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This study evaluated the agreement of fiducial marker localization between 
two modalities — an electronic portal imaging device (EPID) and cone-beam 
computed tomography (CBCT) — using a low-dose, half-rotation scanning pro-
tocol. Twenty-five prostate cancer patients with implanted fiducial markers were 
enrolled. Before each daily treatment, EPID and half-rotation CBCT images were 
acquired. Translational shifts were computed for each modality and two marker-
matching algorithms, seed-chamfer and grey-value, were performed for each set 
of CBCT images. The localization offsets, and systematic and random errors from 
both modalities were computed. Localization performances for both modalities 
were compared using Bland-Altman limits of agreement (LoA) analysis, Deming 
regression analysis, and Cohen’s kappa inter-rater analysis. The differences in the 
systematic and random errors between the modalities were within 0.2 mm in all 
directions. The LoA analysis revealed a 95% agreement limit of the modalities 
of 2 to 3.5 mm in any given translational direction. Deming regression analysis 
demonstrated that constant biases existed in the shifts computed by the modalities 
in the superior–inferior (SI) direction, but no significant proportional biases were 
identified in any direction. Cohen’s kappa analysis showed good agreement between 
the modalities in prescribing translational corrections of the couch at 3 and 5 mm 
action levels. Images obtained from EPID and half-rotation CBCT showed accept-
able agreement for registration of fiducial markers. The seed-chamfer algorithm 
for tracking of fiducial markers in CBCT datasets yielded better agreement than 
the grey-value matching algorithm with EPID-based registration.

PACS numbers: 87.55.km, 87.55.Qr
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I. InTroduCTIon

Prostate-implanted fiducial markers have been used as surrogate indicators for the position of the 
prostate gland for image-guided radiotherapy (IGRT), and studies have shown that markers are a 
significantly better surrogate for the true position of the prostate gland than bony landmarks.(1,2)  
Fiducial markers have been widely used in conjunction with the electronic portal imaging device 
(EPID), where stereoscopic rigid-body registration based on two electronic portal images is 
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adopted as the image registration method for setup verification. However, the EPID images do 
not provide soft tissue information.

Cone-beam computed tomography (CBCT) of the patient in the treatment position has gained 
wider applications for setup verification during radiotherapy. This IGRT method enables thera-
pists to visualize soft-tissue images of the target organs, as well as the status of surrounding 
normal structures, during fractionated radiotherapy and therefore provides greater confidence for 
the use of smaller margins. This is particularly important for target organs, such as the prostate, 
that are highly mobile and located in close proximity to other critical structures.

Although CBCT provides valuable soft tissue information when the patient is in the treatment 
position during IGRT, there are three main concerns associated with this imaging modality: 
the extra imaging dose and time, and the accuracy of localization using various registration 
(matching) algorithms.

While the imaging dose from the EPID can be easily incorporated into the treatment dose, it 
is challenging to do the same with CBCT. Several studies have been conducted to investigate 
the extra dose from imaging received by patients during IGRT using kV-CBCT. Létourneae 
et al.(3) reported isocenter and surface dose of 2.8 cGy and 4.4 cGy, respectively, in a 32 cm 
diameter body phantom from the Elekta XVI kV-CBCT. Islam et al.(4) reported point doses 
that ranged from 1.6 to 2.3 cGy per scan at various depths in a cylindrical body phantom using 
the same CBCT system. Hammoud(5) reported doses range from 1.5 to 2.5 Gy to the skin and 
1.3 to 1.8 Gy to the body for 42 fractions of prostate treatments from measurements using 
thermoluminescent dosimeter (TLD). In a more recent study, Ding et al.(6) reported pelvis 
scan dose of 1 to 2 cGy for a full rotation pelvis scan. The Ding study also reported that the 
dose increases up to two times as the patient size decreases. The radiation dose from imaging 
poses an associated risk and should be minimized.(7) It has been reported that patient position 
verification by standard mode kV-CBCT on a daily basis could increase the secondary cancer 
risk by up to 4%.(8) The use of CBCT is also relatively time-consuming due to the time taken 
for scanning and image reconstruction, which may impact treatment sites with large intrafrac-
tion setup variation, such as the prostate.

