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ABSTRACT: Calculating absolute binding free energies is challenging and
important. In this paper, we test some recently developed metadynamics-
based methods and develop a new combination with a Hamiltonian replica-
exchange approach. The methods were tested on 18 chemically diverse
ligands with a wide range of different binding affinities to a complex target;
namely, human soluble epoxide hydrolase. The results suggest that
metadynamics with a funnel-shaped restraint can be used to calculate, in a
computationally affordable and relatively accurate way, the absolute binding
free energy for small fragments. When used in combination with an optimal
pathlike variable obtained using machine learning or with the Hamiltonian
replica-exchange algorithm SWISH, this method can achieve reasonably
accurate results for increasingly complex ligands, with a good balance of
computational cost and speed. An additional benefit of using the
combination of metadynamics and SWISH is that it also provides useful
information about the role of water in the binding mechanism.

■ INTRODUCTION

Reliably estimating target-ligand binding free energies (BFEs)
is a challenging and important task in computer-aided drug
discovery (CADD). In recent years, thanks to significant
improvements in protein and ligand force fields,1−4 parallel
molecular dynamics (MD) codes,5 and enhanced sampling
algorithms,6,7 the calculation of relative and absolute binding
free energies has become more accurate and more accessible.8,9

In particular, recent advances in free energy perturbation
(FEP) methodologies have made them amenable for routine
and successful use in drug discovery pipelines.10−13 Although
this mainly applies to the determination of relative BFEs,
which can be used in the hit-to-lead optimization phase,
significant progress14−16 has been made in the calculation of
absolute binding free energies (ABFEs) using alchemical
approaches, such as double decoupling methods.17−23

However, the routine use of alchemical methods for the
calculation of ABFEs still faces a number of challenges,
especially with targets that undergo significant conformational
changes, as well as with charged or noncongeneric
ligands.24−26 A valid alternative for performing ABFE
calculations is found in collective-variable-based free energy
methods. Umbrella sampling27,28 and metadynamics6,9,29 have
repeatedly been used to compute the ABFE along physical
binding trajectories associated with both simple and complex
systems.18,30−33 In contrast to alchemical ones, these methods

can be used to directly enhance the exploration of target
conformational changes. Moreover, they also explore meta-
stable minima and transition states that determine binding
kinetics while, due to their nature, alchemical methods only
sample the bound and unbound states. However, their
suitability for drug discovery pipelines is reduced by two
main factors: the need to define an optimal set of collective
variables (CVs) and their computational cost. With respect to
optimal coordinates that approximate the association path,
pathlike variables such as PathCVs have been successful34,35

but require knowledge of end states that is not always available.
Alternatively, smart boundaries (e.g., funnel shaped) as in
funnel metadynamics have been proposed.9 In spite of all this
progress, however, designing optimal CVs for many systems is
complicated and time-consuming. In these cases, metady-
namics and umbrella sampling have been combined with
multiple replica approaches such as parallel tempering to
improve their convergence with nonoptimal CVs.36−38 These
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approaches allow one to converge the free energy associated
with ligands binding to very flexible systems, such as GPCRs,
with remarkable accuracy.39 However, the computational cost
of multiple replica methods such as PT-metaD or ITS-
umbrella sampling,40 compounded by the long sampling times
needed to converge the BFE profiles, is prohibitive for most
CADD tasks.
Recently a number of strategies have been developed to

overcome the historic limitations of CV-based methods,

increasing their potential to be routinely included in drug
discovery pipelines. Here we combine the strengths of some of
these more promising methods, including a new implementa-
tion of funnel metadynamics,41 optimal machine-learning-
based collective variables,42 and a Hamiltonian replica-
exchange algorithm.43,44 Our aim is to estimate the perform-
ance and accuracy of these methods in calculating ABFE in a
complex and realistic target, establishing the areas in which
each one excels. We also report on the relative balance

Figure 1. A) Cartoon representation of human soluble epoxide hydrolase (sEH). This protein is formed by an N- and a C-lobe connected through
a long linker. In the C-lobe the regions directly related to the large binding pocket are highlighted in yellow. B) The volume of the binding cavity is
shown colored in cyan for the right-hand side (RHS), orange for the narrow tunnel, and purple for the left-hand side (LHS) pockets. C) C-lobe of
sEH is shown in gray cartoon interacting with a fragment that contains a urea-like motif in yellow sticks (Protein Data Bank (PDB) code: 5ai5).
The residues surrounding the binding cavity are shown as sticks. The main interactions between the protein and the ligand are indicated with
dashed lines.

Figure 2. A) Cartoon representation of the C-lobe of sEH. The ligands selected for our simulations are shown as sticks in their initial positions
taken from their respective X-ray structures. The PDB code of crystallized and selected complexes for our study will be used throughout the
manuscript to refer to the crystallized ligands in complexes mentioned. B) Chemical structure of RHS ligands, colored in cyan in (A), crystallized
together with the target could be found under PDB IDs 5am4, 5aly, 5akh, 5am0, 5alx, and 5aia. C) Chemical structure of LHS ligands, colored in
purple in (A), crystallized together with the target could be found under PDB IDs 5alo, 5alt, 5akg, 5akk, 5ai0, and 5ak6. D) Chemical structure of
narrow-tunnel ligands, colored in yellow in (A), could be found under PDB IDs 5am1, 5am3, 5alg, 5alp, 5alh, and 5ai5. The latter ligands contain
the urea-like motif colored in orange, which sits in the tunnel position.
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between accuracy, computational cost, and speed of each of
them, providing some guidelines on their application in
different settings.
To test the chosen methods, we have selected a complex and

realistic target, the human soluble epoxide hydrolase (sEH)
and a number of noncongeneric ligands spanning a wide range
of affinities and sizes. This enzyme has enduring pharmaceut-
ical45 and computational46,47 significance, and a proof of that is
the number of inhibitors that have been synthesized.48 The
first generation of compounds mostly contained urea-like
motifs that participate in H-bonding interactions with the
active-site residues. More recently, inhibitors with a greater
diversity of structural features have been developed.49 From a
structural point of view, human sEH is interesting due to its
flexibility and the large binding site (see Figure 1). The binding
site is located in the C-lobe with two pockets, the right-hand
side (RHS) and the left-hand side (LHS), connected by a
narrow channel, giving the appearance of a dumbbell shape
accessible from two different directions (Figure 1B).
High-resolution structures for a large variety of ligand−

