
ARTICLE

Nonlinearity-mediated digitization and
amplification in electromechanical phonon-cavity
systems
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Electromechanical phonon-cavity systems are man-made micro-structures, in which vibra-

tional energy can be coherently transferred between different degrees of freedom. In such

devices, the energy transfer direction and coupling strength can be parametrically controlled,

offering great opportunities for both fundamental studies and practical applications such as

phonon manipulation and sensing. However, to date the investigation of such systems has

largely been limited to linear vibrations, while their responses in the nonlinear regime remain

yet to be explored. Here, we demonstrate nonlinear operation of electromechanical phonon-

cavity systems, and show that the resonant response differs drastically from that in the linear

regime. We further demonstrate that by controlling the parametric pump, one can achieve

nonlinearity-mediated digitization and amplification in the frequency domain, which can be

exploited to build high-performance MEMS sensing devices based on phonon-cavity systems.

Our findings offer intriguing opportunities for creating frequency-shift-based sensors and

transducers.
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Nonlinearity is ubiquitous in real-world physical systems.
Among the many man-made structures, resonant
microelectromechanical and nanoelectromechanical sys-

tems (MEMS/NEMS) offer great opportunities for designing,
tuning, and exploiting nonlinearities and have enabled the
exploration of nonlinear processes and nonlinearity-dictated
device properties, such as energy dissipation1, energy
quantization2, superposition of states3, dynamic range4, and
enhancement of frequency stability5. As the degree of freedom
(DOF) in the system increases (i.e., more than one resonant mode
or vibrating part), nonlinearity gives rise to unique phenomena
such as synchronization6–8, chaos9, internal resonance10, and
generation of frequency comb11–13, by enabling and modulating
coherent energy transfer between the different DOFs14.

Among multi-DOF systems, electromechanical phonon-cavity
systems15 offer the unique capability of phonon manipulation by
parametrically coupling a mechanical resonance to a phonon
cavity16,17, in many aspects analogous to a photon-cavity18–22,
which has enabled a plethora of exotic physical phenomena such
as self-cooling23,24, induced transparency25,26, parametric
amplification27, and quantum squeezing28,29. These exquisite
functions are realized through a pump signal in the cavity’s
sideband, which parametrically controls the dynamical coupling
and backaction between the resonant mode and the cavity30–32.

One key feature that differentiates the phonon-cavity systems is
that they operate entirely in the electromechanical domain, and
thus are much more advantageous for implementation using
monolithic solid-state devices. Further, the characteristic fre-
quency of the phonon cavity is typically in the same frequency
band as the resonant mode (unlike that of a photon-cavity,
typically at orders-of-magnitude higher frequency), which greatly
simplifies the signal transduction, making such systems promis-
ing for frequency-shift-based applications8,33–35, such as sensing.

However, in such parametrically-coupled systems, despite the
nonlinear nature of the coupling between the different DOFs14,
research to date has been largely confined to linear operations, i.e.,
with limited vibration amplitude, which has plagued the exploration
of nonlinear processes in these systems. Here we study nonlinear
operation in a microelectromechanical phonon-cavity system and
show that the response clearly differs from that in the linear regime.
More importantly, leveraging the nonlinearity-mediated bi-stability,
we demonstrate digitization and amplification modes of signal
sensing enhancement in the frequency domain, which can be further
tuned by the degree of nonlinearity in the vibration response.

Results
The electromechanical resonator used in this study (Fig. 1a) is
designed to exhibit a torsional mode (at frequency ω1= 2π ×
6969.1Hz) and a flexural mode resonance (at frequency ω2= 2π ×
16649.6Hz). In this work, we specifically design our device to
facilitate the observation of dynamical coupling in the nonlinear
regime. This is achieved by the small capacitance gap, large capaci-
tance area, and high-quality factor of the resonator (see “Methods”).
By activating different combinations of the 12 electrodes (Fig. 1b), we
can selectively excite these two distinct modes in both linear and
nonlinear regimes (Fig. 1c, d), as well as injecting a parametric pump
signal that controls the coupling between these two modes (see
“Methods” and Fig. S2 for additional details). Enabled by the capa-
citive transduction scheme, both resonant modes exhibit clear
Duffing softening response36,37 (see SI 2.2), with clear nonlinearity-
mediated bi-stability (vertical jump in amplitude). We denote the
critical frequency where such bi-stability occurs as ωb, which depends
on the driving amplitude and the sweep direction (Fig. S3).