The accuracy of CBCT localization has also been shown to depend on the method and 
algorithm used respectively to acquire and register the treatment and reference images. Several 
studies have reported that the use of grey-value algorithm for matching of soft tissue during 
prostate radiotherapy does not produce accurate alignment of the prostate in the translational 
directions during IGRT. Shi et al.(9) compared soft-tissue–based to fiducial marker-based manual 
alignment on 12 prostate patients and found large discrepancies along the superior–inferior 
(SI) and anterior–posterior (AP) direction alignments, with mean errors  of -5.5 ± 4.8 mm and 
-3.1 ± 4.3 mm, respectively. Logadόttir et al.(10) compared daily prostate localization for 20 
patients on CBCT scans and fiducial markers and concluded that the CBCT soft-tissue–based 
setup needs 1 mm larger setup margins than the fiducial-based setup to account for translational 
shifts. The Pearson’s correlation coefficients of translations in the SI and AP directions for the 
soft-tissue–based and fiducial marker-based matching in the Logadόttir study were 0.24 and 
0.48, respectively, indicating modest agreements. Similar results were obtained by Moseley 
et al.(11) in a study comparing localization performance of fiducial markers and EPID versus 
soft-tissue from CBCT images for 15 prostate patients. The results showed relatively weak 
agreements between the two methods for translations in the SI and AP directions, with Pearson’s 
correlation coefficients of 0.51 and 0.49, respectively.

In the imaging protocols provided by Elekta XVI R4.5 kV-CBCT system (Elekta Limited, 
Crawley, UK), volumetric images can be acquired by rotating the kV X-ray tube and detector 
through 360° or 200° around the patient. The acquisition time and imaging dose are lower when 
images are acquired with 200° rotation (hereafter referred to as half-rotation) rather than 360°. 
The half-rotation CBCT protocol is widely used for IGRT of head and neck where there is 
minimal movement of the target volume and surrounding structures, and is the standard preset 
for head and neck imaging in Elekta XVI kV-CBCT. The large number of bony structures at 
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the head and neck enables the image registration procedure to be performed accurately even 
with the relatively low-quality images generated from half-rotation CBCT. This is because 
the registration algorithm uses the pixel values from the bony structures on the computed 
tomography (CT) images for matching, and these values are largely unaffected by changing 
the image acquisition mode from full-rotation to half-rotation CBCT since the high contrast 
of bony structures is preserved.(12) The version of software used in this study also includes an 
automatic seed-chamfer matching algorithm for registration of reference and treatment images 
using fiducial markers as surrogates for the target volume. 

In this study, we applied a half-rotation imaging protocol using kV-CBCT with localization 
based on fiducial markers for the correction of setup uncertainties during prostate radiotherapy. 
The aim is to examine the paired software-calculated shifts obtained from EPID and half-rotation 
kV-CBCT images using a daily correction strategy for method comparison. The results from this 
clinical study provide information about the localization performance of half-rotation CBCT in 
conjunction with the seed-chamfer matching algorithm in the clinical environment, compared 
to the more established method of EPID-based IGRT of the prostate. 

 
II. MATErIALS And METHodS

A.  CBCT dose measurement
Dose measurement was performed based on the method described by Kim et al.(13) to quantify 
the imaging dose delivered using the half-rotation CBCT protocol used in this study. In this 
method, point doses at five different locations in a CT dose index (CTDI) cylindrical body 
phantom using a CT dose profiler (RTI Electronics AB, Mölndal, Sweden). The point doses 
measured were considered as the CTDI values, assuming that dose equilibrium was achieved 
as described in Dixon’s point dose method.(14) The weighted CTDI (CTDIw) which repre-
sent the average dose in the phantom, was calculated according to the following formula by  
Leitz et al:(15)

 CTDIw = 1/3 CTDIcenter + 2/3 CTDIperipheries        (1)

where CTDIcenter is a point dose at a central axis and CTDIperipheries is an average point dose at 
the peripheries of the body phantom. 

Imaging dose of the full-rotation CBCT were also measured for comparison. The scanning 
parameters for half-rotation CBCT and full-rotation CBCT are shown in Table 1. 

Table 1. Detailed scan parameters of the half-rotation and full-rotation protocols used for imaging dose 
measurement.