complexes are available. In particular, Öster and co-workers50

have published a useful database, that provides more than 50
structures of human sEH-ligand complexes together with
thermodynamic data and therefore offers a comprehensive
view of the active site in terms of protein−ligand
interactions.49 The variety of the inhibitors resides in the
groups selected to cover the space in the RHS and LHS,
respectively.
To investigate the performance of the free energy methods,

we have selected 18 different ligands, from the Öster
database,49,50 binding to the narrow tunnel (6 systems), the
RHS (6 systems) and the LHS pockets (6 systems, see Figure
2). Our results show that metadynamics with funnel-shaped
restraints (fun-metaD) yields reasonably accurate results for
the smallest fragments with a relatively low computational cost.
For more complex ligands, COMet-Path and the combination
of metadynamics with Hamiltonian replica-exchange (fun-
SWISH) achieve better results, increasing the success rate of
ABFE prediction from 50% to 80−90% with respect to fun-
metaD (see Tables 1 and 2). The results were obtained with an
aim to keep the computational costs low (see Figure S1) and
work equally well with ligands that have larger dimensions and
that are noncongeneric (see the Results and Discussion section
and Figure S2 for details). An added bonus of the fun-SWISH
approach is that it also provides detailed information about the
role of the solvent in the binding.
Overall, with generic CVs that can be used for a range of

systems and by lowering the computational cost, we address
the most pressing challenges hindering the adoption of CV-
based free energy methods for ABFE evaluation in routine
computer-aided drug discovery pipelines.

■ RESULTS AND DISCUSSION
Selection of the Model. We performed an extensive set of

MD simulations (18) with the whole protein (Figure 1A) to
check whether or not the long linker and the N-lobe play a role
in the binding (e.g., by obstructing the access to the pocket).
As discussed in the SI (Figures S3−S6), the two lobes are, as
expected, dynamically independent, and there is no obstruction
of the pocket by the N-lobe.
Thus, having shown that simulating the full system does not

provide any specific advantage when it comes to modeling the
binding of ligands to the C-lobe cavity, we chose to focus on

simulating only those residues that comprise the C-lobe (aa
224−548). In order to confirm that this choice does not affect
the stability or shape of the binding site, we carried out 300 ns
of unbiased MD simulations for all the C-lobe−fragment
complexes and compared the results to those of the full system
(see Figures S7−S9).
As mentioned above, the selection of the ligands was made

by considering the resolution of the X-ray structure, the
chemical diversity, the sizes (which range from very small
fragments to long and flexible ligands), and the binding affinity.
A table reporting the most important features is in the SI
(Table S1). It is worth noting the different chemical and

Table 1. Systems Used for the Enhanced Sampling
Simulations with Experimental and Calculated Absolute
Binding Free Energies with the Combined Error in
Parentheses (in kcal mol−1)a

aAll of the values have been corrected for the standard volume and
funnel potential used, as described in refs 20 and 18. bExperimental
free energies were obtained from the relation ΔG = −RT ln(Ki) at T
= 298 K.49,50 cResults of fun-metaD for the funnel located over the
RHS (FRHS) and the LHS (FLHS) of the binding cavity for the whole
simulation time (500 ns). dResults of fun-SWISH and COMet-Path
methodologies applied at the funnel located over the left-hand side
(FLHS), for the whole simulation time (300 ns for fun-SWISH and 350
ns for COMet-Path). eResults up to 1000 ns of fun-SWISH
simulations.
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physical properties of the ligands based on the location in the
X-ray structures.
For instance, the ligands located at the narrow tunnel

contain a urea-like moiety with different bulky and aromatic
groups that are able to form hot-spot interactions with both
sides of the tunnel. In Figure 2D, the ligands are colored in
accordance with the part of the target they bind to, i.e., the
parts bind to the tunnel, colored in orange, to the RHS, in
cyan, and to the LHS, in purple. These ligands tend to contain
more than 20 heavy atoms, with a high molecular weight and a
number of rotatable bonds. Due to the presence of the urea-
like motif that yields strong hydrogen bond interactions with
the residues in the tunnel, these ligands are very stable for the

duration of the simulations (see Tables S1 and S2). The
ligands initially located in the RHS pocket are characterized by
the presence of aromatic rings, with lower flexibility and with a
“U” shape. Their number of heavy atoms and molecular
weight, as well as their number of rotatable bonds, are all
characteristic of fragments (Table S1). The ligands selected for
the LHS are small fragments, that are highly stiff and linear.
The root mean squared deviations (RMSDs) of ligands
crystallized in the LHS show large fluctuations, most likely
because these small ligands are located in a big flexible cavity
and because no important hot spots are formed (see Figures
S10 and S11 and Table S2).
To assess the ABFE of the binding and unbinding processes

of the different ligands to sEH we have used a combination of
different enhanced sampling techniques and machine learning
algorithms that have been developed in our group. For the
methods tested we have used the equilibrated C-lobe systems
obtained from the unbiased simulations.

Testing Metadynamics with Funnel-Shaped Bounda-
ries. The first enhanced sampling technique tested was funnel-
shaped restraint metadynamics (fun-metaD).9,41 The advant-
age of funnel-shaped restraints is related to the gain in speed of
the convergence. The restraints limit the exploration of the
ligand in the bulk water once it is unbound, and recrossing
between bound and unbound states is thus favored. Here we
use a novel translationally and rotationally invariant
implementation of the funnel-shaped restraints. This imple-
mentation is based on a vector that passes between centers of
mass of two groups of protein atoms (see the Computational
Methods section). Defining the orientation of the funnel in this
way ensures that a realignment of the structure to a fixed
orientation for the funnel-shaped restraint is no longer
required. Its computational cost is thus lower than that of

Table 2. Percentage Difference between Experimental and
Calculated Absolute Binding Free Energiesa

aThe color code shows the difference between the experimental and
the calculated binding free energies (ΔGcalc − ΔGexp) for each
methodology. If the difference is equal to and/or lower than 2 kcal
mol−1, then it is colored in green; if it is between 2 and 3.5 kcal mol−1,
then it is colored in orange; and if the difference is larger than 3.5 kcal
mol−1, it is colored in red. Only systems satisfying both convergence
criteria, i.e., a minimum number of recrossing events of 1 and a
combined error ≤2.5 kcal mol−1, are considered for these statistics. b

% when considering the 1 μs fun-SWISH simulations for 5am3, 5alg,
5alh, 5aly, 5am0, and 5alo.

