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Abstract: As a marine ichthyotoxic dinoflagellate, Margalefidinium polykrikoides, previously named
Cochlodinium polykrikoides, have caused mass mortalities of fish worldwide during blooms. Rapid
detection of target species is a prerequisite for the timely monitoring and early warning of harmful
algal blooms (HABs). However, it is difficult to achieve rapid identification with traditional methods.
The technology of using quantitative real-time PCR (qPCR) to detect and quantify microalgae is
relatively mature. Based on the accuracy, rapidity, and sensitivity of qPCR technology, it can be used
in the monitoring and development of early warning systems for HABs. From 2017 to 2020, samples
were collected from 15 locations off the Chinese coast or from local sea areas. Based on the qPCR
detection and analysis, the target species, M. polykrikoides (East Asian ribotype, EAr), was found in
samples from Tianjin, Yangtze River estuary, and offshore Fujian (East China Sea). This is the first
time that M. polykrikoides (EAr) was detected in the coastal waters of Tianjin. The results reveal a
distributive pattern of M. polykrikoides (EAr) along Chinese coastal waters. It is helpful to predict the
future diffusion trend of M. polykrikoides (EAr) in the China Sea and provides a practical case for the
future construction of monitoring and warning systems for M. polykrikoides and HABs.

Keywords: Margalefidinium polykrikoides (East Asian ribotype); quantitative real-time PCR; field
application; China coastal waters

Key Contribution: Research results reveal a distributive pattern of M. polykrikoides (EAr) in Chinese
coastal waters. This research is helpful for predicting the future diffusion trend of M. polykrikoides
(EAr) in the China Sea.

1. Introduction

Margalefidinium polykrikoides [1], formerly known as Cochlodinium polykrikoides [2], is an
ichthyotoxic unarmored dinoflagellate that has caused mass mortalities of fish worldwide
during blooms, with catastrophic impacts to aquaculture and local economies [1,3–7]. M.
polykrikoides blooms are usually characterized by large spatial scale (10 to 100 km) and
high-density aggregation (>106 cells·L−1) [8]. These blooms are often accompanied by the
production of strongly ichthyotoxic compounds, resulting in the death of a large number
of marine organisms [9]. The ichthyotoxicity produced by M. polykrikoides can cause high
mortality to marine organisms in a short period of time [9]. M. polykrikoides has been
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reported in tropical, subtropical, and temperate waters [10], such as the Gulf of California,
United States of America [11], Korea [12], Japan [13], Middle East [5,14], Canada [7],
and China [15]. Over the past three decades, harmful algal blooms (HABs) caused by
M. polykrikoides have been spreading in Asian, Europe, and North American waters. In
Korea alone, fishery losses associated with the blooms exceed $100M annually [16,17].
Compared with other countries, such as Japan and Korea, there are few reports regarding
M. polykrikoides in Chinese coastal waters, and there is still a lack of reports on the detailed
distribution of M. polykrikoides in the China Sea.

The rapid identification of the target species is imperative for timely monitoring and
early warning of HABs [18–20]. Using conventional light microscopy (LM) and electron
microscopy (EM) [21] to observe and identify microalgae is not only time-consuming
and labor-intensive, but also requires high levels of taxonomic skill. Although these
classical methods are still used today, it is difficult to achieve rapid detection and timely
warning. In fact, for M. polykrikoides sharing similar morphological characteristics with
other Margalefidinium species, it is difficult to distinguish and identify them from field
samples [22–24]. Furthermore, after fixation with Lugol’s solution, glutaraldehyde, or other
fixatives, some dinoflagellates may deform and even break. As unarmored dinoflagellate,
the preservation time of M. polykrikoides is short in the fixative. This is not conducive to
qualitative and quantitative analysis. However, researchers have never stopped exploring
the development of rapid methods for microalgae detection. Using molecular methods to
detect some HABs causative species can not only reduce the detection limit and improve
the sensitivity and accuracy but it can also reduce the cost and processing time of each
sample. Some molecular techniques, such as microarrays with molecular probes, restriction
fragment length polymorphism (RFLP), high throughput sequencing, and fluorescent in
situ hybridization (FISH-probes), have been developed for the detection and quantification
of microalgae in the last three decades [25,26]. However, compared with the above detection
methods, quantitative real-time PCR (qPCR) has higher sensitivity, specificity, and a more
accurate quantitative effect [27,28].