 Scan Protocol
 Half-rotation CBCT Full-rotation CBCT

Peak voltage (kVp) 120 120
Number of frames 366 660
Nominal mAs per frame 16 16
Nominal ms per frame 20 20
Total mAs 117.1 211.2
Acquisition angle  (deg) 200 360
Gantry rotation speed (deg/min) 180 180
Scanning time (sec) 67 120
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B.  Patient cohort
A group of 25 consented prostate cancer patients with implanted fiducial markers were treated 
with radical intent by three-dimensional conformal radiation therapy or intensity-modulated 
radiotherapy using Elekta Synergy or Elekta Axess linear accelerators (Elekta Limited). Each 
patient was implanted with Acculoc 99% pure gold fiducial markers (Civco Medical Systems, 
IA, USA) measuring 3 mm length by 1.2 mm diameter, not less than one week prior to planning 
CT. Each patient was also briefed about drinking 375 ml of water after voiding approximately 
1 hour prior to treatment. Out of the 25 patients, 21 were prescribed with 74 Gy in 37 daily 
fractions, while the remaining four were prescribed with 76 Gy in 38 fractions.  

C.  Image acquisition
To compare the localization performance using half-rotation CBCT and EPID, images were 
acquired with both modalities before each daily treatment session. Portal images were taken 
immediately after setup of the patient on the couch based on the position of lasers and skin 
tattoos. Portal images were acquired at subtended angles between 50° to 130° and stored for 
off-line analysis.  

A CBCT dataset with slice thickness of 2 mm was acquired using the half-rotation CBCT 
protocol with X-ray tube setting of 120 kVp and 117 mAs immediately after the acquisition 
of portal images and before treatment. The reconstruction resolution was set at 1 mm3 and a 
filtered back-projection technique was employed in the reconstruction of 3D volumes.(16) 

Seed-chamfer registration was performed to match the CBCT scans with the planning CT 
using the XVI software version 4.5 (Elekta Limited). The isocenter shifts in three translational 
and rotational axes were computed. However, only the translational couch correction was 
performed, as the patient support system was unable to correct for the rotational components 
at the time in this study. 

d.  Image registration
An off-line stereoscopic image registration was performed on the portal image pairs using 
MOSAIQ R1.6 (Elekta/Impac Medical Systems, Sunnyvale CA). Both images were scaled 
manually before the image registration process. The isocenters of the portal images were 
determined using a process called field edge detection. In this process, the edges of the portal 
field, which were defined by the multileaf collimators, were first identified. These field edges 
were transposed onto the corresponding DRRs and adjusted, if necessary, to obtain the best fit 
within the DRR field. Once this was done, the position of the isocenter was established in the 
portal images. The fiducial markers visible on both treatment portals were then identified and 
matched to the reference DRRs using the point-based rigid body registration algorithm. The 
translations in the three cardinal axes were recorded.

Two different methods were used to register the volumetric CBCT images with the refer-
ence CT images in this comparison study. The first registration method was the seed-chamfer 
technique, which was used for online correction during treatment. In this method, the ‘mask’ 
tool was used to mark all the fiducial markers visible on the CBCT scans. The seed-chamfer 
algorithm selects only high-density pixels with at least 1.5 times the density of water, presumed 
to correspond to fiducial markers, for registration. The XVI software computed the deviations 
of the positions of the fiducial markers between the localization CBCT images and reference 
CT images, and the results were used for online correction.

The second image registration method, which was performed off-line, was the grey-value 
matching technique. In this technique, a ‘clipbox’ was used to define the region of interest for 
grey-value registration. This clipbox encompassed the PTV and all fiducial markers identified 
in the CBCT images. The grey-value algorithm uses all the pixel information, including that 
of the fiducial markers and the surrounding soft tissue inside the clipbox, for matching using 
the grey-level correlation ratio algorithm.(17) 
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Both CBCT registration algorithms/methods use information about the fiducial markers 
for registration. However, the algorithms assign different importance or priority to the various 
surrogates for registration; the seed-chamfer and grey-value algorithms designate the fiducial 
markers and soft tissue, respectively, as priority surrogates for registration. 

The XVI software can compute the registration results in terms of translations and rota-
tions about three axes. However, for the purpose of this study, the rotational component of the 
XVI software was disabled to allow computation in the translational components only. This 
is because the version of MOSAIQ used during the study for performing stereoscopic regis-
tration of portal images was unable to solve for rotational components. Off-line analysis was 
performed by a single expert user to eliminate interobserver variability. Online analysis was 
performed by various users during treatment but the interobserver variability was anticipated 
to be minimal, as matching of fiducial markers was automated by the XVI software using the 
seed-chamfer algorithm.

