# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 6-Methoxy-N-methyl-3-nitro-4-nitromethyl-4H-chromen-2-amine

## J. Muthukumaran,<sup>a</sup> A. Parthiban,<sup>b</sup> P. Manivel,<sup>a</sup> H. Surva Prakash Rao<sup>b</sup><sup>‡</sup> and R. Krishna<sup>a</sup>\*

<sup>a</sup>Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605 014, India, and <sup>b</sup>Department of Chemistry, Pondicherry University, Puducherry 605 014, India Correspondence e-mail: krishstrucbio@gmail.com

Received 11 February 2011; accepted 25 April 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.116; data-to-parameter ratio = 11.8.

In the title compound, C<sub>12</sub>H<sub>13</sub>N<sub>3</sub>O<sub>6</sub>, the dihydropyran ring adopts a near screw-boat conformation. The dihedral angle between the mean planes of the benzene and dihydropyran rings is  $6.35 (5)^\circ$ . An intramolecular N-H···O hydrogen bond generates an S(6) motif, which stabilizes the molecular conformation. In the crystal, weak intermolecular  $C-H\cdots O$ , N-H···O and C-H··· $\pi$  hydrogen bonds contribute to the stabilization of the packing.

#### **Related literature**

For related structures, see: Gayathri et al. (2006); Bhaskaran et al. (2006). For the biological importance of 4H-chromene derivatives, see: Cai (2007, 2008); Cai et al. (2006); Gabor et al. (1988); Brooks (1998); Valenti et al. (1993); Hyana & Saimoto (1987); Tang et al. (2007); Wang et al. (2000). For ring puckering analysis, see: Cremer & Pople (1975). For C-H··· $\pi$ interactions, see: Desiraju & Steiner (1999).



#### **Experimental**

#### Crystal data

C12H13N3O6  $M_r = 295.25$ Monoclinic,  $P2_1/n$ a = 6.8354 (2) Å b = 9.4363 (2) Å c = 19.9332 (4) Å  $\beta = 90.777 (2)^{\circ}$ 

#### Data collection

Oxford Diffraction Xcalibur Eos diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)  $T_{\min} = 0.966, T_{\max} = 1.000$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.041$ | 192 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.116$               | H-atom parameters constrained                              |
| S = 1.01                        | $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ \AA}^{-3}$  |
| 2256 reflections                | $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1-C6 benzene ring.

| $D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$ N1-H1O2         0.86         2.01         2.6169 (17)         127           N1-H1O3 <sup>i</sup> 0.86         2.26         2.9808 (18)         142           C11         U14         OO <sup>ii</sup> 0.97         2.426         155 |                                                                                                                              |                                      |                                      |                                                                     |                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------------------------------|--------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                           | $D - H \cdots A$                                                                                                             | D-H                                  | $H \cdot \cdot \cdot A$              | $D \cdots A$                                                        | $D - \mathbf{H} \cdot \cdot \cdot A$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                           | $N1 - H1 \cdots O2 N1 - H1 \cdots O3^{i} C11 - H11 A \cdots O2^{ii} C10 - H10 A \cdots Cg^{iii} C10 - H10 C \cdots Cg^{iv} $ | 0.86<br>0.86<br>0.97<br>0.96<br>0.96 | 2.01<br>2.26<br>2.49<br>2.61<br>2.86 | 2.6169 (17)<br>2.9808 (18)<br>3.4366 (19)<br>3.548 (2)<br>3.706 (2) | 127<br>142<br>165<br>164<br>148      |

V = 1285.59 (5) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.4 \times 0.4 \times 0.2 \text{ mm}$ 

13856 measured reflections

2256 independent reflections

1804 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.12 \text{ mm}^-$ 

T = 293 K

 $R_{\rm int} = 0.040$ 

Z = 4

Symmetry codes: (i)  $-x + \frac{1}{2}$ ,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (ii)  $-x + \frac{1}{2}$ ,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (iii) -x, -y + 1, -z; (iv) -x + 1, -y + 1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

RK, JM, and PM thank the Centre for Bioinformatics (funded by the Department of Biotechnology and the Department of Information Technology, New Delhi, India) and Pondicherry University for providing computational facilities. AP thanks Pondicherry University for a fellowship and PM thanks the University Grants Commission (UGC) for a fellowship. HSP thanks the UGC for the SAP and the Department of Science and Technology (DST) for the FIST.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HQ2002).