In the past 20 years, qPCR has been used to detect and quantify microalgae. Park et al.
resolved the intra-specific succession within M. polykrikoides populations in southern Ko-
rean coastal waters via the use of qPCR assays [10]. Park et al. developed a real-time
PCR technique for detecting viable M. polykrikoides cysts in sediment [29]. Based on previ-
ous studies, Eckford-Soper and Daugbjerg developed a multiplex real-time qPCR assay
that can simultaneously detect four marine toxic bloom-forming microalgal species [30].
Many scholars have conducted the qPCR quantitative analysis on major HABs causative
dinoflagellates, such as M. polykrikoides [10], Heterosigma akashiwo [31], Karenia mikimotoi [32],
Prorocentrum donghaiense [33], and Alexandrium [34]. Based on previous studies, effective
primers have been developed and can be used to achieve the real-time quantitative amplifi-
cation of target genes in S. Korea. In this study, qPCR was used to study the distribution of
M. polykrikoides (East Asian ribotype, EAr) in the coastal areas of China.

2. Results
2.1. LM and Scanning Electron Microscopy (SEM)

M. polykrikoides (EAr), used to take LM micrographs, was obtained from the Depart-
ment of Biotechnology at Sangmyung University (Seoul, Korea). M. polykrikoides used to
take SEM micrographs was obtained from the East China Sea (ECS). The size of a single-cell
of M. polykrikoides is 25–36 µm long and 16–25 µm wide (Figure 1). Under the LM, the cells
form an eight-celled chain (Figure 1A). The single-cell of M. polykrikoides is conical at the tip
and hemispherical at the bottom (Figure 1B–D).
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The R2 values of all the standard curves were over 0.99 (Figure 3). 

Figure 1. LM (A,B) and SEM (C–E) micrographs of M. polykrikoides.

2.2. Melting Curve and Standard Curve

Each qPCR product had one informative melting curve. Analyzing the melting curve
is useful for the detection of false positives due to primer-dimers or unexpected products.
In this study, the melting temperatures were 88 ◦C and the melting curve showed narrow
peaks, indicating that only the target sequence was successfully amplified (Figure 2).

The number of cells corresponding to serial 10 fold dilutions of the DNA extracts
was 7.09 × 10−3, 7.09 × 10−2, 7.09 × 10−1, 7.09, and 70.9 cells·µL−1 (cell concentration
dissolved in TEbuffer), respectively. There was a strong linear relationship between the CT
value and the log10 of the cells number. The regression equation was:

y = −3.2417x + 25.52 (R2 = 0.998) (1)

The R2 values of all the standard curves were over 0.99 (Figure 3).