E.  Statistical analysis 
Analysis was performed for the translational shifts of the isocenter position along the three 
axes, AP, LR and SI, for each daily session for each patient. The mean systematic error (M), 
systematic error (Σ) and random error (σ) were calculated for each registration method from 
the software-suggested shifts based on the method described by van Herk.(18) 

Agreement between the two registration methods was assessed using the 95% limits of 
agreement (LoA) analysis with multiple observations per patient.(19) The LoA method allows 
the user to assess the agreement between datasets obtained from two methods from a plot of the 
differences (y-axis) versus the mean of the two measurements (x-axis). The plots also include 
two reference lines, representing the 95% LoA, which were estimated as the mean difference 
± 1.96 multiplied by the standard deviation of the difference.

Deming orthogonal regression was performed to evaluate the bias-corrected correlation 
between paired measurements using the ratio of variances between EPID and CBCT cohorts, 
as well as the proportional and constant biases between methods.(20) The clinical policy in our 
institution requires couch correction to be executed if there is a shift of 5 mm or greater in any 
translational direction for verification using EPID. Cohen’s kappa inter-rater analysis(21) was 
performed to compare the agreement between the two image-guidance methods for prescrib-
ing couch corrections at 3 and 5 mm action levels. The aim of this analysis was to evaluate the 
agreement between the two methods for selecting one of two possible actions: ‘perform couch 
correction’ and ‘do not perform couch correction’. The Cohen’s kappa coefficient κ indicates the 
proportion of agreements that was observed between the image-guidance methods, after adjust-
ing for the proportion of agreements that occurred by chance. The computed values of κ range 
from 0 to 1, with the value of 1 indicating perfect (complete agreement). Landis and Koch(22) 
proposed a guideline to interpret the values of κ into the ordinal scale, whereby comparisons 
yielding values κ larger than 0.81 are classed as ‘very good’, larger than 0.61 as ‘good’, larger 
than 0.41 as ‘moderate’, larger than 0.21 as fair, and no larger than 0.20 as ‘poor’.  

 
III. rESuLTS 

A total of 873 paired software-suggested shifts of half-rotation CBCT and EPID were captured 
during the course of radiotherapy for the 25 patients in this study, with a mean of 37 alignment 
pairs per patient.

Dose measurement using a CTDI body phantom revealed that the half-rotation CBCT pro-
tocol used in this study delivers a CTDIw of 3.7 mGy per scan, compared to 6.7 mGy from the 
full-rotation CBCT protocol.

The values of M, Σ, and σ for both modalities are shown in Table 2. The differences in the 
values of M, Σ, and σ between registrations based on EPID and half-rotation CBCT using 
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 seed-chamfer and grey-value matching algorithms were within 0.2 mm in all directions. They 
were also observed to be the largest in the AP direction. The random errors (σ) were consistently 
larger than the systematic errors (Σ) by approximately 1 mm in all directions.

The method comparison using the LoA analysis is shown in Table 3. The comparison of 
registrations with EPID and half-rotation CBCT (seed-chamfer) resulted in mean differences of 
0.2 ± 1.2 mm, -0.4 ± 1.5 mm, and 0.0 ± 1.4 mm in the LR, SI, and AP directions, respectively. 
The 95% LoA were -2.5 to 2.5 mm, -3.4 to 2.4 mm, and -2.8 to 2.8 mm in the LR, SI, and AP 
directions, respectively. The comparison using EPID and half-rotation CBCT (grey-value) 
showed relatively poor agreement, with mean differences of 0.1 ± 1.3 mm, -0.6 ± 1.7 mm, and 
0.2 ± 1.6 mm in the LR, SI, and AP directions, respectively, and 95% LoA of -2.5 to 2.8 mm, -3.8 
to 2.7 mm, and -3.0 to 3.4 mm in the LR, SI, and AP directions, respectively. Both comparisons 
revealed the narrowest and widest 95% LoA in the LR and SI directions, respectively.  

