ml DMEM with 10% FCS and cultured for 2 h. 1280 ng siRNA

in 100 ml OptiMEM (Invitrogen) and 20 ml HiPerfect (Qiagen,

Hilden, Germany) were mixed and incubated for 5–10 min at

room temperature prior to transfection. The cells were replated

24 h post-transfection at a density of 56105 cells per 6 cm dish.

Transfection was repeated 48 h after start of the experiment, and

cells were passaged after another 24 h. Forty-eight hours following

the last transfection, cells were stimulated and harvested after

another 6 h.

Quantitative RT-PCR
cDNA was synthesized from 0.1–1 mg of RNA using oligo(dT)

primers and the Omniscript kit (Qiagen, Hilden, Germany). qPCR

was performed in a Mx3000P Real-Time PCR system (Stratagene,

La Jolla, CA) for 40 cycles at an annealing temperature of 60uC.

PCR reactions were carried out using the Absolute QPCR SYBR

Green Mix (Abgene, Hamburg, Germany) and a primer

concentration of 0.2 mM following the manufacturer’s instructions.

L27 was used as normalizer. Comparative expression analyses

were statistically analyzed by Student’s t-test (two-tailed, equal

variance) and corrected for multiple hypothesis testing via the

Bonferroni method. RT-qPCR primer sequences are included in

Dataset S10.

Microarrays
Microarray analyses were carried out as published [21]. Raw

microarray data were normalized using the ‘loess’ method

implemented within the marray package of R/Bioconductor

[41]. Raw and normalized microarray data were deposited at EBI

ArrayExpress (E-MEXP-2756). All data is MIAME compliant.

Probes were considered regulated if they had an averaged log

intensity . = 6 and a fold change . = 1.2 for GW501516 and

. = 1.5 and siPPARD, respectively. Agilent microarray probes

were aligned to both the reference genome (GRch37) and virtual

cDNA created from Ensembl release 58 [42] and assigned to

members of the Ensembl release 58 Homo sapiens gene set (see

below). Genes with multiple probes passing the intensity threshold

were assigned to the most strongly regulated probe for peak

association.

Assignment of microarray probes to genes
Agilent microarray probes were aligned to both the reference

genome (GRch37) and in silico cDNA created from Ensembl

release 58 (Hubbard et al. 2009) using bowtie 0.12.3, allowing 3

mismatches in the seed and 5 mismatches in total (Dataset S11).

Figure 5. Structural features of PPARb/d target genes showing
type I or type II responses. (A) Consensus PPRE motifs in ChIP-Seq
peak areas of validated type I, II and III response genes derived by best-
fit alignment of peak sequences with the FDR = 0 motif in Fig. 2C. (B)
Locations of PPREs in PPARb/d enrichment peaks (type I: red; type II:
blue; numbers relative to the TSS). All sites downstream of the TSS are
intragenic.
doi:10.1371/journal.pone.0016344.g005
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They were assigned to (possibly multiple) genes in the following

order:

- perfect match in transcripts of a single gene,

- perfect match in transcripts of multiple genes, only one with

matches within 2 kb of its transcripts 39-ends,

- perfect genomic matches in different genes (no genes assigned),

- perfect genomic match to only one gene,

- perfect genomic match in one location covered by multiple

genes,

- perfect genomic match outside of a gene with multiple matches

to transcripts of different genes,

- perfect genomic match to a gene within 2 kb,

- perfect genomic match outside of a gene region (no gene

assigned),

- mismatch in transcripts of a single gene,

- mismatch in transcripts of multiple genes, only one with

matches within 2 kb of its transcripts 39-ends,

- genomic mismatches in different genes (no genes assigned),

- mismatch to only one gene,

- mismatch in one location covered by multiple genes,

- mismatch outside of a gene with multiple matches to

transcripts of different genes,

- mismatch to a gene within 2 kb,

- mismatch outside of a gene region (no gene assigned).

ChIP-qPCR and ChIP Sequencing (ChIP-Seq)
ChIP-qPCR was performed and evaluated as described [21] using

the following antibodies: IgG pool, I5006 (Sigma-Aldrich, Steinheim,

Germany); a-PPARb/d, sc-7197; a-RXRa, sc-774; a-RNA poly-

merase II, sc-599; (Santa Cruz, Heidelberg, Germany); a-

H3K4me3, pAb-003-050 (Diagenode, Liège, Belgium). Primer

sequences are listed in Table S1. For ChIP-Seq, ChIP samples from

WPMY-1 cells were sequenced on an Illumina IIx Genome Analyzer

and analyzed with Bowtie [43] and MACS [44]. Sequencing data

were deposited at EBI ArrayExpress (E-MTAB-371).

Mapping of ChIP-Seq reads
Sequence reads (36 bp) were approximately deduplicated using a

bloom filter (collision probability 1028) and aligned to the human

genome (GRch37) with bowtie 0.12.3 [43] allowing at most two

mismatches (2n 2) with a mismatch quality sum of 70 (2e 70) and

restricting to exactly one mapped location (2m 1 2k 1). Out of

33,078,626 PPARb/d total reads in three lanes, 20,777,020 unique

reads could be aligned to distinct locations of the human genome

(‘were mappable’); 1,553,813 failed to align. Out of 16,945,431

H3K4me3 reads in one lane, 10,183,043 were mappable and

935,169 failed to align. For RNA polymerase II (one lane) the

numbers were 19,967,069, 10,248,554 and 2,178,974, respectively,

and the three control IgG lanes yielded 62,436,651 total,

42,197,561 mappable and 3,394,035 failed reads.