Figure 3. A) Funnel-shaped restraints applied to the metadynamics. The values of the parameters used to define the funnel are indicated in the
table in Å. B) Representation of human sEH protein with one fragment molecule in the left-hand side (LHS, purple), tunnel (yellow), and right-
hand side (RHS, cyan) binding sites, respectively. The points P0, PL, and PR that define the vector direction for each funnel (LHS and RHS) are
indicated. See Computational Methods for details.
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the original “funnel metadynamics”9 and the resulting free
energy reconstruction is less noisy.
An important consideration when using these sorts of

boundaries is the location and the direction of the funnel.
Sometimes, e.g., for targets with small cavities, the choice is
evident. However, in more complex cases (as for sEH) the
parameters that define the funnel shape (see Figure 3) need to
be adapted to the cavity. This might make the efficiency of this
approach dependent on the structural complexity of the
protein cavity. In the specific case of human sEH, and due to
the especially elongated binding cavity, the definition of the
funnel axis is particularly challenging. Taking into consid-
eration the previous ligand exploration in the unbiased MD
simulations, we tested two different sets of funnel-shaped
restraints. The first of these was oriented over the right-hand
side (RHS), while the second was oriented over the left-hand
side (LHS) pocket of the large binding cavity. The ligand
could, therefore, explore all the pockets (RHS, tunnel, and
LHS) of the cavity and we could differentiate between them,
avoiding the possibility that the funnel could negatively affect
the convergence or the results. This allows an in-depth analysis
of the dependence on the choice of the funnel orientation and
shape (see Figure 3B and Computational Methods for
parameters and reference points selected).
Figure 4 shows the free energy surfaces (FES) reconstructed

for a single complex (PDB code 5ak6) with both funnel-shaped
restraints, FRHS and FLHS, respectively, after 500 ns of sampling.
It is evident from the FESs shown (see also Figures S12−S14
for the rest of the complexes), that the ligands can explore all
the pockets of the large sEH binding site during the fun-metaD
simulations. Additionally, any experimental results used for
comparison will make no distinction between the pockets, nor

will the crystallized binding pocket be guaranteed to be the
optimal binding pose for each ligand. Therefore, it was
proposed that the free energies could be reprojected onto the
RMSD space between bound and unbound reference
structures to provide a pocket-independent measurement of
the BFE. For the details of how the reference structures were
selected, refer to Computational Methods: Reprojection of the
Free Energy Surfaces. Table 1 compiles the calculated absolute
BFEs for the 18 holo complexes (the results for the reweighted
BFEs are gathered in Table S1), while Figure 7 (top) shows
the correlation between the calculated and experimental BFEs.
An important question with well-tempered metadynamics-
based methods is when to stop the simulation. This is
particularly important for ABFE calculations as their computa-
tional cost is an important concern. Here, after analyzing the
data with an eye on the balance of computational cost vs
accuracy, we have observed that the following general
convergence criteria yield good results: (i) at least one
recrossing (rebinding) event has to be observed, and (ii) the
combined error in the ABFE should be equal to or lower than
2.5 kcal mol−1. Of these two points, we would like to stress the
importance of the number of recrossing events. Without a
proper recrossing the relative height of the bound and
unbound free energy states might be incorrect. For this
reason, the systems with no recrossings in the simulation have
not been considered in Table 1 (systems indicated with red
X’s). Regarding the calculation of errors of predicted ABFE, we
have calculated them in two different ways: (i) the average
standard error and (ii) the oscillation along the time. However,
none of them were individually able to distinguish between the
systems or methodologies used. Consequently, a combination
of these two errors has been applied to define the second

Figure 4. Free energy surface (FES) for the binding/unbinding of the sEH-ligand complex (PDB code 5ak6) through the funnel-shaped restraint
metadynamics simulations FRHS (top) and FLHS (bottom). The central plots show the raw metadynamics FES, from which the BFE is measured
between the bound state, encompassing the tunnel (I), RHS (II), and LHS pockets (III), and the unbound state (IV). The funnel boundary is
shown in black. The right-most plots show the reweighted free energy surfaces, with RMSDOUT from a system-specific unbound reference structure
plotted against the RMSDIN from a system-specific bound reference structure. The regions that are taken as delimiting the bound (independent of
the pocket location) and unbound states are shown with the labeled squares. Contour lines are drawn every 2 kcal mol−1.
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criterion (see Computational Methods for details). Table 1
shows the combined error for all the systems and methods.
Based on these established criteria, we would recommend
systems with a combined error larger than 2.5 kcal mol−1 to be
extended to satisfy the convergence criteria.
For fun-metaD we have removed the data for 5am3 and 5alh

for both funnels, due to the lack of recrossings. Also, the
projection CV (pp.proj) obtained for 5alt with FRHS shows the
same behavior. Regarding the combined error, only two
systems with FRHS have an error larger than 2.5 kcal mol−1,
while for FLHS, five systems present an error greater than 2.5
kcal mol−1, demonstrating that these systems should be
extended to satisfy the convergence criteria. For the correlation
with experimental values, only the systems satisfying both
criteria have been considered in Table 2, which show the
success on the prediction of ABFE and how it compares with
the experimental value. For FRHS the number of ligands with a
ΔG within 3.5 kcal·mol−1 of the experimental value is larger
than for FLHS amounting to 77% and 58%, respectively (Table
2).
These results suggest that the direction of the funnel and the

different natures of the RHS and LHS pockets have a
significant influence on the ligand-binding process. For the
FRHS the binding/unbinding processes are governed by the
same protein environment, and better convergence is observed
in most of the cases. Meanwhile, for the FLHS the convergence
is more complicated, as evidenced by the success rate with the
new criteria, due to the larger space available to the ligands and
the lack of clear hot spots that could drive the binding/
unbinding processes (see Figures S11, S15−S18).
The dependence of the convergence of the free energy on

the size of the ligands is even more pronounced. For small
fragments, such as 5akk, the calculated BFE converges with
four or five recrossing events (Figure S18) and with small error
values throughout the simulation. Moreover, it reaches the
experimental BFE value after 200 ns of simulation,
independently of the direction of the funnel (Figure S21).
For the large ligands that bind in the tunnel or the RHS
pocket, however, the calculated BFE only starts to converge at
the end of the simulation, even when only considering the
systems that satisfied both criteria mentioned above (Figures
S19 and S20). It is thus not only the funnel orientation that has
an effect on the results but also the size of the ligands has a
clear influence on the BFE accuracy. This can be observed in
the correlation between the calculated and the experimental
BFEs when divided per site of crystallization (Figures S23 and