Figure 1 shows the bivariate scatter plots, with Deming regression fit and line of identity, 
comparing EPID and half-rotation CBCT for localization. The solid line represents the Deming 
regression fit and the dashed line represents the line of identity. If both imaging modalities 
agreed perfectly, the Deming regression fit would coincide exactly with the line of identity. 
Visually, the comparison between results of registrations with EPID and half-rotation CBCT 
(seed-chamfer) show near-perfect agreement, with the Deming regression fit almost identical 
to the line of identity. The proportional and constant biases between methods are summarized 
in Table 3. Comparisons generally showed good agreement, with no constant or proportional 
bias at p < 0.05. However, nonzero constant biases were exhibited in the SI direction in the 
comparisons of registrations with EPID versus half-rotation CBCT for both seed-chamfer and 
grey-value matching algorithms. 

Table 4 summarizes the results of Cohen’s kappa analysis comparing the agreement 
between methods/matching techniques in prescribing translational corrections of the couch 
at 5 mm action level. The κ values obtained were 0.65, 0.61, and 0.68 in the LR, SI, and AP 
directions, respectively, for the comparison between EPID and half-rotation CBCT using 
seed-chamfer algorithm, which correspond to ‘good’ agreements according to the Landis and 
Koch criteria. The comparison between registrations with EPID and half-rotation CBCT using 
grey-value matching yielded slightly lower κ values of 0.61, 0.59, and 0.60 in the LR, SI, and 
AP directions, respectively. Both comparisons yielded the best agreement in the LR direction. 
Table 5 summarizes the results of Cohen’s kappa analysis comparing agreement between  

Table 2. The translational errors M, Σ, and σ in the LR, SI, and AP directions for image registration with EPID and 
half-rotation CBCT (seed-chamfer and grey-value matching algorithms) (all values in mm).

Modality/Registration  LR SI AP
 Technique M Σ	 σ	 M Σ	 σ	 M Σ	 σ

EPID  -0.1 1.4 2.3 -0.2 1.5 2.5 -0.3 1.7 2.7
CBCT (seed-chamfer) -0.3 1.4 2.4 0.3 1.4 2.6 -0.3 1.7 2.8
CBCT (grey-value) -0.2 1.3 2.4 0.4 1.4 2.5 -0.5 1.5 2.7

Table 3. The results of Bland-Altman LoA analysis for method comparison between EPID and half-rotation  
CBCT (mm).

 LR SI AP 
Modality/Registration Difference  Difference  Difference
 Technique (Mean ± SD)  95% LoA (Mean ± SD) 95% LoA (Mean ± SD) 95% LoA

EPID vs. CBCT
(seed-chamfer) 0.2±1.2 -2.5 to 2.5 -0.4±1.5 -3.4 to 2.4 0.0±1.4 -2.8 to 2.8

EPID vs. CBCT
(grey-value) 0.1±1.3 -2.5 to 2.8 -0.6±1.7 -3.8 to 2.7 0.2±1.6 -3.0 to 3.4
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methods/matching techniques in executing translational corrections of the couch at a 3 mm 
action level. The results were similar to those for an action level of 5 mm. Kappa coefficients 
were generally higher for the 3 mm action level in the LR and AP directions compared to the 
5 mm action level. Intermodality comparison between EPID and CBCT (seed-chamfer and 
grey-value algorithms) yielded moderate and good agreement with kappa coefficients ranging 
from 0.53 to 0.75 in all directions. Intramodality comparison between seed-chamfer and bony-
match algorithms showed poor agreement in the SI and AP directions with kappa coefficients 
of 0.18 and 0.28, respectively.

 

Fig. 1. Scatter plots of translational shifts from half-rotation CBCT (seed-chamfer) and EPID in the (a) LR, (b) SI, and 
(c) AP directions, as well as the translational shifts from half-rotation CBCT (grey-value) and EPID in the (d) LR, (e) SI, 
and (f) AP directions. The solid line is the Deming regression fit and the dotted line is the line of identity.

Table 4. The Cohen’s kappa coefficient (κ) for method comparison in executing translational couch correction at 5 mm 
action level. The agreement in ordinal scale is according to the Landis & Koch criteria.(22)

Modality/Registration LR SI AP
 Technique κ  (95% CI) Agreement κ  (95% CI) Agreement κ (95% CI) Agreement

EPID vs. CBCT  0.65  0.61  0.68
(seed-chamfer) (0.61 to 0.69) Good (0.57 to 0.65) Good (0.65 to 0.72) Good

EPID vs. CBCT  0.61  0.59  0.60
(grey-value) (0.57 to 0.65) Good (0.55 to 0.63) Moderate (0.55 to 0.63) Moderate
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IV. dISCuSSIon

