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Abstract: As life expectancy continues to increase, it becomes increasingly important to
extend healthspan by targeting mechanisms associated with aging. Cellular senescence
is recognized as a significant contributor to aging and neurodegenerative disorders. This
review examines the emerging role of nutraceuticals and functional foods as potential
modulators of cellular senescence, which may, in turn, influence the development of
neurodegenerative diseases. An analysis of experimental studies indicates that bioactive
compounds, including polyphenols, vitamins, and spices, possess substantial antioxidants,
anti-inflammatory and epigenetic properties. These nutritional senotherapeutic agents
effectively scavenge reactive oxygen species, modulate gene expression, and decrease
the secretion of senescence-associated secretory phenotype factors, minimizing cellular
damage. Nutraceuticals can enhance mitochondrial function, reduce oxidative stress, and
regulate inflammation, key factors in aging and diseases like Alzheimer’s and Parkinson’s.
Furthermore, studies reveal that specific bioactive compounds can reduce senescence
markers in cellular models, while others exhibit senostatic and senolytic properties, both
directly and indirectly. Diets enriched with these nutraceuticals, such as the Mediterranean
diet, have been correlated with improved brain health and the deceleration of aging.
Despite these promising outcomes, direct evidence linking these compounds to reducing
senescent cell numbers remains limited, highlighting the necessity for further inquiry. This
review presents compelling arguments for the potential of nutraceuticals and functional
foods to promote longevity and counteract neurodegeneration by exploring their molecular
mechanisms. The emerging relationship between dietary bioactive compounds and cellular
senescence sets the stage for future research to develop effective preventive and therapeutic
strategies for age-related diseases.

Keywords: cellular senescence; inflammaging; healthy aging; neurodegenerative diseases;
nutraceuticals; functional foods; Alzheimer’s disease; Parkinson’s disease

1. Introduction and Background
Life expectancy has dramatically increased in nearly all nations, and the global popu-

lation has tripled since the mid-twentieth century. By 2030, the global human population
is projected to grow to approximately 8.5 billion, with an additional 1.18 billion people
expected in the following two decades, reaching 9.7 billion in 2050 [1]. Aging is rapidly
accelerating worldwide. By 2050, the number of people over 65 is expected to more
than double, reaching 1.5 billion, representing 16% of the global population. While this
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trend is more intense in developed countries—26% of the European and North American
population are over 65—it has also become a significant global phenomenon that affects
developing countries [2,3]. Nevertheless, insufficient evidence suggests that an increase
in longevity correlates with a more extended period of good health [4]. Indeed, a notable
difference exists between lifespan, defined as the total years lived, and healthspan, which
refers to the duration without disease [5]. Extending lifespan without postponing the
onset of diseases or lessening their severity would worsen the healthspan–lifespan gap.
Advanced age is marked by the emergence of various complex health conditions, such as
age-related diseases (ARDs) and geriatric syndromes (GSs), also referred to as “chronic
or non-communicable” diseases, which are the leading cause of mortality and disability
worldwide [6].

Aging is an inescapable, natural, and universal feature of most living organisms that
results from environmental, genetic, epigenetic, and stochastic factors, each contributing
to the overall phenotype [7,8]. As humans age, damaging changes accumulate in the
molecules, cells, and tissues, leading to a decline in normal physiological functions and a
reduced ability to maintain adequate homeostasis. The increased susceptibility to various
stressors and reduced ability to adapt to the environment lead to clinical diseases, where
genetic, epigenetic, and environmental factors play a key role [9]. Geroscience provides
a new perspective on gerontology by investigating the link between aging and ARDs.
Both epidemiological evidence and experimental research demonstrate that aging is the
principal risk factor for ARDs and GSs. Geroscience posits that aging and ARDs/GSs share
a fundamental set of biological mechanisms, and twelve biological processes have been
identified as the critical pillars of aging and ARDs (Figure 1). The hallmarks of aging appear
to be closely interconnected, forming a finely controlled network; cellular senescence and
inflammation represent the “umbrella” that encompasses all these mechanisms [10,11].

These hallmarks are intricately linked and interconnected and represent the funda-
mental changes associated with aging (the roots of aging). As aging advances, it broadly
supports the onset of ARDs, including chronic obstructive pulmonary disease (COPD),
sarcopenia, diabetes, cancer, frailty syndrome, cardiovascular diseases (CVDs), and neu-
rodegenerative disorders like Alzheimer’s and Parkinson’s diseases. Just as a tree derives
nourishment from its roots, these health issues represent the fundamental biological alter-
ations of aging.

All hallmarks are time-dependent on the aging process and can be manipulated by lab-
oratory experiments to accelerate—or by therapeutic interventions to slow down—the aging
process [12]. Therefore, medicine’s primary objective should be to tackle the aging process
and enhance the mechanisms that can prevent, delay, or counteract ARDs/GSs [13,14]. An
integrated hypothesis proposes that ARDs/GSs manifest an accelerated aging process, indi-
cating that the aging phenotype and ARDs/GSs are not distinct entities, but the outcomes
of the same common set of molecular and cellular processes, likely occurring at varying
rates [13]. Which determinants make aging trajectories more or less steep? Environmental
conditions, such as the intensity and types of stressors, as well as lifestyle, are important
health factors. However, the body’s ability to respond to and adapt to these stressors is
even more crucial. This capacity is influenced at least partly by an individual’s genetic
background and epigenetic changes, which play a significant role in various adaptation
and remodeling processes.

Hormesis is a potential mechanism that explains the relationship between healthy ag-
ing and the development of ARDs/GSs. Hormesis refers to the beneficial effects of cellular
responses to mild, repeated stress [15,16]. This theory suggests that regular exposure to
mild stressors can positively impact various organs and systems, including adipose tissue,
the liver, the brain, and the immune system [15], ultimately leading to enhanced overall
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health. Lifelong low-intensity stressors activate maintenance and repair mechanisms that
positively affect health. However, increasing the intensity of these stressors can surpass
the ability of organs and systems to adapt, resulting in detrimental effects. The emerging
concept defines aging as malleable. By targeting the hallmarks of biological aging, such
as cell senescence and its interdependent features, it is possible to alleviate ARDs and
dysfunctions, thereby extending longevity. Additionally, using external molecules to boost
the body’s natural cellular defense mechanisms is proposed as a promising anti-aging
strategy centered on hormetic-based protection [17].

Figure 1. The hallmarks of aging. Aging is a multifactorial process at various levels, from molecules to
cells, organs to systems, ultimately affecting the entire organism. In 2023, López-Otín and colleagues
refined the framework of aging hallmarks, identifying 12 key features: dysbiosis, stem cell exhaustion,
chronic inflammation (inflammaging), altered intercellular communication, mitochondrial dysfunction,
epigenetic alterations, impaired macroautophagy, loss of proteostasis, deregulated nutrient sensing,
telomere attrition, genomic instability, and cellular senescence [12].

A recent multi-omics data study has shown that different organs and tissues can age
at distinct rates within the same individual [18]. Brain pathologies and changes in brain
structure are commonly seen in aging [19], with significant modifications in the brain’s
intricate microstructure resulting in cognitive decline [20]. Brain morphology evolves with
age and most commonly undergoes significant atrophy [21]. These changes are associated
with, if not directly the cause of, cognitive deficits such as memory loss [22,23], reduced
motor performance [24], and alterations in behavior [25].