<sup>‡</sup> Additional correspondence author, e-mail: hspr@yahoo.com.

#### References

- Bhaskaran, S., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o188–o190.
- Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.
- Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79-101.
- Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.
- Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627-2644.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–40. New York: Oxford University Press. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.

- Gayathri, D., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, 01961–01963.
- Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.
- Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, 01437–01438.
- Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.
- Wang, J. L., Liu, D., Zhang, Z. J., Shan, S., Han, X., Srinivasula, S. M., Croce, C. M., Alnemri, E. S. & Huang, Z. (2000). *Proc. Natl Acad. Sci. USA*, 97, 7124–9.

supplementary materials

Acta Cryst. (2011). E67, o1276-o1277 [doi:10.1107/S1600536811015595]

## 6-Methoxy-N-methyl-3-nitro-4-nitromethyl-4H-chromen-2-amine

#### J. Muthukumaran, A. Parthiban, P. Manivel, H. S. P. Rao and R. Krishna

#### Comment

4*H*-Chromene derivatives exhibit anti-viral, anti-fungal, anti-inflammatory, anti-diabetic, cardionthonic, anti-anaphylactic and anti-cancer activity (Cai, 2008; Cai, 2007; Cai *et al.*, 2006; Gabor *et al.*, 1988; Brooks, 1998; Valenti *et al.*, 1993; Hyana & Saimoto, 1987; Tang *et al.*, 2007). Functionally substituted 4*H*-Chromene derivatives are a new class of compound that binds to Bcl-2 protein and induces apoptosis or programmed cell death in cancer cells (Wang *et al.*, 2000). In order to examine the activity relationship between their molecular structure and biology, a single-crystal of the title compound was prepared for X-ray diffraction studies.

In the title compound (Fig. 1), the methoxy substituent at the C4 atom forms the torsion angle of -180 (14) ° [(-) antiperiplanar conformation] with the atom set O6/C4/C3/C2. From the puckering analysis (Cremer & Pople, 1975), the dihydropyran ring (O1/C1/C6/C7/C8/C9) is very similar to the screw-boat conformation (S form) with puckering parameters of Q = 0.1798 (15) Å,  $\theta = 100.8$  (5)° and  $\Phi = 20.1$  (5)°. Three intramolecular interactions N1—H1···O2 (symmetry code: x, y, z), N1—H1···N2 and C11—H11A···O3 are observed to contribute to the stability of the title compound, in which an N1—H1···O2 interaction generates a characteristic intramolecular *S* (6) motif with an N···O distance of 2.617 (17) Å (Fig. 2). The stabilization of crystal packing (Fig. 3) is influenced by intermolecular hydrogen bonding such as N1—H1···O3 (symmetry code: -x + 1/2, y - 1/2, -z + 1/2) and C11—H11A···O2 (symmetry code: -x + 1/2, y + 1/2, -z + 1/2). The C—H···pi interactions (Fig. 4) observed between C10—H10A···Cg (symmetry code: -x, 1 - y, -z, Cg is the centroid of the benzene ring C1—C6, C···Cg distance: 3.548 (2) Å, H-Perp: -2.56 Å) and C10—H10C···Cg (symmetry code: 1 - x, 1 - y, -z, C···Cg distance: 3.706 (2) Å, H-Perp: 2.65 Å) also contribute to the crystal packing. The bond distances of the C—H···π interactions agree with those described by Desiraju & Steiner (1999). An intermolecular N1—H1···O3 interaction generates a *C* (6) motif with an N···O distance of 2.981 (18) Å (Fig. 5).