This study has demonstrated that CBCT-based registration of fiducial markers can be consid-
ered consistent with the more established technique of EPID-based registration, particularly if 
the seed-chamfer algorithm is used to register the CBCT dataset. Further, the images obtained 
from the half-rotation protocol are of sufficient quality for registration of fiducial markers. 
The Bland-Altman LoA analysis showed that 95% of registrations performed with CBCT in 
conjunction with the seed-chamfer algorithm would yield translations that would agree with 
EPID-based registrations to within 2.0 to 3.5 mm. The agreement limits are comparable with 
the results of the investigation by Moseley et al.(11) and Owen et al.(23) with the limits of 1.5 to 
4.0 mm and 0.2 to 3.9 mm, respectively. (Note that the LoA of the Owen study were set to a 
3 mm threshold.) In all studies, the LoA are poorest in the SI direction. The LoA method does 
not prescribe a threshold for agreement, as this should be set according to clinical requirement. 
In the case of this study, the LoA of the translational shifts were all within the nonzero action 
level for of 5 mm for couch correction. Therefore, it is concluded that the two methods of 
localization can be used interchangeably at a 5 mm action level.

Deming regression analysis identified constant biases between registrations with EPID and 
half-rotation CBCT in the translational SI direction. This was probably due to the finite thickness 
of CT slices (2 mm) used along the SI direction, which limited the accuracy of registration in 
this axis. No proportional bias was observed for any method comparison. It should be noted that 
a constant bias is easy to account for using a linear differential, as opposed to the proportional 
error component which may exhibit a different mathematical relationship.

The results of the Cohen’s kappa inter-rater analysis were consistent with the LoA analy-
sis, and confirmed that the two image-guidance methods can be considered interchangeable 
at a 5 mm action level. A detailed assessment of the coefficients revealed the best and worst 
agreement in the LR and SI directions, respectively, which is consistent with other method 
comparison studies.(10,11,23)

The seed-chamfer matching algorithm of half-rotation CBCT has been shown to consistently 
yield better agreement with EPID-based registration than the grey-value matching algorithm 
for translational shifts. The seed-chamfer algorithm uses only pixels with density at least 1.5 
times that of water, presumed to correspond only to fiducial markers, whereas the grey-value 
algorithm uses all pixels within the clipbox for registration. It has been reported that the rigid-
body registration of soft tissue alone for translational shift is not as accurate in the presence of 
organ deformation due to temporal physiologic activities(24-26) and this may explain the slight 
inferiority of the grey-value algorithm compared to the seed-chamfer algorithm in achieving 
agreement with the fiducial-based registration with EPID.

The results obtained from this study were purely from the software itself with minimal human 
intervention, as the aim of this study is to examine the paired software-calculated shifts obtained 
from EPID and half-rotation kV-CBCT images. The only intervention performed was in the 
adjustment of the clipbox for registration for any invalid image registration. After obtaining the 

Table 5. The Cohen’s kappa coefficient (κ) for method comparison in executing translational couch correction at 3 mm 
action level. The agreement in ordinal scale is according to the Landis & Koch criteria.(22)

Modality/Registration LR SI AP
 Technique κ (95% CI) Agreement κ (95% CI) Agreement κ (95% CI) Agreement

EPID vs. CBCT 0.75  0.60  0.71
(seed-chamfer) (0.72 to 0.79) Good (0.56 to 0.63) Moderate (0.68 to 0.74) Good

EPID vs. CBCT 0.71  0.53  0.63
(grey-value) (0.68 to 0.75) Good (0.49 to 0.57) Moderate (0.59 to 0.66) Good
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registration results, the treatment staffs carried out manual intervention (for example, manually 
corrected for the registration for any substandard software registration). However, the results 
of any significant manual adjustment were not considered in this study.

A few factors may contribute to the discrepancies between half-rotation CBCT and EPID for 
localization. Firstly, the finite thickness of CBCT slices limited the accuracy for determining 
position of fiducial markers in the SI direction. Secondly, the relatively poor quality of EPID 
images obtained using EPID may reduce the accuracy of identifying fiducial markers. Thirdly, 
there was a time gap (approximately 2 minutes) between the acquisition of the CBCT scan and 
EPID images, and accuracy of localization was thus subjected to the intrafraction displacement 
of the prostate. Some of the factors were larger on certain treatment fractions, thus causing 
some outliers in the comparison dataset, as can be observed from Fig. 1. For example, in some 
treatment fraction, the very poor image quality obtained using EPID caused large uncertainty 
in identifying the markers. However, it is expected that these outliers do not contribute signifi-
cantly to the mean and root mean square difference between the two methods, since the number 
of these outliers is relatively small.