Among neurodegenerative diseases, Parkinson’s disease (PD) and Alzheimer’s disease
(AD) are the most common. Usually, they have a late debut of manifestation with a
subsequent stage of progression leading to signs of dementia, with similar symptoms,
such as memory impairment, orientation problems, and difficulties in performing service
functions. In central nervous system (CNS) health, the brain aging trajectory is closely
linked to cellular damage accumulation and the onset of neurodegenerative processes.
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An emerging pivotal factor contributing to the decline in brain structure and function is
cellular senescence, a state of stable growth arrest, macromolecular damage, and altered
metabolism associated with a hypersecretory and pro-inflammatory phenotype known as
the senescence-associated secretory phenotype (SASP). Neuroinflammation may be one of
the factors responsible for increased cognitive decline and the risk of AD and PD [26].

This article comprehensively reviews recent advancements concerning the impact of
various nutraceuticals and foods on cellular senescence and its interconnected aspects. It
delves into key factors associated with this process, such as inflammation, macromolecular
damage, mitochondrial dysfunction, and oxidative stress. These factors are critical as
they represent common pathways linked to aging and neuronal damage. The review
highlights how these dietary components may influence the above-mentioned mechanisms,
potentially offering therapeutic avenues to mitigate the effects of aging at the cellular level.

A narrative search was conducted across multiple databases, including PubMed,
Scopus, Web of Science, and Google Scholar, to gather the relevant literature for this
review. The search utilized the following keyword combinations: “Antioxidant vitamins
OR Polyphenols OR Spices OR Dietary Fibers OR Probiotics OR Prebiotics OR PUFAS OR
Diets OR Mediterranean Diet OR Caloric Restriction AND Aging AND Cellular Senescence
OR Neurodegeneration OR Alzheimer’s disease OR Parkinson’s disease”. The search
included only articles published in English and those available via open access to ensure
the inclusion of the most recent advancements. Studies included in the review were
required to focus on preclinical (in vitro and in vivo experiments) and clinical studies,
specifically addressing how nutraceuticals influence the mechanisms of cellular senescence
in aging and neurodegenerative diseases. Additionally, the review cites papers considered
pioneering in the field.

2. The Role of Senescence in Aging and Neurodegenerative Diseases
Senescence is considered a highly dynamic, multistep process over which the proper-

ties of senescent cells continuously evolve and diversify context-dependently [27]. Formally
described in 1961 by Hayflick and colleagues, cellular senescence was initially observed in
normal human fibroblasts that stopped proliferating after a finite number of divisions [28].
Subsequent studies have proven that a variety of stressors, including oxidative stress, DNA
damage, oncogene activation, mitochondria deterioration, chemotherapy, and exposure to
ionizing radiation (IR), can trigger “stress-induced premature senescence” in vitro [29,30].

Senescence activation leads to several molecular changes and distinct phenotypic al-
terations, including chromatin remodeling, shortened telomeres, the accumulation of DNA
damage and reactive oxygen species (ROS), the activation of cell-cycle inhibitory pathways,
lysosome enlargement, macromolecular disruption, metabolic disbalance, apoptosis resis-
tance, and the SASP [31]. The SASP is characterized by the synthesis of various biologically
active molecules, such as inflammatory mediators, growth factors, and extracellular matrix
proteins. These factors reinforce the senescent phenotype through autocrine or paracrine
signaling, and can also affect the microenvironment, influencing neighboring cells and
distant locations within the organism [30] (Figure 2).

As the number of senescent cells increases with age, there is increasing evidence
suggesting their involvement in the pathogenesis of ARDs [32–34], including neurodegen-
erative diseases such as AD and PD [35].

Moreover, PD and AD are called “protein-misfolding diseases” because deposits of
improperly folded and modified proteins are detected in specific areas of the patient’s brain,
leading to neuronal damage [36]. It has been reported that the final dysfunction and neu-
ronal loss observed in neurodegenerative diseases are often accompanied by malfunctions
of other types of CNS cells, such as microglia and astrocytes. Various types of cells in the
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nervous system have been identified as undergoing the senescence process, including neu-
ral stem cells, neurons, astrocytes, oligodendrocytes, and microglia. In a state of senescence,
microglia are neurotoxic and become detrimental in many neurodegenerative diseases by
producing inflammatory cytokines, superoxide anions, and nitric oxide, promoting the
phenomenon of “oxi-inflamm-aging”, which contributes to neuropathogenesis [37–39].

Figure 2. The hallmarks of cellular senescence. Senescent cells undergo distinct morphological and
molecular alterations defining cellular senescence’s hallmarks. At the genomic level, senescence is
characterized by stable cell-cycle arrest, primarily driven by the p16INK4a/Rb and p21CIP1/p53 path-
ways. Chromatin reorganization is a key feature, marked by senescence-associated heterochromatic
foci (SAHFs) and γ-H2AX foci, indicating DNA damage. Lysosomal alterations are also evident, with
increased lysosomal mass and activity, elevated expression of senescence-associated β-galactosidase
(SA-β-Gal), and lipofuscin accumulation. Senescent cells exhibit notable morphological changes,
including enlargement, flattening, and modifications in membrane structure. A feature of nuclear
dysfunction is the downregulation of Lamin B1, leading to nuclear envelope instability. The senescent
surfaceome is enriched with specific channels and receptors, such as NOTCH1, DPP4, and B2M.
Mitochondrial dysfunction is another critical feature, leading to increased ROS production and
deregulated nutrient sensing. SIRT1 and SIRT3 play pivotal roles in mitochondrial homeostasis
and oxidative stress regulation. SIRT1, located in the nucleus, modulates mitochondrial function by
deacetylating FOXO3a, reducing inflammatory protein expression, and activating PGC-1α to promote
mitochondrial biogenesis. Oxidative stress inactivates SIRT3, leading to SOD2 hyperacetylation and
increased mitochondrial ROS (mtROS), creating a vicious cycle of oxidative stress and mitochondrial
dysfunction. SIRT3-mediated deacetylation of FOXO3a and SOD2 counteracts ROS accumulation by
upregulating antioxidant defenses, including catalase. Finally, a defining feature of senescence is the
SASP, characterized by the secretion of pro-inflammatory cytokines (e.g., IL-1β, IL-6, TNF-α, etc.)
and matrix metalloproteinases (MMPs), often encapsulated in extracellular vesicles (EVs). ↑ increase;
↓ decrease.

Evidence shows that senescent astrocytes accumulate in AD and PD patients, promot-
ing inflammation through the SASP factors [40–42]. Indeed, several SASP factors, including
MMP-3, IL-1α, IL-6, and IL-8, are increased in PD and AD brains, indicating that cellular
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senescence could contribute to neurodegeneration [35,43,44]. In addition, in the brain tissue
of PD patients, α-synuclein deposition correlates with increased senescent cell accumu-
lation and higher SA-β-Gal expression, suggesting the role of cellular senescence in the
pathogenesis of PD [44]. Conversely, the attenuation or elimination of cellular senescence
has been shown to alleviate neuroinflammation in AD and PD models [43,45]. Moreover,
a recent study revealed that senescent neurons with tau neuropathology are prevalent in
patients with AD [46], while the removal of accumulated senescent glial cells attenuated
cognitive decline and age-related neurogenerative disorders [47].

Therefore, eliminating senescent cells within the CNS, or at least delaying their senes-
cence, and mitigating the adverse effects of a spreading SASP have been identified as
targets for the prophylaxis and adjunctive treatment of neurodegenerative diseases.