2.3. Application of qPCR to Field Samples

The applicability of the developed qPCR was tested on the field samples. Three repeti-
tions were set for each sample. M. polykrikoides (EAr) was detected at four sampling sites,
including Tianjin (S1), the Yangtze River estuary (S6, September), the Yangtze River estuary
(S7, July), and Fujian coastal (S11, May) (Table 1). The site S11 showed the lowest abundance
(1.5×103 cells·L−1), while S7 displayed the highest concentration with 1.0 × 105 cells·L−1.
Overall, 3.6× 103 and 1.9× 104 cells·L−1 were detected at S1 and S6, respectively (Figure 4).
The water temperatures at the stations where M. polykrikoides (EAr) was detected were
27.5 ◦C (S1), 25.4 ◦C (S6), 26.2 ◦C (S7), and 24.7 ◦C (S11), respectively. The average tempera-
ture was 25.9 ± 1.2 ◦C. The study results showed that M. polykrikoides (EAr) was detected
in the Bohai Sea and the East China Sea, while no M. polykrikoides (EAr) was detected
in the Yellow Sea and the South China Sea. The sampling time of the stations where M.
polykrikoides (EAr) was detected was concentrated from May to September. Station S11,
located in Fujian coastal, was sampled in May. Station S7, located in the Yangtze River
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estuary, was sampled in July. Station S1, located in Tianjin, was sampled in August. As
time went on, M. polykrikoides (EAr) was detected from south to north.
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Figure 2. Melting curves obtained using the qPCR assay with DNA extracts from M. polykrikoides
(EAr). (A1,A2): Standard sample and field samples. (B1,B2): Standard sample. (C1,C2): Field
samples from Tianjin (S1). (D1,D2): Field samples from the Yangtze River estuary (S6, September).
(E1,E2): Field samples from the Yangtze River estuary (S7, July). (F1,F2): Field samples from Fujian
coastal (S11, May).
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Figure 4. Distribution of M. polykrikoides (EAr) in coastal China based on qPCR assay. The Yellow
triangle indicates the absence of M. polykrikoides (EAr), the red circles indicate the presence of M.
polykrikoides (EAr), and the size of the circles indicates the concentration. Name of each station:
(S1: Tianjin, S2: Beidaihe, S3: Zhangzi Island, S4: Rongcheng, S5: Qingdao, S6: Yangtze River estuary
(September), S7: Yangtze River estuary (July), S8: Nanji Island, S9: Ningde, S10: Fujian coastal (April),
S11: Fujian coastal (May), S12: Xiamen, S13: Beihai, S14: Weizhou Island, S15: Sanya.).
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Table 1. Sampling site information (sampling date, latitude and longitude, and cell density of M.
polykrikoides (EAr)).

Sea Area Station Location Collection Date Latitude
(N)

Longitude
(E)

Temperature
(◦C)

M.
polykrikoides

(EAr)
(Cells·L−1)

Bohai Sea S1 Dongjiang, Tianjin 29 August 2017 39.0070◦ 117.8204◦ 27.5 3.6 × 103

S2 Beidaihe, Hebei 30 August 2017 39.8241◦ 119.5336◦ 23.0 N/D
Yellow Sea S3 Zhangzidao, Liaoning 17 September 2019 39.1188◦ 122.8238◦ 22.4 N/D

S4 Rongcheng, Shandong 1 June 2019 37.9075◦ 122.4100◦ 17.5 N/D
S5 Qingdao, Shandong 10 May 2019 36.0500◦ 120.3444◦ 16.9 N/D

East China Sea S6 Yangtze River estuary 21 September 2020 32.0190◦ 122.4900◦ 25.4 1.9 × 104

S7 Yangtze River estuary 15 July 2020 30.0010◦ 123.3920◦ 26.2 1.0 × 105

S8 Nanji island, Zhejiang 28 July 2019 27.4650◦ 121.0605◦ 31.5 N/D
S9 Ningde, Fujian 8 January 2019 26.7528◦ 119.7772◦ 15.3 N/D

S10 Fujian coastal 29 April 2018 27.3037◦ 120.9138◦ 19.0 N/D
S11 Fujian coastal 21 May 2018 26.4046◦ 120.3876◦ 24.7 1.5 × 103

S12 Xiamen, Fujian 12 April 2018 24.4563◦ 118.1713◦ 23.8 N/D
South China Sea S13 Beihai, Guangxi 18 November 2018 21.4888◦ 109.1252◦ 25.7 N/D

S14 Weizhou island, Guangxi 9 November 2020 21.0138◦ 109.0986◦ 22.4 N/D
S15 Sanya, Hainan 9 October 2019 18.2233◦ 109.6222◦ 29.9 N/D

N/D: Not detected.

2.4. Phylogenetic Tree

The qPCR amplification products of field samples with positive results were sequenced,
and all sequencing results were an identical sequence. In the clade of M. polykrikoides,
specimens were clearly separated into four monophyletic sub-clades. One clade of M.
polykrikoides (EAr) was composed of sequences collected from this study and other Asian
seas, and all sequences in this clade were completely identical, which was well sup-
ported by bootstrap support (BS) values (neighbor-joining (NJ)/maximum likelihood
(ML) = 90%/99%). The phylogenetic tree clearly shows the relationships of M. polykrikoides
(EAr) and other ribotypes, including the Philippines ribotype, American/Malaysian ribo-
type, and the Mediterranean Sea ribotype (Figure 5).
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Figure 5. The percentage of trees in which the associated taxa clustered together is shown next to the
branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary
distances used to infer the phylogenetic tree. Bootstrap support (BS) values of the Maximum
likelihood (ML) and neighbor-joining (NJ) analysis are given left and right, respectively. Accession
numbers are indicated after species names. SAMITES: Succussed Amplified M. polykrikoides (EAr)
In Tested Environment Sample.