S24). In this case, there is a slight increase in the correlation
for small and less flexible fragments (R2 of 0.50 and 0.41 for
ligands that crystallized in the RHS and LHS pocket at FRHS).
Altogether, this result shows that the large and highly flexible
ligands are not converged, and in most of these cases, the
simulations should be extended to reach the convergence
criteria of minimum number of recrossing events and decrease
the error values in the estimated ABFEs (Figure S22). These
features are generally more remarkable for FLHS, which shows
poorer results than FRHS.
We can thus conclude that fun-metaD seems to be an

efficient tool for the determination of ABFEs for small and
rigid fragments with a good trade-off in terms of accuracy,
computational cost, and speed of calculation. However, it
struggles in the presence of (i) large and flexible ligands and
(ii) large and open cavities. Clearly, for large and flexible
ligands single replica metadynamics with a funnel-shaped
boundary takes a long time to converge and thus it is not an
optimal tool for the calculation of ABFEs.
We therefore tested our recently developed COMet-Path,

which provides an optimal association coordinate, and a
combination of metadynamics with SWISH, a Hamiltonian
replica-exchange based approach. As the results from fun-
metaD show that the funnel over the LHS pocket presents the
greatest challenge to convergence, we henceforth use only this
funnel (FLHS), as it represents the worst-case scenario for the
choice of the funnel.
COMet-Path (Coefficients Optimization of a Metric for

Path Collective Variables)42 was designed to define the metric
of pathlike collective variables as a linear combination of
collective variables (CVs) selected from a pool of possible
variables and thus extend the usefulness of Path Collective
Variables (PCVs).34,51,52

First, we selected nine of the 18 protein−ligand complexes,
three systems per pocket (tunnel, RHS, and LHS) from the
previous fun-metaD simulations using FLHS. From this starting
point, the coefficients defining the metrics were first optimized.
We performed several iterations in order to find the best
parameters: in terms of the combinations of CVs and the
optimization of coefficients for the chosen CVs, as well as a
refinement of how the path was built (see Supporting
Information Scheme S1). After trying a number of
combinations, we found the optimized settings that we finally
used to run the COMet-Path simulations (see Computational
Methods for details). With these settings, the parameters

Figure 5. A) Free energy surface for the binding/unbinding of the sEH-ligand complex (PDB code 5akk) through the fun-metaD simulations FLHS.
Contour lines are drawn every 2 kcal mol−1. B) Reconstruction of the free energy surface obtained by COMet-Path simulation. C) Evolution of
calculated ABFE through simulation time obtained for COMet-Path simulation.
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needed to run COMet-Path simulations could be obtained
within 1 day of the postprocessing of data from fun-metaD.
Using these optimal CVs and applying the convergence

criteria, after 350 ns there are three systems showing zero
recrossing events. Additionally, for one of the remaining
systems, the combined error is larger than 2.5 kcal mol−1,
demonstrating that the simulations for most complicated
ligands should be extended (Table 1, Figure 5 and Figures S25
and S26). The remaining systems show an ABFE very close to
the experimentally determined ones (see Figure 7).
The optimized coefficients of the chosen CVs suggest that

the water coordination of the ligand is an important factor in
the binding/unbinding processes. Indeed protein−ligand
solvation and desolvation effects have been repeatedly shown
to be of the utmost importance.53−60 However, the use of
bridging waters as a component of COMet-Path shows mixed
results. The convergence of the free energies is not particularly
improved, while the time to compute the CV is significantly
longer. Upon closer inspection, we found that while water
solvation/desolvation plays a very important role in specific
parts of the path, it is irrelevant elsewhere. Thus, in the current
form of COMet-Path, this variable is not very advantageous
(and has not been included in the final round). In a
reformulation with position-specific coefficients, it could
prove very effective.

Overall, this approach might be particularly useful for large
congeneric series of ligands, where the initial optimization
would be run only once. The advantage of COMet-Path over
fun-metaD is that, by providing an optimal association CV, it is
able to converge the free energy profile faster, in an exposed
and large cavity, with less extra computational cost. Although it
is necessary to optimize the coefficients on at least one
converged free energy landscape, with another set of variables,
it can also provide a satisfactorily accurate estimation of the
ABFE for noncongeneric ligands.
The final approach we tested was a combination of fun-

metaD with SWISH (Sampling Water Interfaces through
Scaled Hamiltonians) a method recently developed by our
group.43,44 SWISH is a Hamiltonian replica-exchange method
that improves the sampling of hydrophobic cavities by scaling
the interactions between water molecules and protein atoms. It
has been shown to be very effective in sampling the opening of
hidden (cryptic) cavities.44 Here, for the first time, we also
scaled the interactions between the water and the ligand, which
have been revealed to be important by COMet-Path.
Therefore, this implementation of fun-SWISH can also help
us to understand the hydration/dehydration process during the
dynamics itself. Additionally, fun-SWISH is able to overcome
the main fun-metaD convergence problem, specifically related
to the hindrance during the rebinding process. Due to the

Figure 6. A) Correlation between the experimental and calculated BFEs of fun-SWISH (FLHS) simulations for all the ligands after 300 ns and for
the six outliers after 1000 ns (data shown with black and red markers, respectively.) The black line indicates the ideal behavior, while the green and
orange shaded regions show the ±2 and 3.5 kcal·mol−1 tolerance, respectively, around the ideal behavior. The correlation coefficient is indicated for
each case. Evolution of the difference between the experimental and estimated data along the six replicas of fun-SWISH considering the results for
the six systems initially crystallized at B) RHS and LHS pockets and C) the tunnel pocket. For three systems located in the tunnel pocket, where
the simulation was extended up to 1000 ns, the extended evolution is also shown. The dashed green line indicates the ideal behavior, while the
green and orange shaded regions show the ±2 and 3.5 kcal·mol−1 tolerance, respectively, around the ideal behavior.
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entropic penalty of being bound in a pocket rather than in bulk
water, the rebinding events are always harder to sample, as well
as any steric factors that hinder the ligand returning to a bound
pose. While the funnel-shaped restraints attempt to account for
this by constraining the number of unbound states available to
the ligand, this effect is difficult to overcome with
metadynamics alone.
We scaled the ligand−water and protein−water interactions

to favor binding events in four of the six replicas, as the
unbinding events are more easily achieved with the
metadynamics bias, specifically that along the projection CV.
After a few trials, we selected the scaling (λ) of the protein−
water interactions to range from 0.95 to 1.20, while the
ligand−water goes from 1.05 to 0.80 to favor the binding
process (see SI Figure S27). We ran fun-SWISH with six
replicas for 300 ns on each of the 18 systems, using the FLHS, as
mentioned above.