Furthermore, the SASP can be viewed as an “inflammatory chain reaction” that pro-
motes damaging effects and contributes to systemic inflammaging; thus, biomolecules
with antioxidants and anti-inflammatory properties would be beneficial not only as protec-
tors against senescence induction, but also as tools to extinguish the inflammatory ripple
effect [39].

3. Nutritional Interventions to Slow Down Aging
The hallmarks of aging constitute an interconnected network of fundamental mecha-

nisms that influence aging and can be modulated by lifestyle factors, including nutrition,
to improve human healthspan [48]. Aging is a malleable process characterized by an intra-
and inter-individual heterogeneous and dynamic balance between accumulating damage
and repair mechanisms. Nutritional interventions that help slow this process can reduce
cellular damage and the accumulation of senescent cells or enhance the ability of cells,
tissues, or the organism to repair or adapt to this damage [49]. In this context, several natu-
ral compounds, known as “bioactive compounds”, can interact with biological processes,
and when present in food, they are referred to as “nutraceuticals” [50]. As discussed in
the following paragraph, many studies focus on identifying bioactive compounds with
preventive effects against pathological conditions or with broader anti-aging properties.
Moreover, emerging evidence suggests that dietary factors can influence brain health and
cognitive function, providing a promising avenue for intervention [51].

In this context, it is also important to highlight that some nutraceuticals may exhibit
hormetic behavior, displaying a biphasic dose-response relationship in which low doses
provide beneficial effects, whereas high doses may be detrimental.

These positive effects at low concentrations arise from stimulating adaptive stress
responses, ultimately enhancing the body’s resilience to various stressors. Recent find-
ings show that several natural compounds may act in a hormetic-like manner. These
hormetic compounds may mediate health-promoting actions by triggering one or more
adaptive stress response pathways [52]. This phenomenon is particularly evident among
polyphenols, such as curcumin and resveratrol [53,54]. Interestingly, combining different
nutraceuticals, such as probiotics and polyphenols, a hormetic nutritional approach, exerts
potent neuroprotective and therapeutic effects by activating antioxidant Nrf2 signaling path-
ways. Consequently, these hormetic nutrients may prevent and treat inflammation-driven
pathophysiological changes in gut microbiota diversity that contribute to nervous system
disorders via the gut-brain axis [54]. Reading the following reviews can comprehensively
understand the topic [55–57].

Recent studies have focused on discovering nutraceuticals that mimic the effects of
metformin and rapamycin, inhibiting mTOR, without their side effects. Researchers have in-
dividuated withaferin A, allantoin, ginsenoside, and epigallocatechin gallate as promising
candidates for experimental validation [58,59]. These substances induced strong activation
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of the cAMP pathway, which was recently found to induce anti-aging effects similar to
caloric restriction (CR) via the up-regulation of sirtuins (SIRTs) [60]. SIRTs, particularly
SIRT1 and SIRT3, are key regulators of cellular metabolism, stress responses, and aging.
As NAD+-dependent deacetylases, they are activated under CR, promoting longevity and
healthspan by modulating energy metabolism, mitochondrial function, and stress resis-
tance. SIRT1 acts as a nutrient sensor, regulating epigenetic modifications, mitochondrial
quality, and anti-inflammatory responses, while SIRT3 enhances mitochondrial protein
deacetylation, optimizing oxidative metabolism and aerobic fitness, both contributing to
the lifespan-extending effects of CR [61–63].

CR consists of a 25–50% calorie reduction compared to a standard diet, with preser-
vation of vitamin and mineral supply [64]. In addition to SIRTs, CR modulates other
key nutrient signaling pathways, including insulin/IGF-1, mTOR, and AMPK, leading
to a reduction in oxidative stress, enhancement of mitochondrial function, activation of
anti-inflammatory responses, stimulation of neurogenesis, and increased synaptic plasticity,
emphasizing the positive impact of CR on brain functions. These effects can delay cellular
senescence and may significantly mitigate age-related functional decline [65]. Experimental
studies have reported that CR reduces molecular features of cellular senescence in differ-
ent human and mouse models [33,66,67]. Interestingly, a recent study demonstrated that
moderate CR could decrease circulating biomarkers of cellular senescence in healthy young-
to-middle-aged humans without obesity, highlighting the impact of lifestyle [68]. Moreover,
dietary restriction and plant-based dietary patterns have been linked to improved key clini-
cal outcomes related to aging, particularly body composition changes, lipid profile, blood
pressure, lipid peroxidation, inflammation, and cardiometabolic risk [66,69–75]. Despite the
mechanisms not being fully elucidated, these benefits suggest that such dietary approaches
may be crucial in promoting healthy aging by modulating metabolic and inflammatory
pathways central to age-related physiological changes and disease prevention. However, in
CR, the timing of initiation is a critical factor; when started at an early age, it is associated
with beneficial effects [76]. Conversely, in older adults, CR may exacerbate sarcopenia and
osteopenia, contributing to muscle and bone loss [77].

In addition to CR, other dietary patterns have been proposed to promote healthy
aging with hormetic behavior [78,79]. Among these, the Mediterranean diet (MedDiet)
is the most studied. The MedDiet is characterized by a high intake of vegetables, fruits,
whole grains, and fish, and it has demonstrated significant health benefits, including the
prevention of ARDs. Its protective effects are mainly attributed to its rich composition of
bioactive compounds that help modulate oxidative stress, inflammation, and metabolic
processes, further supporting its role in longevity and overall well-being [80–84] and re-
ducing cognitive impairment [85]. Intriguingly, emerging proofs suggest that adherence
to the MedDiet may contribute to delaying cellular senescence [86]. In older adults, ad-
herence to the MedDiet has been associated with a lower proportion of endothelial cells
with shorter telomeres, an effect likely mediated by decreased ROS production and apop-
tosis [87]. Similarly, Mantilla-Escalante suggests that long-term adherence (1 year) to the
Med-Diet, particularly when enriched with nuts, can modulate the expression of several
mi-croRNAs (miRNAs) involved in cellular senescence, including cell-cycle regulators and
pro-inflammatory markers. The MedDiet, through miRNA-mediated gene modulation,
may influence fundamental mechanisms of aging and cellular homeostasis [88].

Even if the mechanisms through which food influences aging are not fully understood,
several bioactive compounds have been reported to function as epigenetic modulators,
influencing gene expression, chromatin organization, DNA methylation patterns, and
non-coding RNA expression [89,90].
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Interestingly, the human epigenome is influenced by exogenous factors such as nutri-
tion, a field explored in nutritional genomics. Both the quality and quantity of diet have
been found to modulate DNA methylation and mental health epigenetically [91].

Additionally, an intriguing hypothesis suggests that bioactive compounds in food may
extend healthspan by modulating the SASP, indicating new strategies to slow the onset
and progression of ARDs [92]. Since the anti-aging effects of natural compounds have only
recently begun to be scientifically evaluated, very few notions are available about their
properties and ability to exert anti-SASP and/or senolytic activity. However, nutrition is
often considered one of the most promising modifiable risk factors for ARDs, including
neurodegenerative diseases, a contention fully appreciated in multidomain intervention
studies [93–95].