The electromechanical structure is designed to facilitate
coherent energy transfer between the two resonant modes via

parametric pump-controlled intermodal coupling. Among the
two resonant modes, the flexural mode at frequency ω2 serves as
the phonon cavity, which can coherently exchange energy with
the resonant mode of interest at ω1 if the pump frequency ωp

aligns with the red sideband of the cavity at ωred= ω2− ω1, or the
blue sideband at ωblue= ω2+ ω1. Specifically, when only the
mechanical mode at ω1 is excited, pumping the red sideband
leads to phonon removal at ω1 (Fig. 1e), while pumping the blue
sideband engenders phonon creation (Fig. 1f). This para-
metrically excited-modulated vibrational energy transfer forms
the operation basis of phonon-cavity systems15,16,38.

Such process is experimentally manifested as the modulation in
vibrational amplitude around ω1 when ωp approaches either of
the cavity sidebands. We first examine the parametric coupling to
the phonon cavity with the resonant mode at ω1 excited in the
linear regime (Fig. 2a–d), when scanning the excitation signal
frequency ωd around ω1 and the pump frequency ωp around ωred

or ωblue. We find that when ωp ≈ ωred the resonant amplitude
shows a clear dip (Fig. 2a, b), while near ωp ≈ ωblue it clearly peaks
(Fig. 2c, d), showing excellent agreement with results in the
literature15,38. This verifies that by using appropriate pump set-
tings, our phonon cavity system can operate in the strong cou-
pling regime with efficient energy transfer; and such phonon
removal/creation processes can be efficiently controlled using the
parametric pump.

We then investigate the phonon-cavity system with the reso-
nant mode of interest excited into nonlinear vibration. As the
driving voltage increases, the nonlinear resonant response
develops bi-stability, and exhibits different behavior in upward
(low to high) and downward (high to low) frequency sweeps
(Fig. S3). We now scan ωd around ω1 with both upward and
downward sweeps, while also tuning ωp around ωred or ωblue.
Both nonlinear responses show clear contrast with the linear case.
In upward sweeps (Fig. 2e–h), the effect from the parametric
pump is minimized, and the resonant responses remain largely
unchanged as ωp scans across both ωred and ωblue, showing
minimal energy exchange with the phonon-cavity.

In downward sweeps, however, the choice of the parametric
pump frequency ωp has very strong and distinct effects on the
resonant response: when pumping in the vicinity of the red side
band (Fig. 2i, j), the bi-stability frequency ωb notably increases
(moving towards ω1) as ωp approaches ωred, producing a dip-like
feature in the 2D color plot; when pumping around the blue side
band (Fig. 2k, l), in contrast, the bi-stability frequency ωb clearly
decreases (moving away from ω1) with a sudden jump at ωp ≈ωblue,
resulting in a spike-like feature in the 2D color plot (Fig. 2l).
Interestingly, the effect of the parametric pump is clearly in the
frequency domain, manifested as the modulation of ωb; in the dis-
placement domain, however, for all ωp settings the nonlinear reso-
nance peak has been following the same frequency response curve
(the curved slope of the shark-fin-like Duffing resonance peak) in
the frequency down-sweeps, regardless the position of ωb. This is
clearly visible in the 3D plots (Fig. 2i, k). Such behavior is in clear
contrast to the linear case (Fig. 2a–d), where the parametric pump
acts on the resonance of interest mostly in the displacement domain
while causing little effect in the frequency domain.