3. Discussion

Although many molecular methods, such as microarrays with molecular probes [35],
RFLP [36], high throughput sequencing [37], and FISH-probes [38], have been developed to
detect microalgae, qPCR is more widely used to detect and quantify microalgae because of
the high accuracy and good sensitivity [27,28,39]. Currently, qPCR has been applied in the
field to detect and quantify harmful algae [40–43]. It may be difficult to detect and quantify
microalgae by direct counting with LM at low densities of the target species, but based on
the high sensitivity of qPCR, it is possible to detect and quantify the target species even at
low densities (<10 cells·L−1) [10,44]. The copy numbers of the rRNA gene of dinoflagellates
can be up to the order of 10000 [45]. Therefore, even if the extracted DNA contains less
than one cell due to dilution, the rRNA gene can be amplified [10]. On the other hand, a
high copy number can effectively eliminate PCR inhibitor interference in the qPCR process
by diluting the extracted DNA. PCR inhibitors, such as mucopolysaccharides, phenolic
compounds, humic acids, and heavy metals in field samples, may cause the qPCR results
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to be inaccurate or even false negative [46,47]. Based on Park et al. research foundation, the
results of this study indicate that the qPCR primer (CPSF2-CPSR3) for the M. polykrikoides
(EAr) has a strong specificity and is appropriate for the specific detection and quantification
of M. polykrikoides (EAr) [10].

M. polykrikoides is present in tropical, subtropical and temperate waters [10]. Kim
et al. [48] research results showed that M. polykrikoides examined in the laboratory exhibited
its maximum specific growth rate of 0.41 day−1 at a combination of 25 ◦C and salinity of
34 psu, and optimum growth rates of >0.3 day−1 were observed at temperatures ranging
from 21 to 26 ◦C and at salinities from 30 to 36 psu. It can be seen that most sea areas
in China are suitable for the growth of M. polykrikoides. In 1993, Qi et al. reported the
occurrence of red tide of Margalefidinium sp. in Quanzhou Bay, Fujian Province, which
caused the death of a large number of marine organisms, but the cause species were not
confirmed [15]. In 2009, M. polykrikoides was found in the Pearl River Estuary, South
China Sea [49]. In 2014, morphological characterization and phylogenetic analysis of
M. polykrikoides isolated from the ECS were carried out by Wang et al. [50]. In 2019, M.
polykrikoides was detected in Jiaozhou Bay, Qingdao and demonstrated strong temporal
preference with a sharp peak of abundance in early autumn (September), but failed to
detect M. polykrikoides from January to May [51]. In this study, we also collected samples in
coastal Qingdao on 10 May 2019. It is consistent with the research results of Liu et al. [51],
we also failed to detect M. polykrikoides. This may be related to the low water temperature
(16.9 ◦C). However, compared with countries such as Japan and Korea, there are still
fewer reports on geographical distribution of M. polykrikoides in China’s coastal areas. In
1978, the first outbreak of red tide of M. polykrikoides occurred in the Yatsushiro Sea of
Japan, and thereafter, the red tide caused by this species rapidly spread to the extensive
waters along the coast of Japan and Korea [22,48,52]. Marine ecosystems are experiencing
warming due to global climate change [53]. Seawater warming change the basal metabolic
function and species distribution in microalgae [54]. In addition, ballast water is also an
important reason for the spread of microalgae species [55]. In a time of global warming
and increasingly advanced shipping, the rate of spread of harmful algal bloom species
is increasing. Therefore, there is a possibility that M. polykrikoides could cause a massive
outbreak in the China Sea. Timely warning is the key to face the outbreak of HABs. qPCR
can achieve rapid detection and timely warning.