While all-natural foods are inherently functional due to their composition, the con-
cept of functional foods emerged from the observation that certain manufactured foods,
enhanced with additional ingredients, can further improve human health [96]. This cate-
gory includes conventional foods enriched with bioactive compounds such as vitamins,
minerals, and phytochemicals [91,92], directly impacting nutritional health by enhancing
overall well-being or reducing disease risk [97]. Among the various nutraceutical-enriched
foods, olive oil, milk, and yoghurt stand out for their potential health benefits. Extra virgin
olive oil has been extensively studied for its positive effects on telomere length, diabetes,
cognitive function, and various hallmarks of aging, including cellular senescence [98].
Martucci et al. studied, through an interventional trial with 48 elderly volunteers, the
impact of fortified milk on inflammaging parameters. The fortified milk was enriched with
omega-3 fatty acids (EPA, DHA), various vitamins, and trace elements, finding improved
levels of micronutrients and the omega-3 index, along with reduced arachidonic acid (AA),
homocysteine, and omega-6/omega-3 ratios [99]. Yoghurt, rich in anti-inflammatory and
B-vitamin content, may help protect against cognitive decline. Tillisch et al. showed in a
randomized trial on healthy women that a four-week intake of fermented milk affected
brain function changes [100].

Functional foods play a crucial role in healthy aging by addressing factors like oxida-
tive stress, inflammation, and mitochondrial dysfunction. Their positive effects on aging
mechanisms suggest potential benefits for aged people [101].

Due to modulating many biological mechanisms in mammalian bodies and cells, the
following anti-aging mechanisms of functional foods could be proposed: (i) stabilizers of
mitochondrial membranes and enhancers of mitochondrial function—agents that avoid cell
death by apoptosis or necrosis; (ii) metal-chelating activities; (iii) antioxidants; (iv) inducers
of apoptosis of preneoplastic and neoplastic cells [102–105].

The distinction between nutraceuticals and functional foods is often blurred due to
their intrinsic overlap, as nutraceuticals represent a specific subset of functional foods.
Given this complexity, our review will specifically focus on nutraceuticals to provide a
more structured and comprehensive analysis of their role in neurodegenerative diseases,
specifically AD and PD. By narrowing our scope, we aim to offer a clearer perspective on
their mechanisms of action and potential therapeutic applications.

4. Nutraceutical Interventions in Neurodegenerative Disorders: Focus on
Parkinson’s and Alzheimer’s Diseases

The aging brain is highly susceptible to neurodegenerative diseases, but the exact
mechanisms through which senescence in the CNS contributes to neuropathogenesis remain
unclear. The number of senescent cells increases with age, and there is growing evidence
suggesting the involvement of cellular senescence in the neuropathogenesis of AD and
PD, resulting in a significant increase in chronic neuroinflammation due to the SASP [106].
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Therefore, countering and removing senescent cells in the brain, or at least postponing their
senescence and alleviating the adverse effects of a spreading SASP, could be a strategy for
helping to slow the progression of AD and PD or delaying their onset.

This section reviews studies investigating nutraceutical compounds that may mitigate
cellular senescence processes in the brain, including neuroinflammation and the reduced
expression of anti-apoptotic proteins such as Bcl-2 and Bcl-xl, as well as compounds that
demonstrate senostatic and senolytic effects. Although direct evidence linking nutraceu-
ticals to cellular senescence in neurodegenerative diseases is currently limited, this field
has considerable potential. Various nutraceuticals have shown beneficial effects across
numerous models by modulating traits associated with senescence, indicating that further
research may provide valuable insights into their advantages.

Given the established role of senescent cells in neurodegenerative diseases, we suggest
that nutraceutical compounds affecting senescence-associated features may yield beneficial
outcomes in these conditions. However, due to the lack of direct evidence, our discussion
will primarily focus on key molecular and cellular mechanisms related to senescence rather
than directly indicating their effects on senescent cells in neurodegeneration.

The compounds discussed are categorized based on their natural origin. The results
from studies on their effects as senotherapeutic substances in aging and neurodegenerative
diseases are presented below and summarized in Table 1.

Table 1. Overview of nutraceutical compounds studied in the context of aging and neurodegenerative
diseases. Experimental models, effects (mechanisms of action), observations, and corresponding
references are reported for each compound. Abbreviations: dUCH: ubiquitin C-terminal hydro-
lase; LTP: Long-Term Potentiation; LTD: Long-Term Depression; PINK1: PTEN-induced kinase 1;
MMP+: 1-Methyl-4-phenylpyridinium; MPTP: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; RBC:
red blood cells; t-BHP: tert-Butyl hydroperoxide; MDA: malondialdehyde; OPC: Oligodendrocyte
Precursor Cells; GPx: Glutathione Peroxidase; 6-OHDA: 6-Hydroxydopamine; TBARS: Thiobarbi-
turic Acid Reactive Substances; DA-D2: Dopamine D2 receptor; SAMP8: senescence-accelerated
prone 8; hTERT: human Telomerase Reverse Transcriptase; TH: Tyrosine Hydroxylase; ∆Ψm: Mi-
tochondrial membrane potential; PBMC: Peripheral Blood Mononuclear Cells; swAPP: Swedish
Amyloid Precursor Protein; AChE: Acetylcholinesterase; SCFA: Short-Chain Fatty Acids; MAO B:
Monoamine Oxidase B; TTR: Transthyretin; DHA: Docosahexaenoic Acid; AA: arachidonic acid;
hNT: human Neural Tissue; HO-1: Heme Oxygenase-1; DI TNC1: Rat type 1 astrocytes; H 19–7:
rat hippocampal neurons; QR: Quinone reductase; GSTs: Glutathione S-transferase; N2a: Mouse
neuroblastoma-derived cells; ADAM(10): metalloproteinase; ALDH1A1: Aldehyde dehydroge-
nase 1A1; SAM: S-adenosylmethionine; SAH: S-adenosylhomocysteine; MMSE: Mini–Mental State
Examination; Ceppt: cinnamon extract; AS-IV: Astragaloside IV.

Nutraceuticals Study Models Effects Observations References

Antioxidant
vitamins

Vitamin C Albino mice Improves memory ↓ Acetylcholinesterase
activity [107]

Drosophila dUCH
Drosophila DJ-1β mutant (PD models) Neuroprotective ↓ Dopaminergic

neuron loss
[108]
[109]

SH-SY5Y cells (Aβ25-35 -treated)
Protects cells from
Aβ25-35-mediated

apoptosis
↓ Basal Aβ secretion [110]
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Table 1. Cont.

Nutraceuticals Study Models Effects Observations References

Wistar rats Aβ- or artificial
cerebrospinal fluid-injected

(AD models)

↓ Oxidative stress
↓ Neuroinflammation

↓ Lipid peroxidation
products

↓ IL-1β, IL-6, and TNFα
[111]

Hs68 human dermal fibroblasts,
H2O2-treated

Middle-aged hairless mice,
LPS-treated hAPCs

Prevents cellular
senescence

↓ Hyperactivation of
PI3K/AKT
↓ p53/p21
↓pRB/p16

↑ E2F1/E2F2
↓ mTOR
↑ FoxO3a
↑ SIRT1

[112]
[113]

Vitamin E Questionnaire-based case–control
study (healthy and PD patients)
Brain slice of PINK1−/− mice

Reduces PD occurrence
Reverses impaired
synaptic plasticity

Restored LTD and LTP [114]

Drosophila DJ-1β mutant (PD model) ↓ Oxidative stress
↑ Lifespan

↑ Catalase activity
↓ SOD [109]

SH-SY5Y cells treated with MPP+,
MG132, and thapsigargin (PD model)

Mice, MPTP-treated (PD model)

Neuroprotective against
PD-related toxicities
Antioxidant effects
↑ Motor function

Activation of
ERβ/PI3K/Akt pathway

[115]
[116]