To understand the unique behavior of the nonlinear response
in our phonon-cavity system, we examine its equations of motion
by introducing Duffing nonlinearity into this 2-DOF system10,39:

€x1 þ ω2
1x1 ¼ ε½�2γ1 _x1 � 2ðc11x1 þ c12x2Þ cosðωptÞ þ α1x

3
1 þ Fd cosðωdtÞ�

€x2 þ ω2
2x2 ¼ ε½�2γ2 _x2 � 2ðc21x1 þ c22x2Þ cosðωptÞ�

ð1Þ
here xi and ωi (i= 1, 2) are the displacement and natural fre-
quency of the resonant modes, respectively. Specifically, i= 1
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corresponds to the mode of interest (torsional mode, which we
intentionally drive into nonlinear vibration, with α1 being the
Duffing coefficient, and Fd cos(ωdt) being the harmonic driving
force), and i= 2 corresponds to the phonon cavity (flexural
mode, which remains undriven). The energy dissipation rates are
given by γi, and cij (i, j= 1, 2) give the intra-modal (i= j) and

intermodal (i ≠ j) parametric coupling coefficients, with ωp being
the frequency of parametric pump. All these terms are normal-
ized using the effective mass of the oscillator. ε is introduced as a
scaling parameter, based on the assumption that all terms mul-
tiplied by ε are small compared with the terms on the left side of
the equations. This assumption is true for steady-state vibration
of high Q resonators, where the energy stored in the resonator
(though constantly transforming between kinetic and potential
energies) is much greater than dissipation or transfer between
modes. This mathematical treatment allows us to apply multiple-
scale approximation using the standard multidimensional
Newton-Raphson algorithm40 (see SI 2.1 and 2.3–2.4 for details),
from which we are able to numerically solve the above equations
in the vicinity of the cavity sidebands (ωp ≈ ωred and ωp ≈ ωblue),
with the results shown in Fig. 3.

The numerical results show very good agreement with the
experimental data (for easy comparison, see Fig. 2 2D color plots)
by reproducing all the key features. Specifically, in the downward
sweep under nonlinear excitation, the calculation clearly produces
in the 2D color plots the dip-like feature for ωp near ωred, and the
spike-like feature for ωp near ωblue. Such unique behavior can be
qualitatively understood, in a simplified picture, by considering
the nonlinearity-induced amplitude bi-stability in the resonance
mode, together with its parametric-pump-controlled coupling to
the phonon-cavity: in downward frequency sweeps, the resonant
response initially follows the upper branch among the two stable
solutions from the softening Duffing equation, before jumping to
the lower branch at ωb. When ωp approaches ωred, the parametric
pump causes phonon to be removed from the resonant mode
(Fig. 1e), with the remaining ones insufficient to sustain the high-
amplitude vibration on the upper branch, thus expedites the
jumping to the lower branch (ωb closer to ω1). In contrast, when
ωp ≈ ωblue, phonons are created in the resonant mode (Fig. 1f),
which help in sustaining the vibration on the upper branch and
delaying the jump (ωb further away from ω1).

It is also interesting to analyze the observed phenomena by
considering two different effects. First, with the sudden jump
between its two stable branches, Duffing bi-stability produces a
distinct relationship between the amplitude (A) and frequency (f)
of a resonator, leading to an A-f relationship. Second, in phonon-
cavity systems, the amplitude of a given mode is affected by the
frequency difference between some other modes (such as the
pump and the cavity modes), which gives rise to an f-A effect. By
operating a phonon cavity device in a nonlinear regime, one can
excite both effects, resulting in an f-A-f transduction, enabling
signal amplification entirely within the frequency domain. While
quantitative explanations for specific details (such as the asym-
metry in ωp for the dip-like and spike-like features) require more
in-depth analyses and evaluation of multiple expressions derived
from Eq. 1 (extensive details are offered in “Methods” and SI
2.3–2.4), the precise reproduction of experimental results allows
us to further explore the unique nonlinear responses of our
phonon-cavity system using numerical simulations.