For all the fun-SWISH systems, the first criterion is satisfied,
as the number of recrossing events is larger than 1000 in all
cases. It is clear, that using replica exchange improves the
conformational sampling and increases the number of
transitions between the bound and unbound states (see
Figures S28−S30). Regarding the combined errors, three
systems show an error greater than 2.5 kcal·mol−1 and thus
were not included in Table 2 for experimental comparison
purposes. However, for these simulations six outliers were
identified with a difference between the experimental and
estimated BFE larger than 3.5 kcal·mol−1 (Figure 6A). These
cases are particularly complicated, and the convergence is
problematic due to the rebinding as shown by the faster
convergence at higher λ where the rebinding is favored (see
Table S3). Extending the simulations for these six outliers
(5am3, 5alg, 5alh, 5aly, 5am0, and 5alo) up to 1 μs provides a
much-improved agreement with experiment, with a success
rate of 93% and with a correlation coefficient (R2) of 0.55, with

Figure 7. Correlation between the experimental and calculated binding free energies of all complexes selected for (top) fun-metaD at FRHS and
FLHS, (bottom-left) COMet-Path methodology, and (bottom-right) fun-SWISH. For the six outliers of fun-SWISH (see the main text) we show the
results of the extended simulations. For the methodologies at the bottom, only FLHS was applied. The black line indicates the ideal behavior, while
the green and orange shadows show the ±2 and 3.5 kcal·mol−1 tolerance, respectively, around the ideal behavior. Error bars are shown for the
calculated ABFE using the values shown in Table 1.
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only one outlier (see Figures 6 and 7 and Table S4 and Figure
S31 in the Supporting Information). For fun-SWISH the
accuracy increased significantly −60% of the computed free
energies were now within 2 kcal·mol−1 of the experiment, in
comparison to the 33% obtained using fun-metaD (FLHS, see
Table 2).
These results compare favorably with ABFE obtained with

alchemical transformations,61−64 such as in the case of a
bromodomain, for which Aldeghi et al. achieved a success rate
of 91% and a correlation coefficient of 0.6. Moreover, in the
case of fun-SWISH, although the size and physicochemical
properties of the ligands have a significant effect on the
convergence of the simulations, its performance is less
adversely affected than alchemical methods by large and
flexible binding cavities and noncongeneric ligands. While the
free energy profiles for the ligands binding in the LHS
converged, according to the chosen convergence criteria,
between 150 and 200 ns, the ligands initially bound in the RHS
need at least 300 ns of sampling to converge, and at least 1000
ns are required for the largest and most flexible ligands (Figure
6B and Table S4).
Finally, we were able to relate the calculated BFE obtained

from fun-SWISH with the log P of the ligands studied (see
details in SI Figure S32). We found that lower log P values
correspond to ligands that are more comfortable in the
unbound state, while the ligands with higher log P values
correspond to those that prefer the bound state. This
relationship could also help in the drug design of new ligands
for which no experimental data is available.
Fun-SWISH emerges as a very promising technique to

compute ABFE, as it has achieved estimates with good
accuracy in almost 90% of the cases, even for noncongeneric
ligands, with very different physicochemical properties, and in
an exposed and open cavity, factors which would usually add
considerable difficulty to BFE prediction. It is a replica-
exchange method, which involves six replicas per system and
therefore more computational resources, but the better
sampling and the considerably improved convergence make
this a suitable trade-off. On a relatively affordable setup with
one GPU per λ this technique enables an acceptably accurate
prediction of ABFEs in difficult cases, in less than 1 week.

■ CONCLUSIONS
We tested the ability of three different metadynamics-based
methods to predict ABFEs in a complex and realistic system.
The target selected presents an elongated binding cavity which
could be divided into three different pockets of different
structural complexity. Likewise, the ligands selected present
very different physicochemical properties, mostly classified
depending on their initial crystallization position. In many
cases, the simulations with enhanced sampling techniques
demonstrate that these ligands can bind in any of the pockets
of the large binding site.
The first approach, fun-metaD, was adapted to avoid any

alignment steps during the simulation and thus became a more
efficient method. It provides an adequate estimation of ABFEs
for small fragments in the RHS pocket, which could be
described as a typical binding cavity in terms of concavity,
number of available hot-spot interactions, or solvent exposure.
However, this technique also highlights some of the most
challenging aspects of ABFE prediction, such as the difficulty
of properly assessing the binding in open and exposed pockets
and with large and flexible ligands.

Based on our results, we believe that the second method-
ology used, COMet-Path, might prove useful in drug
development pipelines with large sets of congeneric ligands
where the initial optimization needs to be performed only
once. It also has the capacity to provide rapid ABFE prediction
for noncongeneric ligands but requires a nontrivial optimiza-
tion procedure.
Finally, we developed a new combination, fun-SWISH,

which easily fulfills the convergence criteria established in this
paper, providing a promising agreement with experimental
BFEs with a reasonable balance of computational cost and
speed. This method not only works for small fragments but
also works for large and flexible ligands, bound in pockets
where the BFE is more difficult to estimate due to solvent
exposure. This technique can be easily deployed for the
determination of accurate ABFEs in pre-existing computational
pipelines for Drug Discovery and could impact the field as
much as FEP methods have done for relative binding free
energies.