#### Experimental

(*E*)-4-Methoxy-2-(2-nitrovinyl)phenol (200 mg, 1.024 mmol) was taken in a 25 ml round bottom flask in methanol (5 ml). To this solution, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (15 mg, 0.102 mmol) was added and stirred thoroughly for 10 minutes at room temperature. To this stirred solution, ((*E*) *N*-methyl-1-(methylthio)-2-nitroethenamine) (NMSM) was added and stirred for 8 h for completion (TLC, hexane:ethyl acetate, 3:2,  $R_f$  of I = 1/2). The reaction mixture was then kept in a refrigerator for 3 h to afford racemic mixture of the product (I)as a white precipitate, which was filtered. Good crystals were obtained by recrystallization with a solution of dichloromethane:hexane (9:3 v/v).

#### Refinement

All hydrogen atoms were placed in calculated positions, with N—H = 0.86 and C—H = 0.97 and included in the final cycles of refinement using a riding model with  $U_{iso}(H) = 1.2 U_{eq}(C)$ .

TITL

CELL 0.71073 6.8354 9.4363 19.9332 90.000 90.777 90.000 ZERR 4.00 0.0002 0.0002 0.0004 0.000 0.002 0.000 LATT 1 SYMM 1/2 - X, 1/2 + Y, 1/2 - Z SFAC C H N O UNIT 48 52 12 24 MERG 2 *OMIT* -2 50 ACTA CONF FMAP 2 PLAN 20 BOND \$H EQIV \$1 1/2-X, -1/2+Y, 1/2-Z EQIV \$2 1/2-X, 1/2+Y, 1/2-Z HTAB N1 O3\_\$1 HTAB C11 O2\_\$2 L.S. 4

WGHT 0.087000

FVAR 5.43518

## Figures



Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.



Fig. 2. A view of the intramolecular S(6) motif formed by N—H…O interaction in Compound (I). The motif forming atoms are shown in ball and stick model and the hydrogen bond is shown as a blue dashed line.



Fig. 3. The crystal packing of Compound (I) viewed down the *XO*-axis, showing intermolecular hydrogen bonding interactions as dashed lines.



Fig. 4. A view showing the weak C—H $\cdots$ pi intermolecular interactions in Compound (I). Cg is a centroid of the C1—C6 ring in the 4H-Chromene moiety.



Fig. 5. A view of the intermolecular C (6) motif formed by the N—H…O interaction in Compound (I). The motif forming atoms are shown in ball and stick model and the hydrogen bond is shown as a blue dashed line.

#### 6-Methoxy-N-methyl-3-nitro-4-nitromethyl-4H-chromen-2-amine

| $C_{12}H_{13}N_3O_6$           | F(000) = 616                                          |
|--------------------------------|-------------------------------------------------------|
| $M_r = 295.25$                 | $D_{\rm x} = 1.525 {\rm ~Mg} {\rm m}^{-3}$            |
| Monoclinic, $P2_1/n$           | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn            | Cell parameters from 7594 reflections                 |
| a = 6.8354 (2) Å               | $\theta = 3.0-29.3^{\circ}$                           |
| b = 9.4363 (2)  Å              | $\mu = 0.12 \text{ mm}^{-1}$                          |
| c = 19.9332 (4) Å              | T = 293  K                                            |
| $\beta = 90.777 \ (2)^{\circ}$ | Block, colorless                                      |
| $V = 1285.59 (5) \text{ Å}^3$  | $0.4\times0.4\times0.2~mm$                            |
| Z = 4                          |                                                       |
|                                |                                                       |
|                                |                                                       |

#### Data collection

| Oxford Diffraction Xcalibur Eos<br>diffractometer | 2256 independent reflections           |
|---------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube          | 1804 reflections with $I > 2\sigma(I)$ |