Fig. 1 Electromechanical phonon-cavity system with nonlinear responses.
a A false-color SEM image of the MEMS resonator designed to exhibit two
prominent resonant modes. b Schematic illustration of the electrode layout
underneath the resonator body and the simplified measurement circuit
diagram. c, d Resonant responses (during downward frequency sweeps) of
the two modes, showing nonlinear vibration with clear bi-stability (the
vertical jump in amplitude), with mode shapes illustrated above.
e Schematic diagram of the phonon cavity system operating with the
parametric pump in the cavity red sideband, and f blue sideband.
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We now show that such tuning of nonlinearity-mediated bi-
stability, via parametric coupling to the phonon cavity, can be
exploited to realize distinct functions in the frequency domain,
offering unique capabilities for sensing and signal transduction.
In resonant electromechanical transducers, typically, a change in
an input physical quantity (e.g., pressure, acceleration, logic state)
engenders a frequency shift, which is then measured or processed.
In our devices, the phonon-cavity (resonant mode at ω2) can
function as the front-end transducer, which converts the input
signal to a shift in ω2 (green signals in Fig. 4a, e). When a pump
signal is present at the cavity sideband (blue arrow), the input at
ω2 can be coupled to the response at ω1. Here in Fig. 4 we discuss
such processes with ωp near the blue sideband (similar results are
obtained for the red sideband, which are detailed in SI 3.2).

In the linear regime (Fig. 4a), the parametric coupling results in
the mode at ω1 a change in its amplitude (purple signal), as the
input change in ω2 is equivalent to a shift of the operation point

(horizontal slices in Fig. 4b), with resulting traces presented in
Fig. 4c, d for clear comparison. This is similar to a mode-localized
resonant sensor41, which converts a shift in the frequency domain
to a change in the displacement domain.

In the nonlinear regime (Fig. 4e), however, the input shift in ω2

is not transduced to the displacement domain; in contrast, it is
amplified within the frequency domain, resulting in a much larger
shift in ωb (purple signal), as clearly demonstrated in both
experiment (Fig. 2l) and theory (Fig. 3f). Here, the key is to
leverage the unique spike-like feature by operating near its sharp
edge (horizontal slices in Fig. 4f) in order to achieve augmented
output in the frequency domain (Fig. 4g, h). Given the unique
response of ωb in this region, we show that two intriguing
sensing-related functions can be realized: digitization and
amplification (Fig. 4i, which zooms into the boxed area of Fig. 4f).

In the first scenario, we utilize the horizontal red-blue
boundary in Fig. 4i at ωp= ωblue, indicated by the double-

ω
ω

ω
ω

ω ω π

Fig. 2 Linear versus nonlinear responses of the ω1 resonant mode parametrically coupled to the phonon cavity. a Resonant response of the ω1 mode in
the linear regime under different pump frequency ωp, when pumping near the red sideband ωred of the phonon-cavity. b 2D color plot of the same data as in
a; same hereafter. The 2D color plots allow key features in the frequency domain (along both ωd and ωp) to be better visualized, and enable efficient
comparison to the theory plots in Fig. 3. c, d Resonant response in the linear regime when pumping near the blue sideband ωblue of the phonon-cavity.
e–h Nonlinear response of the ω1 mode with an upward frequency sweep, under different pump frequency ωp near the red sideband ωred (e, f) and blue
sideband ωblue (g, h), respectively. i–l Nonlinear response of the ω1 mode with a downward frequency sweep, under different pump frequency ωp near the
red sideband ωred (i, j) and blue sideband ωblue (k, l), respectively, showing clear modulation of the bi-stability frequency ωb with distinct patterns.
Experimental details are provided in “Methods” and SI 1.2, with additional data in SI 3.1.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29995-x

4 NATURE COMMUNICATIONS |         (2022) 13:2352 | https://doi.org/10.1038/s41467-022-29995-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


headed arrow. A small shift in ω2 (0.01 Hz, for example, as used
for Fig. 4j) can cause the operating point to cross this sharp edge,
resulting in a discrete and sizable change (several Hz, as found in
Fig. 4j) in the output ωb value. The magnitude of discretization
(shift in output ωb) can be continuously and smoothly controlled
by adjusting the pump strength Vp and the degree of nonlinearity
(varying Vd), as shown in Fig. 4j. Such digitization of the signal
could be potentially useful for sensing applications, by deter-
mining whether the signal exceeds a given threshold.