■ COMPUTATIONAL METHODS
General Setup of Molecular Dynamics (MD) Simu-

lations. MD simulations were performed starting from the X-
ray structure of the human sEH in the apo form (PDB entry
5AHX, resolution 2 Å). For the selected holo complexes the
positions of the ligand in the binding pocket, obtained from
the respective X-ray structures, were considered as the starting
point. We have run MD simulations for the full system (N- and
C-lobes, residues 1−548) and the C-lobe (residues 224−548)
considering the 18 different complexes. The 18 fragments were
parametrized using the generalized AMBER force field
(GAFF2) in conjunction with RESP charges calculated at
the B3LYP/6-31G(d) level.65 Each complex was immersed in a
pre-equilibrated octahedral box using the four-point water
model from the a99SB-disp force field,1 which is a modified
version of TIP4P-D.66 The standard protonation state at
physiological pH was assigned to ionizable residues. The final
systems considering the full-size enzyme contain the model
protein, around 57,500 water molecules, and 0.15 M of NaCl,
forcing the system to be neutral, leading to simulation systems
comprising of around 240,000 atoms. For the systems
considering only the C-lobe of sEH, we retained only the
protein residues 224−548, approximately 17,200 water
molecules, adding the appropriate numbers of neutralizing
sodium and chloride ions to give C-lobe systems containing
around 74,000 atoms. All the simulations were performed
using the a99SB-disp force field, which is a modified form of
the a99SB force field that improves the modeling of
intrinsically disordered peptides while retaining the accurate
description of folded proteins,1 using Gromacs 2018.3.5

The initial system was minimized using 50,000 cycles of
energy minimization. The equilibration process was performed
in three steps. The first step involved the heating of the system
from 0 to 300 K in 1 ns (NVT ensemble) and was followed by
two steps of equilibration under NPT conditions using the
velocity-rescale thermostat.67 In the first step, a Berendsen
barostat was used, restraining the position of the protein−
ligand complex for 10 ns. Finally, a full relaxation of the system
using Parrinello−Rahman pressure coupling was performed for
a further 10 ns. The final structure from the equilibration
process was used as a starting point for the MD simulations. All
systems were simulated with periodic boundary conditions
using an NVT ensemble. The Particle Mesh Ewald (PME)
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method was used for treating long-range electrostatics using a
cutoff of 12 Å.68 A time step of 2 fs was used for all simulations
after imposing constraints on the hydrogen stretching modes.
Each complex was simulated considering the full-size and the
C-lobe systems in order to check the convergence of the
dynamical behavior. Each replica was run for 300 ns, leading to
a total simulation time of approximately 11 μs.
Funnel-Shaped Restraint Metadynamics (fun-

metaD). Metadynamics simulations were performed in order
to obtain estimates of the binding free energy profiles using
GROMACS 2018.35 with PLUMED 2.4.69 We used a
combination of the well-tempered metadynamics (WT)70,71

and funnel-shaped walls in the spirit of path collective variables
(PCVs) and funnel metadynamics (fun-metaD).9,41 The last
snapshot of the MD simulations was used as the starting point
for the fun-metaD simulations (in the NVT ensemble) to
explore the binding/unbinding processes of each fragment in
the C-lobe complexes.
A metadynamics history-dependent bias was applied along

the two collective variables that define the funnel-shaped
restraints (see Figure 3A), that is projection (pp.proj, CV1)
and extension (pp.ext, CV2) on the funnel-shaped potential.
However, the most critical decision pertains to the location of
the funnel-shaped restraints used to perform the metadynamics
simulations. Due to the particularly large size of the binding
pocket, we have implemented the funnel-shaped restraints
following two different vectors, being centered over the LHS
and RHS pockets, respectively. In such a way, the origin of
both vectors (P0) is the same for both funnel-shaped restraints
and defined on the Cα of Trp464 of the full-size system. The
difference emerges from the definition of the second point
(PX), as it defines the orientation of the funnel to be above the
LHS or RHS pockets of the binding cavity. Thus, for the
funnel orientated over RHS, the PR is defined by the center of
mass of the Cα of residues Ser417, Val 497, and His523, while
for the funnel orientated over the LHS pocket, the PL is
calculated as being the center of mass of the Cα of residues
Ile362, Ser373, Val379, and Met520 (see Figure 3B). Finally,
we ran 36 simulations (18 holo systems × 2 funnel-shaped
restraint orientations) of 500 ns each, with an accumulated
time of 18 μs
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For the fun-metaD, Gaussians hills with an initial height of 1.5
kJ·mol−1 were applied every 1000 MD steps. The hill width
chosen for the projection and extension CVs are 0.25 and 0.3
Å, respectively. The Gaussian functions were rescaled in the
WT scheme using a bias factor of 10 for all the systems. The
resulting free energies were calculated using the sum_hills
function of the PLUMED plugin69 and corrected for the loss of
translational and rotational freedom of the unbound ligand due
to the funnel-like boundaries using the following equations
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where Cf/sv is the funnel/standard volume correction. The
bound states were defined by the position of the global

minimum, and the unbound states were defined by values of
the distance CV greater than 30 Å. An upper limit for the CV
was set at 45 Å on the basis of the box size and available
solvent phase. The correction for the standard volume and
funnel restraint, Cf/sv, was computed as described in refs 20 and
18 according to the formula
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where ξbulk
metaD is the fraction of the total possible orientations

explored by the ligand in the unbound state, V0 is the standard
volume accessible to a ligand at 1 mol·dm−3 concentration, and
Vbulk is the bulk volume (i.e., Vbox − Vprotein+membrane). The
correction was found to be 1.54 kcal·mol−1 for the C-lobe
complexes. To assess the convergence of the simulations, we
compared the usual reconstruction of the free energy surfaces
obtained by integrating the bias at various time points with a
time-independent estimate of the free energy.72

Reprojection of the Free Energy Surfaces. Reweighting of
the free energy surfaces as a function of RMSD from reference
bound and unbound structures was performed using the
Tiwary et al. algorithm.72 This resulted in a clearer separation
between bound and unbound states. The reference structures
selected for the bound state were those where the ligand is
bound in the initial binding pose after the equilibration
simulations. For the unbound states we have selected a
snapshot of the simulation where the ligand is in an optimal
position away from the pocket as defined by a combination of
the two funnel CVs (>32 Å in pp.proj and <5 Å in pp.ext), and
the distance from the ligand to any protein atoms is greater
than the PME cutoff of 12 Å.

New Convergence Criteria. We have established new
convergence criteria in order to assess the reliability of the
estimated ABFE without comparison with experimental values.
These criteria are based on two important statements, i.e., (i)
the minimum number of recrossings and (ii) the estimation of
ABFE error.