# supplementary materials

| graphite                                                                               | $R_{\text{int}} = 0.040$                                                  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Detector resolution: 15.9821 pixels mm <sup>-1</sup>                                   | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$ |
| ω scans                                                                                | $h = -8 \rightarrow 8$                                                    |
| Absorption correction: multi-scan<br>( <i>CrysAlis PRO</i> ; Oxford Diffraction, 2009) | $k = -11 \rightarrow 11$                                                  |
| $T_{\min} = 0.966, T_{\max} = 1.000$                                                   | <i>l</i> = −23→23                                                         |
| 13856 measured reflections                                                             |                                                                           |
|                                                                                        |                                                                           |
|                                                                                        |                                                                           |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods           |
|---------------------------------|--------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                     |
| $R[F^2 > 2\sigma(F^2)] = 0.041$ | Hydrogen site location: inferred from neighbouring sites                 |
| $wR(F^2) = 0.116$               | H-atom parameters constrained                                            |
| <i>S</i> = 1.01                 | $w = 1/[\sigma^2(F_o^2) + (0.087P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 2256 reflections                | $(\Delta/\sigma)_{\text{max}} = 0.015$                                   |
| 192 parameters                  | $\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$                      |
| 0 restraints                    | $\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$                   |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2^2$ . The threshold expression of  $F^2^2 > \sigma(F^2^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|    | x          | у            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|----|------------|--------------|--------------|---------------------------|
| C1 | 0.2620 (2) | 0.61723 (15) | -0.00254 (7) | 0.0299 (4)                |
| C2 | 0.2708 (2) | 0.58244 (17) | -0.06949 (8) | 0.0337 (4)                |
| H2 | 0.2594     | 0.4884       | -0.0830      | 0.040*                    |
| C3 | 0.2967 (2) | 0.68797 (18) | -0.11657 (8) | 0.0356 (4)                |
| Н3 | 0.3019     | 0.6656       | -0.1620      | 0.043*                    |
| C4 | 0.3149 (2) | 0.82767 (17) | -0.09555 (8) | 0.0335 (4)                |
| C5 | 0.3093 (2) | 0.85951 (17) | -0.02791 (7) | 0.0329 (4)                |
| Н5 | 0.3239     | 0.9532       | -0.0142      | 0.039*                    |
| C6 | 0.2826 (2) | 0.75487 (16) | 0.01994 (7)  | 0.0297 (4)                |
| C7 | 0.2766 (2) | 0.78954 (16) | 0.09386 (7)  | 0.0323 (4)                |
| H7 | 0.3939     | 0.8453       | 0.1045       | 0.039*                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C8   | 0.2891 (2)   | 0.65553 (16) | 0.13472 (7)  | 0.0310 (4) |