C57 black mice, MPTP-treated
(PD model)

Prevent neuronal loss in
substantia nigra ↓ Striatal dopamine loss [117]

Cross-sectional study (>40 years old) Reduced risk of PD - [118]

Primary rat embryonic hippocampal
neurons, Aβ1-42-treated (AD model) ↓ Oxidative stress

Prevents Aβ1-42-induced
neuronal protein oxidation

Free-radical scavenger [119]

IL-1β-stimulated A549 cells
LPS-stimulated RAW264.7

macrophages (inflammatory
diseases model)

↓ Inflammation ↓ PGE2
COX2 inhibition

[120]
[121]

HUVECs
Human primary dermal fibroblasts

(replicative senescence)
Human primary skin fibroblasts from

young and aged subjects

Delays senescence
↓ Number of

senescent cells
↓ p21

[122]
[123]

Vitamin A HEK293 cells Cytoprotection Inhibits Aβ

oligomer formation [124]

Cortical neurons from embryonic
mice, Aβ1-40- and Aβ1-42-treated

129S2/SvHsd and Tg2576 mice (AD
models)

Neuroprotective

Inhibits Aβ

oligomer formation
↑ Disintegrin
↑ADAM (10)

[125]

SH-SY5Y cells Hormetic effect
↓ Oxidative stress

↑ TH
↑ Akt and ERK1/2
phosphorylation [126]

Postnatal and adult Aldh1a1
knockout mice ↓ Dyskinesia ↑ MOR1 [127]
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Table 1. Cont.

Nutraceuticals Study Models Effects Observations References

Vitamin B AD patients Cognitive improvement
↓ Neuroinflammation

↑ MMSE
↑ SAM/SAH

↓ Aβ1-40, PS1, and TNFα
↓ Blood homocysteine

[128]
[129]

SAMP8 mice
Astrocytes from mice (Aging models) ↓ Neurodegeneration

↑ Telomerase activity
↓ Astrocitosis
↓ Apoptosis

[130]

Gibco Human Astrocytes
Vitamin-B12-deficient ↓ Senescence ↓ SA-β-Gal, p16, p21 [131]

Polyphenols,
Terpenes, and

Terpenoids
Quercetin

WI-38 fibroblasts (Doxo-treated)

Prevents cellular
senescence

↓ Senescent fibroblast
pro-tumor effects

↑ SOD1 and SOD2 [132]

WI-38 fibroblasts Senolytic effect ↓ Autophagy
↑ ER stress [133]

Human RBC cells, t-BHP-treated
(oxidative stress model)

↓ Deleterious effects of
oxidative stress
in erythrocytes

↓ MDA
↑ GSH

↑ Membrane-SH
Group

[134]

Quercetin +
Dasatinib Aβ1-42-induced senescent OPC cells

APP/PS1 transgenic mice (AD model)

Senolysis of
senescent OPCs

↓ Neuroinflammation
↑ Cognitive function

Inflammation, senescence,
Aβ pathology [135]

Ginkgolides and
bilobalide

C57BL/6J mice, MPTP-treated
(PD model)

Protect against
nigrostriatal

dopaminergic
neurotoxicity

↑ Locomotion activity
↓ Oxidative stress

↓ Lipid peroxidation
↓ Mn-SOD

↑ GPx activity
↑ Glutathione reductase
Inhibitory effect of brain

[136]
[137]

Resveratrol

Wistar rats, 6-OHDA-treated
(PD model)

↑ Antioxidant status
↓ Dopamine loss

↓ TBARS
↑ GSH, TH,

Na+/K+-ATPase activity
↓ DA-D2 receptor binding

↓ PLA2 and COX-2

[138]

SK-N-BE cells, 6-OHDA-, Aβ1-42-, and
α-sin-treated (oxidative stress, PD,

and AD models)

Neuroprotection
↓ Oxidative stress

Activates SIRT1
↑ Autophagy [139]

Oleuropein

SH-SY5Y and
OLN-93 cells, α-synuclein-treated

(PD models)

Stabilizes α-synuclein
monomers

Prevents pathological
aggregation
↓ Cytotoxicity

↓ Oxidative stress

↑ α-Synuclein proteolysis
↓ α-Synuclein interaction

with cell membrane
↓ LDH release

[140]
[141]
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Table 1. Cont.

Nutraceuticals Study Models Effects Observations References

Fisetin

Aged SAMP8 mice (AD model)

Prevents cognitive and
locomotor deficits

with age
↓ Neuroinflammation

↓ SAPK/JNK
Metabolic alteration [142]

Limonene Adult Mediterranean fruit flies
(aging model) ↑ Lifespan Hormetic effect [143]

Ginsenoside F1 Human astroglioma CRT and
U373-MG cells (20 g/L

D-galactose-induced senescence)

Suppresses the SASP
↓ Astrocyte-derived
neuroinflammation

↓ p38MAPK-dependent
Nf-κB [144]

Mouse sw APP N2a cells (AD model) Reduces Aβ1-40 and
Aβ1-42 formation

↑ PPARγ
↓ BACE1 [145]

Artemisin LPS-activated RAW
264.7 macrophages ↓ Inflammation ↓ AChE [146]

AS-IV
Replicative-induced and

LPS/MPP+-induced senescent
mouse astrocytes

Mice, MPTP-treated (PD models)

↓ Inflammation
Neuroprotection

↑ Longevity
↓ Dopaminergic

neuron loss

Attenuates senescence
and SASP

↑ TH
↑ Autophagy

[147]

Spices
Curcumin Astrocytes DI TNC1 and neurons H

19–7 from rats
Cytoprotection against

oxidative stress
↑ HO-1 and Nrf2
↑ QR and GSTs [148]

Human AD and Tg2576 mouse
brain sections

swAPP Tg2576 transgenic mice
(AD model)

Differentiated SH-SY5Y cells,
Aβ-treated (AD model)

Blocks Aβ aggregation
Prevents Aβ cytotoxicity

Labels amyloid plaques in
the brain

Induces disaggregation of
pre-aggregated Aβ

[149]

HEK293T (hTERT-transfected) ↑ Telomere elongation ↑ Telomerase activity [150]

Sprague Dawley rats,
6-OHDA-treated (PD model) Neuroprotective ↓ Loss of TH-positive cells

and DA content [151]

MES23.5 cells, 6-OHDA-treated
(PD model)

Protects from
neurotoxicity

Restores ∆Ψm
↑ Cu-Zn SOD

↓ ROS
↓ NF-κB activation

[152]

PBMC from healthy and AD patients ↑ Aβ clearance
↑ AD

macrophage-mediated
Aβ phagocytosis

[153]

PC12 rat cells and HUVECs,
Aβ-treated (AD model)

Protects from
Aβ1-42 insult ↑ Antioxidant pathway [154]

swAPP HEK293 cells (AD model) ↓ Aβ1-42 production ↓ APP protein expression [155]

In vitro (cell-free) Inhibits aggregation
Inhibits Aβ1-40 and Aβ1-42

fibril formation
and extension

[156]
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Table 1. Cont.