Recrossing. Recrossings relate to the number of unbinding/
rebinding events indicating whether the ligand has explored the
relevant conformational space, and how many times it has
done so within each simulation. In this case, a recrossing is
defined as one unbinding/rebinding event, where the ligand
explores bounds conformations, exits the pocket to the bulk
water, and then returns to the pocket. To measure this motion,
we use the projection CV (pp.proj), as shown in the
Supporting Information Figures S16−18, S26, and S28−30.
Due to the differing geometries of the funnel, and with the two
orientations placing the three initial binding pockets (tunnel,
LHS, and RHS) at different positions relative to the funnel, it
was necessary to define different “bound” states for each
combination. As such, the bound state thresholds were
calculated using the average projection value at the beginning
of the simulations, per funnel, per initial binding site. This led
to six new bound-state definitions, which were used to identify
the recrossings.

Estimation of the Error. The error in our ABFE estimate
was calculated in two ways. First, we performed block
averaging on 50 ns blocks of simulations to obtain the
standard error for every grid point. We then averaged this error
over the entire grid and doubled it, since the ABFE is a
difference of free energy between two states.
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The second way of estimating the error was to observe the
variation of our ABFE estimate over time, as calculated
through the reweighting procedure described above. We have
defined this error as the average of the unsigned differences
between the final estimate and the previous ten estimates,
which cover the previous 100 ns of the simulation.
The oscillation over time will eventually reach zero in a fully

converged simulation that also contains recrossing events. The
observed variations within the standard error are minimal, and
so the oscillation over time is much more useful when deciding
when to stop a simulation. However, even when converged, the
actual error on the free energy will still be nonzero. The final
error we present is therefore a sum of the standard error and
the oscillation over time. The two component errors can be
considered independent of each other to a good extent. We
have chosen 2.5 kcal/mol as the limiting value for the
convergence of the simulation and our ABFE estimate, to
exclude simulations with significant recent variation to the
ABFE estimate.
COMet-Path (Coefficients Optimization of a Metric

for Path Collective Variables) Simulations. This techni-
que allows the definition of a metric as a linear combination of
CVs selected from a pool of possible variables.42

Preliminary Simulations. For the systems under consid-
eration, the data from fun-metaD simulations obtained for FLHS
was used as a basis for reweighting. The rbias (metadynamics
bias corrected for the c(t) factor) has been computed
throughout the simulation as described in ref 72, which is
more accurate than estimating it during postprocessing.
Another simulation was performed to pull the systems out of
the binding site to get an initial estimate for the unbinding
path. This was done using 50 ns of steered MD that pulled the
ligand from its initial binding site along a previously used path,
where appropriate, or from the initial funnel projection to a
final value of 43 Å for systems where no initial path existed.
The snapshots from this pulling sampled every 200 ps formed
the basis of the estimated path. Once the ligand stopped
interacting with the protein, the following snapshots were
replaced by a linear motion toward funnel projection of 43 Å
and extension of 0 Å. This replacement procedure did not
include water, since at that point the value for the bridging
water CV (see below) is already zero. However, all other CVs
defined above/below were calculated for the trial path
snapshots.
Collective Variables. The collective variables considered

include the funnel projection and extension over the left-hand
side of the binding cavity (see fun-metaD section, Figure 3B).
Likewise, due to the importance of the water molecules in the
binding and unbinding processes, we have also considered the
bridging water variable.73 Within this CV are defined the polar
atoms for the ligands, as well as the neighboring ones in the
binding site. The resulting value of the CV is computed as the
sum of the product of contact maps between these two groups
and the oxygen atoms of all water molecules and is
demonstrative of the number of water molecules bridging the
polar sites of the protein and the ligand. The switching value
used was 3 Å, and the cutoff was 10 Å. However, despite using
neighbor lists and some optimizations within the custom
PLUMED code, this CV requires considerable computational
resources and in complex systems can be detrimental to the
performance (see the Results and Discussion section). Finally,
four additional CVs are defined considering the distances
between the two funnel sites and two defined points on the

ligand (Figure 8). These were chosen differently for every
ligand but always represent opposite sides of the ligand. Taken

together, the four distances represent the orientation of the
ligand with respect to the important sites within the protein
and help to constrain the rotational degrees of freedom of the
ligand.

COMet Settings. The coefficient space for the defined CVs
was explored using 1 million steps of a simulated annealing
procedure with a geometric cooling coefficient of 0.99. The
CVs were normalized (over 1) to ensure the importance of the
assigned coefficients. The values of the coefficients were
optimized between 0 and 0.5. The maximum value would
correspond to a 25% contribution. The minimum value for the
funnel projection was fixed to 0.25 (see Scheme S1 in the
Supporting Information). Combinations of coefficients that
would result in no barriers were dismissed as artifacts.

Path Metadynamics Settings. For metadynamics simu-
lations, we have used the same funnel-shaped restraints defined
above (see Figure 3). Gaussians with a height of 2 kJ·mol−1 are
deposited every 1000 steps, using the bias factor of 12. The
sigma values were 0.15 for the (s) variable, which describe the
progression along the coordinate, and 0.0004 for the (z)
variable, which is defined as the distance from an initial (guess)
path in the free energy space. These two variables are
mathematically defined as

s
i R X X

R X X
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i
N

i

i
N
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1

1

λ
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Figure 8. Definition of distance CVs tested for the COMet-Path
method. All calculations were done considering the CVs that define
the funnel (FLHS) and the distances that connect the center of masses
of the opposite sides of the ligands with P0 (d1 and d2) and PL (d3
and d4), the points that define the funnel orientation (see Figure 3).
The ligand shown corresponds to PDB code 5am3.
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where X represents the atomic coordinates at the current
simulation time-step, and Xi denotes the same of the i-th
snapshot. The function R represents a chosen metric, which in
our case is a combination of CVs with coefficients as optimized
by the COMet algorithm. The λ parameter serves to smooth
the variation of the s variable.
We ran 350 ns simulations of the selected systems, and

additional simulations were run for three systems considering
the bridging water CV, leading to a total time of almost 5 μs.
Funnel SWISH Simulations (fun-SWISH). Finally, we