|------|--------------|--------------|--------------|------------|
| C9   | 0.2506 (2)   | 0.52117 (16) | 0.10765 (7)  | 0.0289 (4) |
| C10  | 0.2007 (2)   | 0.26444 (16) | 0.10926 (9)  | 0.0379 (4) |
| H10A | 0.0798       | 0.2655       | 0.0842       | 0.057*     |
| H10B | 0.1950       | 0.1928       | 0.1434       | 0.057*     |
| H10C | 0.3067       | 0.2442       | 0.0796       | 0.057*     |
| C11  | 0.0974 (3)   | 0.88254 (16) | 0.11164 (8)  | 0.0379 (4) |
| H11A | 0.1119       | 0.9171       | 0.1573       | 0.046*     |
| H11B | 0.0916       | 0.9638       | 0.0819       | 0.046*     |
| C12  | 0.3430 (3)   | 0.9162 (2)   | -0.20753 (8) | 0.0543 (5) |
| H12A | 0.4498       | 0.8543       | -0.2180      | 0.081*     |
| H12B | 0.3585       | 1.0045       | -0.2308      | 0.081*     |
| H12C | 0.2219       | 0.8728       | -0.2213      | 0.081*     |
| N1   | 0.2318 (2)   | 0.40166 (13) | 0.14032 (6)  | 0.0336 (3) |
| H1   | 0.2383       | 0.4048       | 0.1834       | 0.040*     |
| N2   | 0.3329 (2)   | 0.67051 (14) | 0.20171 (6)  | 0.0356 (3) |
| N3   | -0.0864 (2)  | 0.80035 (15) | 0.10518 (7)  | 0.0411 (4) |
| 01   | 0.22704 (16) | 0.50418 (11) | 0.04132 (5)  | 0.0358 (3) |
| O2   | 0.3398 (2)   | 0.56472 (13) | 0.24035 (5)  | 0.0496 (4) |
| O3   | 0.3669 (2)   | 0.79190 (12) | 0.22406 (6)  | 0.0484 (4) |
| O4   | -0.1438 (2)  | 0.73633 (16) | 0.15375 (8)  | 0.0703 (5) |
| O5   | -0.1686 (2)  | 0.79552 (16) | 0.05057 (7)  | 0.0641 (4) |
| O6   | 0.34105 (19) | 0.94142 (13) | -0.13716 (6) | 0.0486 (4) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|--------------|-------------|-------------|
| C1  | 0.0314 (8)  | 0.0310 (8)  | 0.0272 (8)  | -0.0014 (6)  | 0.0001 (6)  | 0.0012 (7)  |
| C2  | 0.0359 (9)  | 0.0344 (9)  | 0.0307 (9)  | -0.0006 (7)  | 0.0012 (7)  | -0.0079 (7) |
| C3  | 0.0352 (9)  | 0.0487 (10) | 0.0230 (8)  | -0.0021 (7)  | 0.0032 (7)  | -0.0045 (7) |
| C4  | 0.0309 (8)  | 0.0418 (9)  | 0.0280 (8)  | -0.0032 (7)  | 0.0031 (6)  | 0.0049 (7)  |
| C5  | 0.0366 (9)  | 0.0321 (8)  | 0.0299 (8)  | -0.0033 (7)  | 0.0004 (7)  | 0.0001 (7)  |
| C6  | 0.0321 (8)  | 0.0318 (8)  | 0.0253 (8)  | -0.0015 (6)  | 0.0000 (6)  | -0.0011 (6) |
| C7  | 0.0439 (9)  | 0.0280 (8)  | 0.0250 (8)  | -0.0055 (7)  | -0.0029 (7) | -0.0021 (6) |
| C8  | 0.0381 (9)  | 0.0309 (8)  | 0.0238 (8)  | -0.0002 (7)  | -0.0020 (6) | -0.0013 (6) |
| C9  | 0.0297 (8)  | 0.0318 (8)  | 0.0253 (8)  | 0.0030 (6)   | -0.0003 (6) | -0.0002 (6) |
| C10 | 0.0427 (10) | 0.0285 (9)  | 0.0424 (10) | -0.0002 (7)  | -0.0050 (8) | -0.0008 (7) |
| C11 | 0.0610(11)  | 0.0249 (8)  | 0.0278 (9)  | 0.0013 (7)   | -0.0020 (7) | -0.0042 (7) |
| C12 | 0.0661 (13) | 0.0703 (14) | 0.0267 (9)  | -0.0128 (10) | 0.0045 (8)  | 0.0082 (9)  |
| N1  | 0.0443 (8)  | 0.0296 (7)  | 0.0270 (7)  | 0.0007 (6)   | -0.0005 (6) | -0.0001 (6) |
| N2  | 0.0455 (8)  | 0.0358 (8)  | 0.0254 (7)  | -0.0029 (6)  | -0.0042 (6) | -0.0010 (6) |
| N3  | 0.0534 (9)  | 0.0347 (8)  | 0.0353 (9)  | 0.0109 (6)   | 0.0022 (7)  | -0.0042 (7) |
| 01  | 0.0538 (7)  | 0.0289 (6)  | 0.0244 (6)  | -0.0057 (5)  | -0.0031 (5) | -0.0018 (4) |
| O2  | 0.0772 (9)  | 0.0417 (7)  | 0.0297 (7)  | -0.0045 (6)  | -0.0105 (6) | 0.0074 (5)  |
| O3  | 0.0775 (9)  | 0.0378 (7)  | 0.0297 (7)  | -0.0097 (6)  | -0.0054 (6) | -0.0087 (5) |
| O4  | 0.0762 (10) | 0.0754 (10) | 0.0597 (9)  | -0.0071 (8)  | 0.0115 (8)  | 0.0222 (8)  |
| O5  | 0.0679 (10) | 0.0781 (10) | 0.0460 (8)  | 0.0039 (7)   | -0.0138 (7) | -0.0154 (7) |
| O6  | 0.0696 (9)  | 0.0479 (7)  | 0.0285 (6)  | -0.0079 (6)  | 0.0065 (6)  | 0.0080 (5)  |