In the other scenario, we operate along the sloped red-blue
boundary (ωp slightly below ωblue), outlined by the small circles in
Fig. 4i. In this region, a change in ω2 from the input engenders a
continuous and amplified output (change in ωb), for which we
define the gain A as:

A ¼ ΔOutput
ΔInput

¼ Δωb

Δω2
ð2Þ

By exploring the parameter space, we observe a number of
behaviors for this amplification effect. First, the gain (slope of the
data in Fig. 4k, l) can be controlled by both the pump strength Vp

and the degree of nonlinearity (adjusting Vd). We find that deeper
nonlinear vibration or stronger parametric coupling can produce
larger amplification (see SI 3.3 for additional details), even
exceeding one order of magnitude (red data series). Second, there
is a trade-off between gain and linear dynamic range: a larger gain
is associated with a smaller dynamic range. By carefully adjusting
Vd and Vp, one can choose the optimal operating condition.

While frequency-sweep measurements are used to explore the
exquisite nonlinear dynamics in such phonon-cavity systems,
towards device applications a more efficient readout scheme is
required. Here we demonstrate both amplification and digitiza-
tion operations with fast readout using a phase-locked
loop (PLL).

The PLL set-up is shown in Fig. S8. A DC bias Vf is applied
(blue lines) on the electrodes to shift the frequency of mode 2
(ω2). In practice, the shift of ω2 can be caused by external factors

such as temperature, pressure, acceleration, and angular velocity.
Here, in order to demonstrate the feasibility of the proposed
functions, we use the negative stiffness due to electrostatic force
to simulate the frequency shift of mode 2 due to such external
factors. To minimize the effect from environment variables, the
MEMS resonator is measured in a vacuum with a constant
temperature of 30 °C. The frequency output of mode 1 (ωb) is
monitored (purple lines) using PLL in addition to the frequency
sweep measurements (frequency response analysis (FRA)).

The experimental results for the phonon-cavity system at blue
and red pumps are shown in Fig. 5 and Fig. S9, respectively. Here
we use the blue pump case as an example. Following the
numerical simulation results in Fig. 4, we first perform a fre-
quency sweep experiment (Fig. 5a) and verify the phonon cavity
response as predicted in Fig. 4i. We then use the DC voltage Vf to
control ω2, and monitor the frequency output ωb using PLL. The
PLL data (Fig. 5b) clearly captures all the ωb values in Fig. 5a,
again demonstrating the nonlinear behavior predicted in Fig. 4i.
We note that with PLL ωb can be measured much faster than in
frequency sweeps, and the bandwidth of the measurement system
can be optimized by setting appropriate PID parameters and
reference phase of mode 1.

To verify the signal sensing enchancement functions, we
operate the phonon cavity system in corresponding parameter
spaces. Figure 5c, d present the PLL experimental results of the
digitization and amplification operations respectively, and both
show good agreement with the anticipated behavior shown in
Fig. 4j, k/l. We note that given the different operating parameters
(such as Vd and Vp) used in simulation and experiments, the
results may not exactly agree quantitatively, but qualitatively all
key features and behaviors are successfully reproduced
experimentally.

Similarly, the experimental results for the red pump case
(Fig. S9) agree well with the numerical predictions (Fig. S6).
While standalone instruments are used to demonstrate the PLL
measurement scheme here, in practice with known design

ω ω π

ω
ω

π
ω
ω

π

Fig. 3 Numerical solutions to the phonon-cavity system operating in linear and nonlinear regimes. All results are presented in 2D color plots.
a, b Calculated response of the ω1 mode in linear regime with pumping frequency ωp near the (a) red sideband ωred and b blue sideband ωblue of the
phonon-cavity. c, d Nonlinear response of the ω1 mode with an upward frequency sweep, with pump frequency ωp near the red sideband ωred (c) and blue
sideband ωblue (d), respectively. e, f Nonlinear response of the ω1 mode with a downward frequency sweep, with pump frequency ωp near the red sideband
ωred (e) and blue sideband ωblue (f), respectively, showing clear modulation of the bi-stability frequency ωb with distinct patterns. Calculation and plot
details are provided in “Methods” and SI 2.3–2.4, with additional data in SI 3.1.
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parameters such PLL component can be efficiently realized in
circuit designs, thus facilitating a high level of integration of such
frequency-shift-based sensors.