The results of this study show that M. polykrikoides (EAr) existed in the ECS and Tianjin
coastal area, and their concentration can reach 1.0 × 105 cells·L−1 at least in the ECS. In this
study, field samples were collected from 15 locations, 3 of them were offshore sampling.
M. polykrikoides (EAr) was detected in all three samples sampled offshore. However, M.
polykrikoides (EAr) was detected in only 1 of the 12 samplings conducted near shore. One
of the possible reasons why M. polykrikoides (EAr) were rarely found near shore may be
due to the high turbidity of nearshore waters, which can affect the growth and distribution
of M. polykrikoides (EAr). Blooms of M. polykrikoides are influenced by prevailing ocean
currents [56]. Lee et al. research results showed that the outbreak of M. polykrikoides in
coastal areas of Korea was influenced by the Tsushima Warm Current [52]. Large-scale
transport of M. polykrikoides blooms by the Tsushima Warm Current also happened in
the southwest Sea of Japan [57]. As a branch of the main stem of the Kuroshio in the
northeastern waters of Taiwan Island, Taiwan Warm Current (TWC) is a high-temperature,
high-salt current that exists year-round in the waters of Fujian and Zhejiang, China [58].
TWC carries high nutritive (phosphate) seawater to the Yangtze River estuary and plays an
important role in the hydrology and climate of the ECS [59]. There is no report on the effect
of TWC on M. polykrikoides, but there are many studies on the effect of TWC on Prorocentrum
donghaiense. The research results of Dai et al. support the hypothesis that P. donghaiense
blooms develop from the population at the TWC front in the ECS [60], suggesting the role of
the ocean current front as a seed bank to dinoflagellate blooms. Zeng et al.’s research results
showed that P. donghaiense blooms first occurred at the northern end of the Taiwan Strait
and then moved northward and nearshore with the TWC [61]. Whether TWC will affect
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M. polykrikoides remains to be investigated. Although the effect of TWC on M. polykrikoides
was not addressed in this study, it may be an important direction for future research on the
distribution of M. polykrikoides in the coastal waters of China.

In this study, M. polykrikoides (EAr) was detected in the coastal waters of Tianjin for
the first time. Since the first reported outbreak of Cochlodinium sp. in Quanzhou Bay in
1993 [15], this study confirmed the presence of M. polykrikoides (EAr) in the offshore of
Fujian. M. polykrikoides has a maximum specific growth rate at 25 ◦C [48]. The water
temperature at the time of the M. polykrikoides blooms mostly between 20 to 30 ◦C [62,63]. In
this study, the water temperatures at the stations where M. polykrikoides (EAr) was detected
were 27.5 ◦C (S1), 25.4 ◦C (S6), 26.2 ◦C (S7), and 24.7 ◦C (S11), respectively. The average
temperature was 25.9± 1.2 ◦C. Some stations where M. polykrikoides (EAr) was not detected,
such as S4, S5, S9, and S10, had water temperatures below 20 ◦C. Therefore, under suitable
environmental conditions, those stations where M. polykrikoides (EAr) was not detected in
this study may also exist M. polykrikoides (EAr). The sampling time of the stations where
M. polykrikoides (EAr) was detected was mainlyfrom May to September. Following the
time and season passing and changing, M. polykrikoides (EAr) was detected from south to
north. It suggests that M. polykrikoides (EAr) is likely to keep moving northward as the
water temperature rises. In March 2005, massive fish mortalities and water discoloration
was reported off the western coast of Puerto Princesa, Palawan, Philippines; phytoplankton
analysis revealed a near monospecific bloom of the dinoflagellate, M. polykrikoides [64].
There is a possibility that M. polykrikoides is expanding with seasonal changes from the low
to latitude the high latitude sea area, though there still need for further study to clarify
this issue.

4. Conclusions

In this study, qPCR was successfully applied to detect and quantify field samples
along the Chinese coast. The target species, M. polykrikoides (EAr), was found in samples
from Tianjin, the Yangtze River estuary, and offshore Fujian (East China Sea). This is the
first time that M. polykrikoides (EAr) was detected in the coastal waters of Tianjin. Based on
the accuracy, rapidity, and sensitivity of qPCR technology, it can be used in the monitoring
and early warning system of HABs. It provides a practical case for the future construction
of monitoring and warning systems for M. polykrikoides (EAr) and HABs.