# Geometric parameters (Å, °)

| C1—C2     | 1.376 (2)   | С9—О1         | 1.3394 (17) |
|-----------|-------------|---------------|-------------|
| C1—C6     | 1.381 (2)   | C10—N1        | 1.4496 (19) |
| C1—O1     | 1.4019 (17) | C10—H10A      | 0.9600      |
| C2—C3     | 1.381 (2)   | C10—H10B      | 0.9600      |
| С2—Н2     | 0.9300      | C10—H10C      | 0.9600      |
| C3—C4     | 1.388 (2)   | C11—N3        | 1.480(2)    |
| С3—Н3     | 0.9300      | C11—H11A      | 0.9700      |
| C4—O6     | 1.3696 (19) | C11—H11B      | 0.9700      |
| C4—C5     | 1.382 (2)   | C12—O6        | 1.423 (2)   |
| C5—C6     | 1.387 (2)   | C12—H12A      | 0.9600      |
| С5—Н5     | 0.9300      | C12—H12B      | 0.9600      |
| C6—C7     | 1.511 (2)   | C12—H12C      | 0.9600      |
| С7—С8     | 1.506 (2)   | N1—H1         | 0.8600      |
| C7—C11    | 1.551 (2)   | N2—O3         | 1.2497 (17) |
| С7—Н7     | 0.9800      | N2—O2         | 1.2613 (16) |
| C8—N2     | 1.3719 (19) | N3—O4         | 1.2111 (18) |
| C8—C9     | 1.401 (2)   | N3—O5         | 1.2191 (19) |
| C9—N1     | 1.3095 (19) |               |             |
| C2—C1—C6  | 122.24 (14) | N1-C10-H10A   | 109.5       |
| C2-C1-O1  | 115.67 (13) | N1-C10-H10B   | 109.5       |
| C6—C1—O1  | 122.07 (13) | H10A—C10—H10B | 109.5       |
| C1—C2—C3  | 119.63 (14) | N1-C10-H10C   | 109.5       |
| C1—C2—H2  | 120.2       | H10A—C10—H10C | 109.5       |
| С3—С2—Н2  | 120.2       | H10B—C10—H10C | 109.5       |
| C2—C3—C4  | 119.43 (14) | N3—C11—C7     | 110.81 (12) |
| С2—С3—Н3  | 120.3       | N3—C11—H11A   | 109.5       |
| С4—С3—Н3  | 120.3       | C7—C11—H11A   | 109.5       |
| O6—C4—C5  | 115.20 (14) | N3—C11—H11B   | 109.5       |
| O6—C4—C3  | 124.98 (14) | C7—C11—H11B   | 109.5       |
| C5—C4—C3  | 119.81 (14) | H11A—C11—H11B | 108.1       |
| C6—C5—C4  | 121.45 (15) | O6-C12-H12A   | 109.5       |
| С6—С5—Н5  | 119.3       | O6—C12—H12B   | 109.5       |
| С4—С5—Н5  | 119.3       | H12A—C12—H12B | 109.5       |
| C1—C6—C5  | 117.41 (14) | O6-C12-H12C   | 109.5       |
| C1—C6—C7  | 121.09 (13) | H12A—C12—H12C | 109.5       |
| C5—C6—C7  | 121.49 (13) | H12B—C12—H12C | 109.5       |
| C8—C7—C6  | 110.10 (12) | C9—N1—C10     | 124.87 (13) |
| C8—C7—C11 | 112.99 (13) | C9—N1—H1      | 117.6       |
| C6—C7—C11 | 112.17 (12) | C10—N1—H1     | 117.6       |
| С8—С7—Н7  | 107.1       | O3—N2—O2      | 120.17 (13) |
| С6—С7—Н7  | 107.1       | O3—N2—C8      | 118.59 (13) |
| С11—С7—Н7 | 107.1       | O2—N2—C8      | 121.24 (13) |
| N2—C8—C9  | 120.36 (13) | O4—N3—O5      | 123.00 (17) |
| N2—C8—C7  | 116.74 (13) | O4—N3—C11     | 118.40 (15) |
| C9—C8—C7  | 122.86 (13) | O5—N3—C11     | 118.53 (15) |
| N1—C9—O1  | 112.12 (13) | C9—O1—C1      | 120.35 (12) |
|           |             |               |             |