These unique nonlinearity-mediated frequency-shift functions
can be exploited for constructing phonon-cavity-based sensors
and transducers. It is worth noting that operating devices in
the frequency domain have a number of advantages, as “time
and frequency are the most accurately measurable of all
physical quantities”42. Our results show that, by harnessing
nonlinearity in phonon-cavity system, intriguing opportunities

emerge for high-performance frequency-shift-based sensors and
transducers43–50. Specifically, compared with MEMS sensors and
transducers using single-DOF nonlinear resonators51 or multiple
coupled resonators52,53, the nonlinear phonon-cavity system in
this work could potentially offer greater responsivity, additional
control, smaller device footprint, and simplified system design,
thus resulting in improved performance in MEMS-based sensing
and signal transduction applications.

Methods
Device design. The electromechanical structure is designed to facilitate coherent
energy transfer between the two resonant modes via parametric pump-controlled
intermodal coupling. A three-segment beam is used to couple the two masses together,
facilitating intermodal coupling structurally. A large mass area and the small capacitive
gap in the device design make it easier for the resonator to exhibit nonlinearity,
without requiring excessive amplitude. The design of multiple groups of electrodes
under the resonator allows us to efficiently adjust the frequency of the different modes
and implement dynamic coupling at the same time. The quality factor of the resonator
can be effectively controlled by the vacuum packaging process.

Device fabrication. The die embedding the vacuum-sealed MEMS resonators is
electrically packaged in a ceramic leadless chip carrier with a pressure of 0.1 Pa.
The structure layer is 40-μm-Si and the electrode layer is 6-μm-Si. The gap between
the structure layer and the electrode layer is 2 μm. The lateral size of the resonator
is about 3 mm × 3mm. The insulating layer underneath the electrode layer is 2-
μm-SiO2. The device is operated under room temperature. The device structure,
including its cross-section, and the fabrication process are detailed in Fig. S1.

Experimental set-up. A number of instruments are used in the measurement. The
bias voltages are generated by a low noise voltage source (ITECH IT6233). The
drive and pump signals are provided by a two-channel lock-in amplifier (Zurich
Instruments HF2LI). The response motion of the resonator is detected by a
capacitance–voltage (C/V) converting scheme based on a charge amplifier and
measured by the lock-in amplifier. Detailed measurement setup and wiring dia-
gram are available in SI 1.2.

Resonance measurements. The linear and nonlinear responses of both resonant
modes are first characterized in the absence of the parametric pump. The mea-
surement condition for the dataset shown in Fig. 1 is as follows: the driving voltage
of mode 1 and mode 2 are Vd= 0.2, 0.4, 0.6, 0.8, 1.0 mVpk and Vd= 1, 2, 3, 4,
5 mVpk, respectively. The results in (c) and (d) are both measured with a frequency
downward sweep.

The coherent energy transfer in the phonon cavity is characterized by scanning
the parametric pump frequency near either of the cavity sidebands. The
measurement and plotting details for Fig. 2 are as follows:

In the linear regime when ωp ≈ ωred (a, b), the device is measured with
Vd= 0.05 mVpk, Vp= 5.0 Vpk, and plotted using ω1= 2π × 6886.0 Hz, ωred=
2π × 9592.0Hz. In the linear regime when ωp ≈ ωblue (c, d), the device is measured
with Vd= 0.05 mVpk, Vp= 2.0 Vpk, and plotted using ω1= 2π × 6958.0 Hz, ωblue=
2π × 23,582.0 Hz.
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Fig. 4 Signal transduction and amplification in the 2-DOF phonon cavity
system. a Schematic illustration of the phonon-cavity’s response (purple
signal) to a shift in the input signal (green) under linear vibration, when the
pump signal (blue) is aligned with the cavity’s blue sideband. b 2D color
plot of the phonon-cavity’s response to the input perturbation under linear
vibration. c, d Line plots taken from different operation points in b, showing
a negligible shift in resonance peak frequency ωpeak. e Schematic illustration
of the phonon-cavity’s response (purple signal) to a shift in the input signal
(green) under nonlinear vibration, when the pump signal (blue) is aligned
with the cavity’s blue sideband. f 2D color plot of the phonon-cavity’s
response to the input perturbation under nonlinear vibration. g, h Line plots
taken from different operation points in f, showing a significant shift in ωb.
i A zoomed-in view of the boxed area in f, illustrating the regions used for
the two frequency-domain operations. j The output shift in ωb for a given
input shift Δω2= 0.01 Hz as functions of Vd, under different Vp values.
k The output shift in ωb versus input shift in ω2 for different Vp values.
Larger Vp corresponds to stronger parametric coupling. l The output shift in
ωb versus input shift in ω2 for different Vd values. Larger Vd corresponds to
deeper nonlinearity. Plot details are provided in the “Methods” section.
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In the nonlinear regime upward sweep, when ωp ≈ ωred (e, f), the device is
measured with Vd= 1.5mVpk, Vp= 5.0 Vpk. and plotted using ω1= 2π × 6886.0 Hz,
ωred= 2π × 9592.5Hz. When ωp ≈ ωblue (h, g), the device is measured with Vd=
1.0mVpk, Vp= 1.5 Vpk. and plotted using ω1= 2π × 6958.0Hz, ωblue=
2π × 23,575.0Hz.

In the nonlinear regime downward sweep, when ωp ≈ ωred (i, j), the device is
measured with Vd= 1.5 mVpk, Vp= 5.0 Vpk. and plotted using
ω1= 2π × 6886.0 Hz, ωred= 2π × 9592.5 Hz. When ωp ≈ ωblue (k, l), the device is
measured with Vd= 1.0 mVpk, Vp= 1.5 Vpk. and plotted using
ω1= 2π × 6958.0 Hz, ωblue= 2π × 23,575.0 Hz.

In all measurements in Fig. 2, the frequency scanning steps are the same:
Δωd= 2π × 0.05 Hz, Δωp= 2π × 0.2 Hz. Note that the plot center frequencies are
slightly adjusted for each panel for easy comparison across the different
measurement conditions, in order to best illustrate the key findings. Similarly, the
driving and pumping strength for the data presented in each panel are also chosen
to best illustrate the key findings.

Numerical analysis. The numerical codes are constructed using C language. The
numerical settings for producing the data in Fig. 3 are as follows:

In the linear regime when ωp ≈ ωred (a), the device response is calculated with
Vd= 0.05 mVpk, Vp= 5.0 Vpk, and plotted using ω1= 2π × 6886.0 Hz,
ωred= 2π × 9592.0 Hz. In the linear regime when ωp ≈ ωblue (b), the device response
is calculated with Vd= 0.05 mVpk, Vp= 2.0 Vpk, and plotted using
ω1= 2π × 6958.0 Hz, ωblue= 2π × 23,582.0 Hz.

In the nonlinear regime upward sweep, when ωp ≈ ωred (c), the device response
is calculated with Vd= 1.5 mVpk, Vp= 5.0 Vpk, and plotted using
ω1= 2π × 6886.0 Hz, ωred= 2π × 9592.5 Hz. When ωp ≈ ωblue (d), the device
response is calculated with Vd= 1.0 mVpk, Vp= 2.0 Vpk, and plotted using
ω1= 2π × 6958.0 Hz, ωblue= 2π × 23,575.0 Hz.

In the nonlinear regime downward sweep, when ωp ≈ ωred (e), the device
response is calculated with Vd= 1.5 mVpk, Vp= 5.0 Vpk. and plotted using
ω1= 2π × 6886.0 Hz, ωred= 2π × 9592.5 Hz. When ωp ≈ ωblue (f), the device
response is calculated with Vd= 1.0 mVpk, Vp= 2.0 Vpk, and plotted using
ω1= 2π × 6958.0 Hz, ωblue= 2π × 23,575.0 Hz.