Nutraceuticals Study Models Effects Observations References

Piperine

C57BL/6 mice, MPTP-treated
(PD model)

↓ MPTP-induced deficits
in motor coordination

and cognitive
functioning

Prevents decrease in
TH-positive cells

↑ Bcl2/Bax ratio
↓ Oxidative stress

↓ Microglia activation
↓ IL-1β

[157]

Wistar rats, AF64A-injected
(AD model)

Improves memory
impairment and

neurodegeneration
in hippocampus

↓ Lipid peroxidation
↓ AChE activity [158]

Albino rats,
aluminum-chloride-injected

(AD model)

Prevents
neurodegeneration

↑ Memory
↓ AChE activity [159]

Cinnamaldehyde
and CEppt BE(2)-M17 cells Prevents neuronal death

in the substantia nigra Autophagy [160]

PC12 cells (6-OHDA-treated)
Protective against
6-OHDA-induced

cytotoxicity

↑ Survivin
↓ Cyt-c

Oxidative stress, apoptosis
[161]

Drosophila mutated for A53T
α-synuclein in the brain (model of PD) Neuroprotective

Interferes with
α-synuclein aggregation
Promotes disassembly of

performed aggregates

[162]

THP-1 monocytes, LPS-treated
(inflammatory model) ↓ Inflammation ↓ Akt and IκBα

phosphorylation [163]

PC12 cells, Aβ-treated
Drosophila, Aβ42-transfected

5XFAD mice (AD models)

Inhibits formation of
toxic Aβ oligomers
Improves cognitive

behavior
Ameliorates locomotion

defects

Prevents Aβ cytotoxicity
Aβ aggregation
↓ Aβ plaques

[164]

Cardamom oil
Wistar rats,

aluminum-chloride-injected
(AD model)

Improves behavioral
parameters

↓ Oxidative stress
↓Neuronal damage

↓ Aβ plaques

↓ AChE activity [165]

Dietary Fiber

Adult and aged Balb/c mice ↓ Inflammatory infiltrate
↑ Butyrate

gut microbiota
↑ SCFA production

[166]

In vitro (cell-free) Inhibits Aβ1-40 and
Aβ1-42 aggregation Protein interaction [167]

5xFAD mice (AD model)
Delays cognitive decline
↑ Cognitive function

↑ Memory

Alters microglial
transcriptome

Alters T-cell profile in
the brain

[168]
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Table 1. Cont.

Nutraceuticals Study Models Effects Observations References

Probiotics

Accelerated-aging C57BL/6 mice
↓ Inflammation

↑ Neurotrophic factor
↑ Memory

↓ p16, NF-κB, iNOS, and
COX-[2] [169]

C. elegans, H2O2-treated
HT-29 cells stimulated with
proinflammatory cytokines

↑ Lifespan
Anti-inflammatory
↓ Oxidative stress

Modulation of
DAF[2]/DAF-[16] pathway [170]

D-galactose-induced oxidative stress,
ICR mice

↑ Antioxidant status
↓ Liver damage

↓ Lipid peroxidation

↑ Nrf[2]/Keap[1]
↑ SOD
↑ GPx

[171]

PBMCs from healthy and PD patients

↓ Inflammation
↓ Oxidative stress

↑ Anti-inflammation

Restore membrane
integrity

↓ Pathogenic bacteria [172]

SH-SY5Y cells
(dopaminergic phenotype)

C57BL/6 mice, 6-OHDA-treated
(PD models)

↑ Synaptic plasticity
↑ Neuroprotection

↓ Neuroinflammation

↑ PI[3]K/Akt, NF-κB, and
PPARγ

↓ JNK/ERK
[173]

C57BL/6 mice, MPTP- and
rotenone-treated (PD models)

↓ Motor deficits
↓ Neuroinflammation
↓ Oxidative stress
Neuroprotective

↑ Neurotrophic factors and
butyrate level

↓ Glial reactivity
Antioxidant enzymes

Gut microbiota
↓ Dopaminergic
neuronal death

↓ MAO B

[174]
[175]

Aged Fischer 344 rats

↓ Inflammation
Ameliorate

age-dependent memory
impairment

↓ NF-κB
↓ p[16], COX-[2], and iNOS

in the hippocampus [176]

ddY-mice, Aβ1-42-injected (AD model)
↓ Inflammation

Prevent cognitive
dysfunction

↓ Immune-reactive-
related genes [177]

Prebiotics

Healthy and PD patients
↓ Inflammation

↓ Neurodegeneration
↓ Non-motor symptoms

↑ Beneficial metabolites
Change microbiota

[178]
[179]

D-galactose- and Aβ1-42-induced
deficient Sprague Dawley rats

(AD model)

↓ Oxidative stress
↓ Inflammation
↑ Learning and

memory abilities

↓ Tau and
Aβ1-42 expression

Modulate
microbiota–gut–brain axis

[180]
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Table 1. Cont.

Nutraceuticals Study Models Effects Observations References

PUFAs

C57BL/6 mice, MPTP-treated
(PD model) Neuroprotective

Prevent decrease in
TH-labeled nigral cells

Protect from
dopamine decrease

[181]

Human subjects (>55 years old)
PD patients Lower the risk of PD

Modify the association of
PD with paraquat

and rotenone

[182]
[183]

C57BL/6 mice, MPTP-treated
(PD model) Neuroprotective ↑ BDNF [184]

Wistar rats, Aβ-treated (AD model) Neuroprotective
↓ ROS, NOX1, MAO

↑ NOX2, DOS1, serotonine
Prevent the ↓ of IL-10

[185]

AD patients Reduce Aβ in the brain ↑ TTR that binds and
reduces Aβ

[186]

Aged transgenic Tg2576 mice
(AD model) Neuroprotective ↑ PI3K/Akt

↓ BAD [187]

Old 3xTg AD mice Ameliorate cognitive
performance

Ameliorate
DHA/AA balance [188]

5XFAD mice (AD model)
Mouse astrocytes and microglia,

LPS-stimulated

↓ Inflammation
Ameliorate cognitive

deficits

↓ Soluble form of Aβ

↑ Abca1 and ApoE
gene expression

[189]

swAPP/PS1∆E9 tg mice
hNT neuronal cultures (AD models)

Prevent amyloid
toxicity

↓ Plaque
↑ Drebrin in hippocampus [190]

4.1. Antioxidant Vitamins

A major contributor to aging and ARDs, such as AD [191] and PD [192], is oxidative
stress induced by free radicals. Oxidative stress can directly activate glial cells, mainly by
priming astrocytes, resulting in their interaction with neurons and the subsequent release of
immune mediators such as nitric oxide (NO), additional ROS, pro-inflammatory cytokines,
and chemokines. These mediators act as neurotoxins, propagating inflammation within the
CNS [193].

Accumulating evidence from mouse models of accelerated senescence indicates that
ascorbic acid (AAC) plays a rescuing role in premature aging. Moreover, although the
precise role of AAC in the CNS remains partially understood, studies have demonstrated
that its concentration in the cerebrospinal fluid (200–400 mM) far exceeds that found
in cerebral parenchyma and plasma (30–60 nM) [194]. Overall, AAC exhibits notable
nootropic properties [195] and has been shown to decrease acetylcholinesterase activity in
mice [107]. In addition, it facilitates the differentiation of neuronal and astrocyte precursors,
thereby promoting synaptic maturation [196]. AAC is also essential for the biosynthesis of
catecholamines, peptide amination, myelin formation, and the enhancement of synaptic
function, while providing neuroprotection against glutamate toxicity [197,198].