have also combined the SWISH (Sampling Water Interfaces
through Scaled Hamiltonians) methodology, which has been
recently developed by our group,43,44 with funnel-shaped
restraint metadynamics (fun-SWISH). SWISH is a Hamil-
tonian replica-exchange method that improves the sampling of
hydrophobic cavities by scaling the interactions between water
molecules and protein atoms. Due to the crucial role of water
molecules in binding and unbinding processes, we intend to
join both the fun-metaD and SWISH together in order to
assess the ABFEs. We have implemented this methodology on
the 18 systems analyzed and have created six replicas for each
system, with a different scaling factor (λ) applied not only for
the protein but also for the ligands, which is also a novel
application of SWISH. We have run every simulation up to 300
ns for all the systems. For the six identified outliers (complexes
with PDB code 5am3, 5alg, 5alh, 5aly, 5am0, and 5alo), we
have extended the simulation time scale up to 1 μs leading to a
total accumulated time of 60 μs. Exchanges among replicas
were attempted every 1000 MD steps. The average exchange
probability between replicas was approximately 30−40% for all
systems considered.
Restraints were applied to the C-lobe of sEH protein, to

prevent any general unfolding at higher λ values. A contact
map was applied to monitor the distances between pairs of key
representative atoms belonging to secondary structures of the
protein according to the Timescapes74 definition. The pairs
were chosen looking at the most consistent contacts between
equilibrated apo and holo structures, to exclude any region that
underwent natural conformational changes and were limited to
∼100−200 in number to ease the computational burden. The
movements of these atoms were restrained to abide by average
fluctuations observed during a simple MD simulation with a
spring constant of 3000 kJ·mol−1·nm−1.
Reproducing the Simulations. The files required to

reproduce our simulations have been uploaded to the Plumed-
Nest repository (plumedID 20.012). The source code for the
new CV we have introduced, namely the projection on axis and
the general path collective variables, is now part of the
development branch of the Plumed package and will be made
available in the next release.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00075.

Additional results for the structural, dynamical, and
energetic analysis of sEH complexes and convergence
analysis of fun-metaD, COMet-Path, and fun-SWISH
methodologies (PDF)

■ AUTHOR INFORMATION

Corresponding Authors
Carolina Estarellas − Department of Chemistry, University
College London, London WC1E 6BT, United Kingdom;
orcid.org/0000-0002-0944-9053; Email: c.estarellas@

ucl.ac.uk
Francesco L. Gervasio − Department of Chemistry and
Institute of Structural and Molecular Biology, University College
London, London WC1E 6BT, United Kingdom;
Pharmaceutical Sciences, University of Geneva, 1211 Geneva,
Switzerland; orcid.org/0000-0003-4831-5039;
Email: f.l.gervasio@ucl.ac.uk, francesco.gervasio@unige.ch

Authors
Rhys Evans − Department of Chemistry, University College
London, London WC1E 6BT, United Kingdom; orcid.org/
0000-0002-0210-7093

Ladislav Hovan − Department of Chemistry, University College
London, London WC1E 6BT, United Kingdom; orcid.org/
0000-0001-8847-9295

Gareth A. Tribello − Atomistic Simulation Centre, Queen’s
University, Belfast BT7 1NN, United Kingdom; orcid.org/
0000-0002-4763-9317

Benjamin P. Cossins − UCB Pharma, Slough SL1 3WE,
United Kingdom

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.0c00075

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

F.L.G. acknowledges EPSRC (EP/M013898/1; EP/P022138/
1; EP/P011306/1) for financial support. C.E. is thankful for
funding from the EU Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie grant agreement
No. 795116. This work was supported by a grant from the
Swiss National Supercomputing Centre (CSCS) under project
s847. We also acknowledge PRACE for awarding us access to
pr49 hosted by Piz Daint at CSCS, Switzerland and the
computer resources at MareNostrum IV at Barcelona Super-
computing Centre (RES-BCV-2019-3-0010).

■ ABBREVIATIONS

BFE, binding free energy; FES, free energy surface; MD,
molecular dynamics; PDB, Protein Data Bank; RMSD, root
mean squared deviation; RMSF, root mean squared fluctua-
tion; PME, particle mesh Ewald

■ REFERENCES
(1) Robustelli, P.; Piana, S.; Shaw, D. E. Developing a Molecular
Dynamics Force Field for Both Folded and Disordered Protein States.
Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (21), E4758−E4766.
(2) Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de
Groot, B. L.; Grubmüller, H.; MacKerell, A. D. CHARMM36m: An
Improved Force Field for Folded and Intrinsically Disordered
Proteins. Nat. Methods 2017, 14 (1), 71−73.
(3) Tian, C.; Kasavajhala, K.; Belfon, K. A. A.; Raguette, L.; Huang,
H.; Migues, A. N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.;
Simmerling, C. Ff19SB: Amino-Acid-Specific Protein Backbone
Parameters Trained against Quantum Mechanics Energy Surfaces in
Solution. J. Chem. Theory Comput. 2020, 16, 528−552.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00075
J. Chem. Theory Comput. 2020, 16, 4641−4654

4652

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00075?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00075/suppl_file/ct0c00075_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Carolina+Estarellas"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-0944-9053
http://orcid.org/0000-0002-0944-9053
mailto:c.estarellas@ucl.ac.uk
mailto:c.estarellas@ucl.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Francesco+L.+Gervasio"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-4831-5039
mailto:f.l.gervasio@ucl.ac.uk
mailto:francesco.gervasio@unige.ch
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rhys+Evans"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-0210-7093
http://orcid.org/0000-0002-0210-7093
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ladislav+Hovan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-8847-9295
http://orcid.org/0000-0001-8847-9295
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gareth+A.+Tribello"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-4763-9317
http://orcid.org/0000-0002-4763-9317
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Benjamin+P.+Cossins"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00075?ref=pdf
https://dx.doi.org/10.1073/pnas.1800690115
https://dx.doi.org/10.1073/pnas.1800690115
https://dx.doi.org/10.1038/nmeth.4067
https://dx.doi.org/10.1038/nmeth.4067
https://dx.doi.org/10.1038/nmeth.4067
https://dx.doi.org/10.1021/acs.jctc.9b00591
https://dx.doi.org/10.1021/acs.jctc.9b00591
https://dx.doi.org/10.1021/acs.jctc.9b00591
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00075?ref=pdf


(4) Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J. M.; Lu,
C.; Dahlgren, M. K.; Mondal, S.; Chen, W.; Wang, L.; Abel, R.;
Friesner, R. A.; Harder, E. D. OPLS3e: Extending Force Field
Coverage for Drug-Like Small Molecules. J. Chem. Theory Comput.
2019, 15 (3), 1863−1874.
(5) Abraham, M. J.; Murtola, T.; Schulz, R.; Paĺl, S.; Smith, J. C.;
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