5. Materials and Methods
5.1. Algal Cultures

The algal culture of M. polykrikoides (EAr) was obtained from the Department of
Biotechnology at Sangmyung University (Seoul, Korea). The cultures were maintained
in f/2 medium at 20 ◦C ± 1 ◦C under a light intensity of 65 µmol·Em−2·s−1 on a 12:12 h
light-dark cycle. The f/2 medium was prepared as described in [65,66]. All seawater at a
salinity of 31–33 psu was filtered through GF/F membranes (Whatman, Little Chalfont,
UK) and then autoclaved at 121 ◦C for 30 min. Strains were subcultured with fresh f/2
medium at 20 day intervals to maintain healthy cultures.

5.2. LM and SEM

LM images of M. polykrikoides (EAr) in the exponential growth phase were recorded
using an inverted microscope (BX53, Olympus, Tokyo, Japan) and analyzed using CellSens
Standard 2.3 software (Olympus, Tokyo, Japan) [67]. SEM images were obtained in the
following steps. M. polykrikoides obtained from ECS in the exponential growth phase was
fixed with 2% glutaraldehyde at 4 ◦C for 4 h. Following the fixed samples were filtered
and collected through a 3 µm polycarbonate membrane (Merck Millipore, Burlington,
MA, USA), washed with distilled water, thoroughly removed all fixed reagents and sea
salt, dehydrated with a graded ethanol series treatment (30, 50, 70, 90, 100, and 100%;
30 min per concentration), dried with a critical point drier (Joel Hi-Tech Co., Dalian, China),
and gold-coated in a sputter coater. Lastly, the M. polykrikoides cells were observed and
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photographed under an SEM (TM-1000 Tabletop Microscope, Hitachi High-Technologies
Co., Tokyo, Japan) [67,68].

5.3. Study Area and Field Sampling

From April 2017 to November 2020, samples were collected from 15 locations of the
Chinese coast or sea areas, including Tianjin, Beidaihe, Zhangzi Island, Rongcheng, Qing-
dao, Yangtze River estuary (July), Yangtze River estuary (September), Nanji islands, Fujian
coastal (April), Fujian coastal (May), Ningde, Xiamen, Beihai, Weizhou island, and Sanya
(Figure 6). The sampling time and location of each station are listed in Table 1. Seawater
ranging from 100 mL to 1200 mL was filtered and collected via filtering with 0.2 µm Milli-
pore filter membrane (Merck Millipore, Burlington, MA, USA). Seawater filtration volume
(100–500 mL) were decided according to cell abundance and turbidity of seawater. The
filters were placed in a 2 mL microtube containing 800 µL of 2% cetyltrimethylammonium
bromide (CTAB) extraction buffer and then stored at −80 ◦C until DNA extraction.
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5.4. DNA Extraction, PCR Amplification and DNA Sequencing

DNA extraction of samples was carried out with the CTAB method [69]. Based on the
study of Park et al. [10], the East Asian ribotype of M. polykrikoides was confirmed by conven-
tional PCR. The primers sequences for different ribotypes of M. polykrikoides were as follows:
CPSF2: 5′-AACGCAAGTGTGAGTGTGAGTT, CPSR3: 5′-GGACCCACGATCAACCCA
(EAr), PhiCPSF: 5′-TGCAAGTTTCAACCATCTCTCGC, PhiCPSR: 5′-GAAAGCAAGTTCA
ATCGACGGTTT (Philippines ribotype) and AMCPSF: 5′-CTCAATCGCCTTTCGCCTGAT,
AMCPSR: 5′-ACCGGACACCTCGGATATGAT (American/Malaysian ribotype) [10]. The
conventional PCR was carried out in a final volume of 20 µL containing 2 µL of 10× PCR
buffer, 2 µL of dNTP (2.5 mM), 1 µL of each primer (0.1 mM), 12.8 µL of double-distilled
water, 0.2 µL Takara Ex Taq polymerase (5U; TaKaRa, Osaka, Japan), and 1 µL of genomic
DNA. Using T100TM Thermal Cycler (Bio-Rad, Hercules, CA, USA), the PCR procedure
was as follows: 95 ◦C for 5 min, 35 cycles at 95 ◦C for 30 s, 61.5 ◦C (EAr), 62 ◦C (Philippines
ribotype), or 64 ◦C (American/Malaysian ribotype) for 30 s, 72 ◦C for 30 s followed by 72 ◦C
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for 10 min. PCR amplification products were analyzed by 2% agarose gel electrophoresis
according to standard methods [70]. DNA sequencing was performed by Sangon Biotech
(Shanghai, China).