Peak finding
The aligned reads of multiple sequencing runs were combined as

appropriate and passed to MACS [44] (--tsize = 36, --gsize =

2900000000 --mfold = 8) for peak finding, with the same IgG

background used in both comparisons, PPARb/d and H3K4me3

(see Datasets S1 and S4 for results). To generate a high confidence

PPARb/d peak set of 443 elements (Dataset S3), only peaks with a

MACS-assigned FDR of less than 5% and fewer than 100 tags in the

IgG track were selected. Furthermore, 17 peaks were removed from

this set manually after visual inspection because of low signal-to-noise

ratios. PPARb/d peaks without a H3K4me3 peak within 200 kbp

were filtered, leading to the peak set titled ‘‘PPAR/H3K4’’. RNA

polymerase II occupancy was assessed for those H3K4me3 peaks

having more than 50 Pol II tags in their region. Finally, we assigned

the remaining 414 peaks to nearby regulated genes (see below:

assignment of microarray probes), yielding a target gene set of 118

peaks corresponding to 112 genes (Dataset S8).

Databases
The reference genome used throughout was the human genome

assembly GRCh37 (http://www.ncbi.nlm.nih.gov/projects/genome/

assembly/grc/human/index.shtml). All gene and transcript data, such

as transcription start site positions, came from Ensembl revision 58

(http://may2010.archive.ensembl.org/). Functional annotation was

retrieved from DAVID [32], genome wide association data from the

supplemental data of [40].

Comparison with single nucleotide polymorphism (SNP)
data

Single nucleotide polymorphisms associated with phenotypes by

genome wide association studies (GWAS) from reference [45] were

extended by 200 kb on each side, and the percentage base pair overlap

with the intervals of a query set (peaks) was measured. To evaluate the

resulting scores, a Monte Carlo simulation with approximately

n = 10,000 trials was performed. Non-occurance within the trials was

assigned a p-value of 3/N, and the result was corrected by the

Benjamini-Hochberg procedure. The null model in the simulation

retained the number of intervals, their sizes and their distance to the

closest transcription start site in order to simulate random transcription

factor binding sites. Enrichment was defined as the observed overlap

divided by the mean overlap within the Monte Carlo simulation.

Functional assignments
Gene sets were intersected with biological pathways as defined

by Panther [31] (www.pantherdb.org) via the DAVID knowledge

database [32] (http://david.abcc.ncifcrf.gov; release 6.7), using

Ensembl gene ids as the main identifier. P-value was assessed by a

corrected hyper geometric test (DAVID’s EASE score) and

correction for multiple hypothesis testing was done via the

Benjamini-Hochberg procedure.

Motif search
De novo motif search was performed using MEME (version 4.3.0)

[25]. MEME parameters were ‘‘–dna –mod zoops –minw 10

–maxw25 –maxsize 100000 –revcomp –p 7’’ for Fig. 2C (FDR = 0

motif) and ‘‘–dna –mod zoops –minw 17 –maxw17 –maxsize

100000 –revcomp –p 7’’ for subsequent motif searches.

Supporting Information

Figure S1 Detection of PPARb/d, H3K4me3 and RNA
polymerase II enrichment peaks at the SLC25A20 locus
by ChIP-Seq.

(TIFF)

Figure S2 Detection of PPARb/d, H3K4me3 and RNA
polymerase II enrichment peaks at the CDKN2C locus by
ChIP-Seq.

(TIFF)

Figure S3 PPARD siRNA-mediated inhibition of ligand-
induced transcriptional activation of PPARb/d. WPMY-1
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cells were transfected with a PPRE-luciferase construct in the

presence of control or PPARD siRNA and treated with GW501516

for 24 hrs. The knockdown effect was abolished by cotransfection

of a PPARD expression vector.

(TIFF)

Figure S4 Efficiency and specificity of the siRNA-
mediated knockdown of PPARA, PPARG and PPARD.
WPMY1-1 cells were transfected with the indicated siRNA pools

or control siRNA (si-con) and relative expression levels of PPARA,

PPARG and PPARD were measured by RT-qPCR.

(TIFF)

Table S1 Primers used for RT-qPCR analyses.
(PDF)

Dataset S1 ChIP-Seq data set of all PPARb/d enrich-
ment peaks (complete list; n = 4,542).
(XLS)

Dataset S2 Comparison of PPARb/d enrichment peaks
with SNP data.
(XLS)

Dataset S3 High confidence PPARb/d peak set (n = 443),
consisting of peaks with a MACS-assigned FDR of less
than 5% and fewer than 100 tags in the IgG track.
(XLS)

Dataset S4 ChIP-Seq data set of histone H3 lysine-4
trimethylation (H3K4me3) enrichment peaks (complete
list; n = 24,843).
(XLS)

Dataset S5 ChIP-Seq data set of RNA polymerase II
enrichment in genes (complete list).
(XLS)

Dataset S6 Microarray analysis of WPMY-1 cells treat-
ed with PPARD or control or siRNA (complete list).

(XLS)

Dataset S7 Microarray analysis of WPMY-1 cells ex-
posed to GW501516 or solvent (complete list).

(XLS)

Dataset S8 ‘‘Target gene set’’ defined by correlating
ChIP-Seq and microarray data (n = 112).

(XLS)

Dataset S9 Panther Biological Pathway term analysis of
the target gene set.

(XLS)

Dataset S10 Data set of validated target genes (n = 53),
including primers used for RT-qPCR analyses.

(XLS)

Dataset S11 Alignment of Agilent microarray probes to
both the reference genome (GRch37) and in silico cDNA
created from Ensembl release 58.

(XLS)
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