The presence fiducial markers contributed significantly to the matching in the grey-value 
matching algorithm where the success rate was very high. This result is in contrast to the one 
described by Smitsman et al.(17) as they did not use fiducial markers in their grey-value match-
ing. There were some instances where the matching of fiducial markers failed due to significant 
rotation, but that occurred in very small number.

Our results have shown that we can use half-rotation CBCT and EPID as image-guidance 
methods interchangeably. In situations where we use half-rotation CBCT for image guidance 
specifically for prostate patients implanted with fiducial markers, we have EPID as a backup 
modality in the case of equipment failure in imaging on any treatment day, or vice versa. This 
study has also demonstrated the feasibility of using half-rotation CBCT protocol for daily 
setup correction during the IGRT of prostate. The additional information of soft tissues from 
the CBCT scans enables the treatment staff to detect substantial changes in the status of the 
rectum and bladder during radiotherapy of the prostate. During this clinical study, a few patients 
have been counseled on the importance of strictly observing the bowel preparation protocol 
because of consistent variability of the volume and/or position of the rectum and bladder dur-
ing radiotherapy. 

The half-rotation CBCT protocol used in this study reduced the imaging dose by reducing 
the scan angle by approximately half and subsequently decreasing the number of acquired 
frames from 660 to 366. If pretreatment scans are recorded before each fraction, the total imag-
ing dose delivered using the half-rotation CBCT protocol would be around 14 cGy, which is 
approximately 0.2% of the total prescribed treatment dose of 74 Gy or 76 Gy. Adopting 0.2% of 
a treatment dose as the imaging dose limit recommended by Murphy et al.,(27) the half-rotation 
CBCT protocol used in this study would satisfy this dose limit. Further, we have found in a 
separate study that the of image quality obtained from the half-rotation protocol was comparable 
to that obtained from a full rotation. This is consistent with the findings by Kowatsch et al.,(28) 
where a reduction in projection data due to reduced scan angle did not significantly deteriorate 
the image quality parameters.

A limitation of this prospective study is that the rotational displacement cannot be determined 
from the version of MOSAIQ software used for stereoscopic registration using EPID. A study 
by Logadόttir et al.(10) reported that soft-tissue–based verification is more accurate than fiducial 
marker-based verification for determining the rotational shift. Also, as per our institutional 
protocol, the XVI software calculated the shifts using six degrees of freedom, which included 
rotational shifts around three axes. We recognized that a large rotation may affect the shift in 
the translational directional, but this will not impact significantly the results of our comparison 
study here as the rotational errors in our cohort of patient are generally small (mean of 0.7°). 

Another limitation is that the fiducial marker migration was not considered in this study. 
However, studies have shown that fiducial marker migration during a course of radiotherapy is 
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minimal.(29,30) Furthermore, fiducial marker migration is anticipated to have little effect on the 
statistical analysis for method comparison, as any change in the position of fiducial markers 
should affect all imaging modalities. The fiducial marker migration is also expected to have 
less impact on the grey-value registration than on the seed-chamber registration.

 
V. ConCLuSIonS

There is acceptable agreement between registrations of fiducial markers with EPID and half-
rotation CBCT. Registrations of the CBCT datasets using the seed-chamfer algorithm resulted in 
maximum 95% LoA of 3.5 mm with stereoscopic registration of portal images. The maximum 
95% LoA between grey-value registrations of CBCT datasets and portal images was 3.8 mm. 
The half-rotation CBCT- and EPID-derived translational shifts were shown to be equivalent for 
couch correction at 3 and 5 mm action level and thus can be used interchangeably. The setup 
uncertainties of the imaging modalities are similar in magnitude, with the largest uncertainty 
in the AP direction. This information can be used to design the image-guidance strategy and 
treatment margins for radiotherapy of the prostate. 

This study has shown that low-dose, half-rotation CBCT is feasible for daily online image 
guidance of the prostate implanted with fiducial markers. The accuracy of this method is compa-
rable to that of EPID and also provides images of acceptable image quality for the visualization 
of targeted critical organs, as well as for the assessment of treatment response.
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