5.5. qPCR and Standard Curve Construction

The species-specific qPCR primer used in this study for M. polykrikoides was developed
by Park et al. [10]. DNA melting curve analysis was conducted using a CFX96 Real-Time
PCR Detection System (Bio-Rad, Hercules, CA, USA). Quantitative Real-time PCR assays
were performed in a total reaction volume of 20 µL, which contained 10 µL of 1× SsoFastTM

EvaGreen® Supermix (Bio-Rad, Hercules, CA, USA), 1 µL of each primer (0.1 mM), 1 µL of
genomic DNA, and 7 µL double-distilled water. qPCR reactions were run using a CFX96
Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) at 98 ◦C for 2 min, followed
by 35 cycles at 98 ◦C for 5 s, then 55 ◦C for 20 s. The melting curve was increased from
65 ◦C to 95 ◦C in 0.5 ◦C increments, and each step was held for 5 s.

The specificity of a qPCR assay is determined by the primers and reaction conditions
used. However, even with well-designed primers, it is always possible to produce primer-
dimers or unexpected products. The specificity of the qPCR assay can be confirmed
using melting curve analysis. The establishment of the standard curve was based on the
linear relationship between the CT value and the number of cells. Standard curves were
constructed from DNA isolated from 150mL of culture harvested by filtration during the
exponential growth phase. M. polykrikoides was counted using a Sedgewick Rafter counting
chamber with an LM at 200 × magnification (CKX53, Olympus, Tokyo, Japan) and then
filtered to collect the cells. The collected cells were extracted DNA according to the above
method. DNA extracts were serially diluted 10-fold and used to construct standard curves.

5.6. Phylogenetic Tree

The sequences obtained by qPCR assay in this study and deposited in GenBank
(https://www.ncbi.nlm.nih.gov/, accessed on 31 August 2021) were aligned with the
sequences obtained from GenBank using BioEdit (North Carolina State University, Raleigh,
NC, USA) (Version.7.0.5.3) [71]. The sequences obtained in this study were used together
with those in Genbank to construct a phylogenetic tree and using Akashiwo sanguinea,
Karenia mikimotoi, and Gymnodinium catenatum sequences as outgroup (Table 2) [72]. This
analysis involved 34 nucleotide sequences. All positions containing gaps and missing
data were eliminated (complete deletion option). There was a total of 146 positions in
the final dataset. Evolutionary analyses were conducted in MEGA X (Pennsylvania State
University, State College, PA, USA) (Version.10.2.4) [73]. The sequence obtained in this
study is located in the D1-D2 region of the large subunit ribosomal RNA gene (LSU
rDNA). ML and NJ phylogenetic tree based on partial LSU rDNA sequences showing
the relationships of M. polykrikoides (EAr) and other ribotypes, including the Philippines
ribotype, American/Malaysian ribotype, and the Mediterranean Sea ribotype.

Table 2. List of strains examined in the present study and accession numbers for their LSU
rDNA sequences.