# supplementary materials

| N1—C9—C8     | 127.37 (14)  | C4—O6—C12    | 117.96 (14)  |
|--------------|--------------|--------------|--------------|
| 01—C9—C8     | 120.52 (13)  |              |              |
| C6—C1—C2—C3  | -1.5 (2)     | N2-C8-C9-N1  | 7.3 (2)      |
| O1—C1—C2—C3  | 177.37 (13)  | C7—C8—C9—N1  | -170.06 (15) |
| C1—C2—C3—C4  | 0.5 (2)      | N2-C8-C9-O1  | -173.30 (13) |
| C2—C3—C4—O6  | -179.99 (14) | C7—C8—C9—O1  | 9.4 (2)      |
| C2—C3—C4—C5  | 0.8 (2)      | C8—C7—C11—N3 | -55.31 (17)  |
| O6—C4—C5—C6  | 179.61 (14)  | C6—C7—C11—N3 | 69.86 (16)   |
| C3—C4—C5—C6  | -1.1 (2)     | O1—C9—N1—C10 | 3.5 (2)      |
| C2—C1—C6—C5  | 1.2 (2)      | C8—C9—N1—C10 | -177.05 (15) |
| O1—C1—C6—C5  | -177.60 (13) | C9—C8—N2—O3  | 179.81 (14)  |
| C2—C1—C6—C7  | -178.67 (14) | C7—C8—N2—O3  | -2.7 (2)     |
| O1—C1—C6—C7  | 2.5 (2)      | C9—C8—N2—O2  | 0.0 (2)      |
| C4—C5—C6—C1  | 0.1 (2)      | C7—C8—N2—O2  | 177.50 (14)  |
| C4—C5—C6—C7  | 179.97 (14)  | C7—C11—N3—O4 | 89.78 (17)   |
| C1—C6—C7—C8  | 11.8 (2)     | C7—C11—N3—O5 | -87.28 (17)  |
| C5—C6—C7—C8  | -168.03 (14) | N1-C9-O1-C1  | -173.34 (12) |
| C1—C6—C7—C11 | -114.91 (16) | C8—C9—O1—C1  | 7.2 (2)      |
| C5—C6—C7—C11 | 65.23 (18)   | C2-C1-O1-C9  | 167.88 (13)  |
| C6—C7—C8—N2  | 164.64 (13)  | C6—C1—O1—C9  | -13.3 (2)    |
| C11—C7—C8—N2 | -69.08 (17)  | C5-C4-06-C12 | -178.38 (14) |
| C6—C7—C8—C9  | -17.9 (2)    | C3—C4—O6—C12 | 2.3 (2)      |
| C11—C7—C8—C9 | 108.34 (16)  |              |              |

## *Hydrogen-bond geometry (Å, °)*

| Cg is the centroid of the C1–C6 benzene ring.                                                                                                       |             |       |              |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|--------------|------------|
| D—H···A                                                                                                                                             | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
| N1—H1…O2                                                                                                                                            | 0.86        | 2.01  | 2.6169 (17)  | 127        |
| N1—H1···O3 <sup>i</sup>                                                                                                                             | 0.86        | 2.26  | 2.9808 (18)  | 142        |
| C11—H11A····O2 <sup>ii</sup>                                                                                                                        | 0.97        | 2.49  | 3.4366 (19)  | 165        |
| C10—H10A…Cg <sup>iii</sup>                                                                                                                          | 0.96        | 2.61  | 3.548 (2)    | 164        |
| C10—H10C···Cg <sup>iv</sup>                                                                                                                         | 0.96        | 2.86  | 3.706 (2)    | 148        |
| Symmetry codes: (i) $-x+1/2$ , $y-1/2$ , $-z+1/2$ ; (ii) $-x+1/2$ , $y+1/2$ , $-z+1/2$ ; (iii) $-x$ , $-y+1$ , $-z$ ; (iv) $-x+1$ , $-y+1$ , $-z$ . |             |       |              |            |







Fig. 2

Fig. 3







Fig. 5