In PD, dopamine metabolism generates oxidative stress products that contribute to
accumulating abnormal proteins that are characteristic of PD [199]. Current therapeutic
strategies for PD primarily alleviate symptoms, but they do not halt disease progression,
rendering treatment particularly challenging.
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Although early studies indicated that AAC supplementation could mitigate oxidative
damage in in vitro and animal models [108,109], more recent investigations have yielded
inconsistent results [200]. Notably, AAC levels are lower in the substantia nigra compared
to other brain regions [201,202], heightening its vulnerability to oxidative stress [203]. Fur-
thermore, AAC has been shown to enhance the production of dihydroxyphenylalanine
(DOPA); Seitz et al. observed a dose-dependent overproduction of DOPA in the human neu-
roblastoma cell line SK-N-SH following incubation with AAC (100–500 mM) for 2 h [204].
Nonetheless, AAC has been demonstrated to improve the absorption of levodopa in elderly
PD patients with poor levodopa bioavailability, thereby enhancing its therapeutic efficacy
and reducing its side effects [205,206]. Moreover, AAC is critical for brain development;
one study reported that AAC treatment induced a tenfold increase in dopaminergic dif-
ferentiation in CNS precursor cells derived from E12 rat mesencephalon [207]. In vivo,
a cohort study of 1,036 PD patients further supported the neuroprotective role of AAC,
demonstrating that higher dietary intake was significantly associated with a reduced risk
of PD [208], although some studies have not corroborated these findings [209,210].

In contrast, the neuroprotective effects of vitamin E are thought to arise from its ability
to prevent oxidative stress and inhibit apoptosis. Vitamin E has been shown to reverse
impaired synaptic plasticity in mouse models [114] and reduce ROS levels in Drosophila
models [109]. Additional evidence underscoring the role of oxidative stress in PD includes
observations that cellular antioxidants such as glutathione (GSH) are depleted in PD [211].

Specific isoforms of vitamin E, such as γ-tocotrienol and δ-tocotrienol, exert neuro-
protective effects through the ERβ-PI3K/Akt signaling pathways in SH-SY5Y cells [115].
Moreover, δ-tocotrienol has been found to prevent dopaminergic neuron loss and improve
motor function in mouse models of PD; its neuroprotective effect, however, was atten-
uated by ER inhibitors [116]. In an MPTP-induced PD model in C57/B1 mice, vitamin
E-deficient animals were markedly more susceptible to MPTP toxicity, exhibiting increased
lethality and greater depletion of dopamine metabolites in the substantia nigra [212].
Perry et al. [117] similarly reported that mice treated with daily subcutaneous injections of
high-dose α-tocopherol (αT) (2350 mg/kg body weight) 48 h before and 72 h after MPTP
administration experienced partial protection against the loss of striatal dopamine and
dopaminergic neurons in the substantia nigra. In supporting these experimental findings, a
cross-sectional study involving participants over 40 years of age found that higher vitamin
E intake was significantly associated with a reduced risk of PD [118].

Conversely, L-AAC has also garnered attention for its beneficial effects on AD [213].
The primary neuroprotective mechanisms attributed to AAC include ROS-scavenging
activity, neuroinflammation modulation, Aβ fibrillation inhibition, and the chelation of
metals such as iron, copper, and zinc [214]. Furthermore, AAC has been shown to protect
SH-SY5Y neuroblastoma cells from Aβ-mediated apoptosis [110] and, when administered
orally, to reduce oxidative stress and neuroinflammation induced by Aβ fibrils in rats [111].

In contrast, vitamin E is a potent antioxidant that scavenges free radicals primarily
through a hydrogen atom transfer mechanism [215]. Vitamin E plays a crucial role in
the brain, is one of the most potent antioxidants, and has shown significant benefits in
AD [216]. It counteracts Aβ-induced oxidative stress [119]; for instance, vitamin E has
been demonstrated to prevent Aβ1-42-induced protein oxidation, ROS production, and
neurotoxicity in primary rat embryonic hippocampal neuronal cultures [119]. Moreover,
although Aβ1-42 reduces the surface expression of the principal glutamate transporter
GLT-1 in adult mouse astrocytes, this detrimental effect is prevented by a water-soluble
analogue of vitamin E [217]. Vitamin E also helps preserve calcium homeostasis and
protects against damage from Aβ deposits near cell membranes [218]. Additionally, it can
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inhibit neuroinflammation by suppressing the production of prostaglandins E2 and D2,
along with reducing cyclooxygenase and lipoxygenase activity [120,121].

Numerous research studies demonstrate that AAC and vitamin E can reduce cell
senescence. However, limited evidence directly links cellular senescence, neurodegener-
ative diseases, and antioxidant vitamins. Most research has concentrated on other cell
types, and only a few studies have investigated the potential role of antioxidant vitamins
in influencing senescence and its related pathways in brain cells.

We highlight some relevant findings to offer a broader perspective on the capacity of
antioxidant vitamins to modulate cellular senescence. Specifically, AAC downregulates
SA-β-Gal and cell-cycle inhibitors (p53, p21, p16, and pRb) while upregulating activators
(E2F1/2), reducing senescence in human dermal fibroblasts, hairless mice models, and
LPS-treated human apical papilla cells [112,113].

Limited studies are also available regarding vitamin E supplementation. Vitamin E,
including its phosphorylated form αTP, reduces SA-β-Gal activity in human fibroblasts
and endothelial cells, with greater efficacy observed in cells from aged donors [122,123].
Specifically, vitamin E reduces SA-β-Gal levels in cells from both young and aged donors
when reaching replicative senescence. This effect is also observed in earlier fibroblast pas-
sages from older subjects, likely due to a phosphorylated form of vitamin E, α-tocopheryl
phosphate (αTP), which occurs in aging caused by reduced conversion to αT [123].

In summary, AAC exerts neuroprotective effects by scavenging ROS, modulating
neuroinflammation, and supporting synaptic function, while vitamin E mitigates oxidative
stress, preserves membrane integrity, and inhibits apoptosis. Although studies indicate
potential positive outcomes on senescence-associated characteristics, findings remain incon-
sistent in AD and PD, highlighting the need for further research to elucidate their precise
mechanisms and therapeutic potential.

In addition to the well-known antioxidant vitamins, several others exert indirect
antioxidant effects that may offer potential benefits for AD and PD.

Vitamin A, primarily through its active metabolite all-trans-retinoic acid (RA), plays
a critical role in the CNS and maintains higher brain functions in aging individuals [219].
Although not classified as a direct antioxidant, RA exhibits significant indirect antioxidant
properties [220]. In vitro studies have shown that vitamin A and β-carotene can inhibit
the oligomerization of Aβ40-42 peptides [124]. Mechanistically, the activation of retinoic
acid receptor alpha (RARα) increases the expression of ADAM10/α-secretase, an enzyme
that mitigates amyloid burden by cleaving APP in a non-amyloidogenic pathway without
affecting β- or γ-secretase activity, as demonstrated in mouse cortical neurons [125]. How-
ever, high concentrations of retinol exposure (10 µM for 24 h) in SH-SY5Y cells increased
Aβ levels and reduced cell viability, suggesting hormetic behavior with dose-dependent
cytotoxic effects [126]. With aging, retinoid signaling remains essential for brain home-
ostasis; however, senescence-associated impairments can diminish vitamin A signaling
efficacy [221].

RA signaling is implicated in PD neurogenesis and the differentiation of striatal neu-
rons. The disruption of RAR/RXR pathways, as observed in transgenic RXR−/− and/or
RAR−/− mice, has been shown to impair synaptic plasticity in the hippocampus and
other brain regions, highlighting the critical role of vitamin A signaling in PD pathophysi-
ology [127,222].