Species Ribotype Accession No. LSU Region Strain Location Date Isolator

Margalefidinium
polykrikoides

Margalef
EA AB288383 D1–D6 IN1-ND104 Inokushi Bay, Japan January 2005 H. Kawami

M. polykrikoides EA AB288384 D1–D6 OB7-ND3 Tachibana Bay, Japan July 2002 M. Iwataki
M. polykrikoides EA AB288385 D1–D6 KG8-ND14 Kamigoto Is., Japan August 2002 M. Iwataki
M. polykrikoides EA AB288386 D1–D6 USUKA Usuka Bay, Japan October 2003 T. Yamatogi
M. polykrikoides EA AY725423 D1–D3 - Korea - -
M. polykrikoides EA AB295042 D1–D3 - Off Mishima Is., Japan August 2003 T. Baba
M. polykrikoides EA AB295043 D1–D3 IS8-ND70 Isahaya Bay, Japan August 2003 M. Iwataki
M. polykrikoides EA AB295044 D1–D6 IN5-ND81 Inokushi Bay, Japan May 2004 M. Iwataki
M. polykrikoides EA AB295045 D1–D6 KT8-ND109 Katagami Bay, Japan August 2005 H. Kawami
M. polykrikoides EA EF506614 D1–D3 C.poly Namhae, Korea September 2000 C.K. Lee

https://www.ncbi.nlm.nih.gov/
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Table 2. Cont.

Species Ribotype Accession No. LSU Region Strain Location Date Isolator

M. polykrikoides EA EF506616 D1–D3 PP-3 Tongyong, Korea September 2001 C.K. Lee
M. polykrikoides EA EF506618 D1–D3 PP-6 Busan, Korea September 2001 C.K. Lee
M. polykrikoides EA EF506620 D1–D3 CP2002 Busan, Korea August 2002 C.K. Lee
M. polykrikoides EA EF506622 D1–D3 CP2002-1 Namhae, Korea August 2002 C.K. Lee
M. polykrikoides EA EF506623 D1–D3 HK Hong Kong - -

M. polykrikoides MS KC577591 D1–D2 SC5 Tarragona Harbour,
Catalonia September 2012 A. Rene

M. polykrikoides MS KC577592 D1–D2 SC6 Tarragona Harbour,
Catalonia September 2012 A. Rene

M. polykrikoides MS KC577593 D1–D2 SC7 Tarragona Harbour,
Catalonia September 2012 A. Rene

M. polykrikoides Ph AB295046 D1–D3 MBCp Manila Bay,
Philippines October 2004 J.R. Relox Jr.

M. polykrikoides Ph AB295047 D1–D6 OM7-ND59 Omura Bay, Japan July 2003 M. Iwataki
M. polykrikoides A/M AB295048 D1–D8 cp1 Sabah, Malaysia January 2004 A. Anton
M. polykrikoides A/M AB295049 D1–D7 cp2 Sabah, Malaysia January 2004 A. Anton
M. polykrikoides A/M EF110556 D1–D3 CpFB-06-1 Long Island, NY, USA August 2006 Y. Tang
M. polykrikoides A/M EF506625 D1–D3 CPCB10 Cotuit Bay, MA, USA September 2001 D. Kulis

M. polykrikoides A/M EF506627 D1–D3 CPPV-1 Bahı’adeLaPaz,
Mexico - L. Morquecho

M. polykrikoides A/M AB295050 D1–D8 PR107 Phosphorescence Bay,
Puerto Rico 2005 C. Tomas

M. polykrikoides A/M GQ500117 D1–D2 CPDBC4 United Arab Emirates - -
Akashiwo
sanguinea AF260396 D1–D3 JL36 - - S. Morton

Karenia mikimotoi AY355460 D1–D3 NOAA-2 Sarasota, FL, USA - -
Gymnodinium

catenatum AF200672 D1–D3 - Spain - -

EA: East Asian; MS: Mediterranean Sea; Ph: Philippines; A/M: American/Malaysian.

5.7. Data Analysis

Amplification data were handled in a Bio-Rad CFX Maestro v 3.0 (Bio-Rad, Hercules,
CA, USA), with Ct determination mode set to a single threshold and the baseline decided by
baseline subtracted curve fit. Unknown cell concentrations were derived directly from the
standard calibration curve by a Bio-Rad CFX Maestro v 3.0 (Bio-Rad, Hercules, CA, USA).
Raw data were extracted to Microsoft Excel Professional Plus 2010 (Microsoft, Redmond,
WA, USA) and OriginPro 2019b (Originlab Co., Northampton, MA, USA), where they were
inspected manually.
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