In all calculations presented in Fig. 3, the frequency scanning steps are the same:
Δωd= 2π × 0.05 Hz, Δωp= 2π × 0.2 Hz. Note that the plot center frequencies are
slightly adjusted for each panel for easy comparison across the different
measurement conditions, in order to best illustrate the key findings. Similarly, the
driving and pumping strength for the data presented in each panel are also chosen
to best illustrate the key findings.

Experimental demonstration of digitization and amplification functions using
PLL. The numerical settings for producing the data in Fig. 4 are as follows:

In the linear operation (b), Vd= 0.05 mVpk, Vp= 2.0 Vpk, ω1= 2π × 6958.0 Hz,
and ωp= 2π × 23,582.0 Hz. The frequency steps are Δωd= 2π × 0.05 Hz, and
Δω2= 2π × 0.2 Hz. The line plots (c, d) are taken from data in (b) with Δω2= 0 (c)
and Δω2= 2π × 1.0 Hz (d).

In the nonlinear operation with downward sweep (f), Vd= 1.0 mVpk,
Vp= 2.0 Vpk, ω1= 2π × 6958.0 Hz, and ωp= 2π × 23,575.0 Hz. The frequency steps
are Δωd= 2π × 0.05 Hz, and Δω2= 2π × 0.2 Hz. The line plots (g, h) taken from
data in (d) when Δω2= 0 (g) and Δω2= 2π × 1.0 Hz (h).

In the zoom-in plot (i), Vd= 3.0 mVpk, Vp= 0.6 Vpk, ω1= 2π × 6929.52 Hz, and
ωp= 2π × 23,552.51 Hz. The frequency steps are Δωd= 2π × 0.01 Hz,
Δω2= 2π × 0.01 Hz.

The data of digitization in (j) are calculated for Vp= 1.0, 1.5, 2.0 Vpk when Vd is
scanned from 2.0 mVpk to 3.0 mVpk. The step of Vd is 0.1 mVpk.

The data of amplification in (k) are calculated for Vd is 3.0 mVpk and Vp= 0.35,
0.45, 0.50 Vpk. The step of Δω2 is 2π × 0.01 Hz.

The data of amplification in (l) are calculated for Vp is 0.50 Vpk and Vd= 2.7,
2.9, 3.0 mVpk. The step of Δω2 is 2π × 0.01 Hz.

Experimental demonstration of digitization and amplification functions using
PLL. The measurement settings for producing Fig. 5 are as follows:

In the nonlinear operation at blue pump with downward sweep (a),
Vd= 1.25 mVpk, Vp= 1.5 Vpk, ω1= 2π × 6538.0 Hz, and ωp= 2π × 23,048.0 Hz.
The steps are Δωd= 2π × 0.02 Hz, and ΔVf= 0.05 Vpk.

When using PLL to test the phonon-cavity system at blue pump (b),
Vd= 1.25 mVpk, Vp= 1.5 Vpk, and ωp= 2π × 23,048.0 Hz. Vf is scanned from 0 to
1 Vpk and the step of Vf is 0.05 Vpk.

The experiment of digitization at blue pump in (c), Vp= 1.5 Vpk when Vd is
scanned from 0.75 mVpk to 1.25 mVpk. The step of Vd is 0.05 mVpk.

The experiment of amplification at blue pump in (d), Vd= 1.25 mVpk,
Vp= 1.5 Vpk, and ωp= 2π × 23,048.0 Hz. Vf is scanned from 0.445 to 0.495 pk and
the step of Vf is 5 mVpk.

Frequency noise of the phonon-cavity system. The experiment result of fre-
quency noise is shown in Fig. S10. Here, we measure the frequency noise of input
signal ω2 and output signal ωb under different operation conditions: when there is
no parametric pump when there is a blue pump and when there is a red pump
applied to the phonon-cavity system.

The time-domain data is shown in Fig. S10a, and the calculated Allan deviation
σ is shown in Fig. S10b. According to the fitting results, the frequency random walk
and instability are calculated and shown in Table S2. The results show that the
signal transduction through the phonon-cavity system does not increase the
frequency noise. Interestingly, it shows that when operating under a blue pump, the
noise performance can even improve.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding authors on reasonable request.
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