Although structurally and functionally heterogeneous, the B-vitamin group encom-
passes key antioxidant defense and neuroprotection cofactors. Vitamins B9 and B12 are
essential for one-carbon metabolism, a biochemical network crucial for DNA synthesis,
epigenetic regulation, and redox balance [223]. One-carbon metabolism is often disrupted
in AD, and vitamin B9 supplementation has been shown to restore metabolic balance and
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enhance cognitive outcomes, as evidenced by improved Mini–Mental State Examination
(MMSE) scores in patients receiving vitamin B9 and B12 [128,129].

Beyond cognitive effects, vitamin B9 has also been reported to exert anti-aging proper-
ties. In the senescence-accelerated mouse prone 8 (SAMP8) model and primary astrocyte
cultures, vitamin B9 supplementation (0–40 µM) reduced age-associated apoptosis and
mitigated telomere attrition in cortical regions [130]. This finding is particularly relevant
given that telomere shortening, a hallmark of replicative senescence, is often driven by
oxidative stress and inflammation.

Plasma B12 levels correlate positively with telomere length and mitochondrial DNA
copy number, declining with cellular aging [224–226].

Furthermore, vitamin B12 deficiency has been associated with the induction of cellular
senescence markers in astrocytes. Specifically, B12-deficient astrocytes exhibit increased SA-
β-gal activity and the upregulation of cell-cycle inhibitors p16INK4a and p21CIP1, indicating
a senescent phenotype [131].

Although not classified as antioxidants, vitamins A, B9, and B12 exhibit promising
neuroprotective and anti-senescent properties. Therefore, their inclusion in this context
is warranted, as they may pave the way for future studies exploring novel micronutrient-
based interventions targeting age-related neurodegeneration and cellular senescence.

4.2. Polyphenols, Terpenes, and Terpenoids

Dietary polyphenols exhibit robust neuroprotective effects that extend well beyond
their well-known antioxidant and anti-inflammatory properties. Circumstantial evidence
indicates that these compounds modulate intracellular signaling pathways, alter gene
expression, and influence enzyme activities, all contributing to their therapeutic potential
in neurodegenerative diseases [227,228].

A growing body of research demonstrates that polyphenols can modulate cellular
senescence in many research studies and models. For example, in vitro, the chronic treat-
ment of pre-senescent neonatal human dermal fibroblasts with oleuropein aglycone, a
prominent polyphenol in extra-virgin olive oil, resulted in a significant reduction in senes-
cent cell numbers, as evidenced by decreased SA-β-Gal activity and lower p16 protein
expression [229]. Similarly, compounds such as apigenin, quercetin, kaempferol, and
wogonin have been shown to suppress the secretion of SASP markers, including IL-6, IL-8,
and IL-1β [230]. Recent studies by Bientinesi et al. revealed that quercetin can prevent
doxorubicin-induced senescence in human fibroblasts [132,133]. Quercetin not only allevi-
ates the deleterious effects of the SASP in both U2OS and normal cells, but also protects
fibroblasts from ROS-mediated damage, evidenced by reductions in senescence-associated
heterochromatin foci (SAHF), Lamin B1 loss, and NF-κB nuclear translocation. Moreover,
quercetin exhibits senolytic activity, reducing autophagy while increasing endoplasmic retic-
ulum stress, thereby underscoring its multifaceted role in combating cellular aging. Several
benefits have also been demonstrated in human in vivo studies. For instance, Maurya et al.
showed that in human red blood cells, these flavonoids reduce malondialdehyde (MDA)
levels while increasing GSH and membrane sulfhydryl (-SH) group levels [134].

Moreover, polyphenols can also modulate senescence through a hormetic mechanism,
as shown for resveratrol and curcumin [56,57].

Curcumin is well known for its antioxidant properties, which are mediated through
the Keap1/Nrf2/ARE pathway. It exhibits dual characteristics: at high concentrations,
curcumin can be cytotoxic to mammalian cells, while at subtoxic levels, it activates adaptive
stress responses. This protective effect is evidenced by its ability to guard against glucose
oxidase-mediated toxicity in astrocytes and aged Tg2576 mice with advanced amyloid ac-
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cumulation [148,149]. Interestingly, curcumin can paradoxically stimulate ROS production
at higher concentrations.

Similarly, resveratrol displays dose-dependent effects. It activates the SIRT1 and
AMPK pathways, which enhance mitochondrial function and promote autophagy at low
doses. In contrast, higher doses of resveratrol have been observed to induce oxidative
damage in both in vivo and in vitro AD models [139,231].

In the context of PD, dietary polyphenols appear to have beneficial effects. Flavonoids,
a major subgroup of polyphenols, protect neurons against oxidative stress, suppress neu-
roinflammation, and modulate key intracellular signaling pathways critical for neuronal
survival. These pathways, including protein kinase and lipid kinase signaling cascades,
alter the phosphorylation state of target proteins and influence gene expression [232].

Moreover, histochemical evaluations in 6-OHDA-treated mouse models of PD have
shown that green tea (a variant of tea obtained with non-treated leaves of Camellia sinen-
sis) polyphenols markedly reduce ROS levels, lipid peroxidation, and intracellular ni-
trite/nitrate concentrations [138,233].

Ginkgo biloba extract, containing flavonoids, organic acids, proanthocyanidins, and
terpenoids such as ginkgolides A, B, C, M, J, and bilobalide, has been reported to pro-
tect against nigrostriatal dopaminergic neurotoxicity in MPTP-induced PD models, with
observed reductions in lipid peroxidation and enhancements in the activities of key an-
tioxidant enzymes, such as SOD, GPx, and GSH reductase [136]. Notably, Ginkgo biloba
extract inhibited monoamine oxidase B (MAO-B) in vitro, reducing dopaminergic neuron
degeneration [136,137].

Resveratrol, a nonflavonoid polyphenol found in grapes and berries, has shown
promise in mitigating oxidative stress in a rat model of PD [234,235] while enhancing the
number of dopaminergic neurons at the synapses through MAO suppression, in addition
to preventing glutamate release [236–238].

Additionally, oleuropein and its derivatives have been demonstrated to inhibit ROS ac-
cumulation and prevent PD pathology. In vitro, oleuropein aglycone stabilizes α-synuclein
monomers, thereby preventing pathological aggregation [140], and it also inhibits α-
synuclein fibril elongation, reducing the cytotoxic effects of α-synuclein oligomers [141].
Furthermore, oleuropein activates redox-sensitive transcription factors such as Nrf2, which
may enhance the intracellular antioxidant capacity and contribute to neuroprotection [239].

Beyond PD, dietary polyphenols have been shown to have several benefits in AD,
mitigating pathological manifestations partly due to their ability to cross the blood–brain
barrier [240,241]. Polyphenols reinforce endogenous antioxidant defenses and attenu-
ate protein oxidation [242]. By sequestering reactive oxygen and nitrogen species, these
compounds prevent the formation of toxic Aβ oligomers and modulate tau-protein hyper-
phosphorylation, thereby impeding the development of neurofibrillary tangles (NFTs) [243].
Additionally, polyphenols may help preserve neuronal integrity by interacting with tran-
scription factors such as CREB and NF-κB [244].

Studies on AD transgenic mouse models (APP/PS1 model) and patients’ post-mortem
brains have revealed a senescent phenotype in oligodendrocyte progenitor cells (OPCs)
within the Aβ plaque environment. Notably, these cells were sensitive to clearance by
the senolytic cocktail dasatinib plus quercetin (D+Q). The treatment removed senescent
OPCs and ameliorated Aβ plaque-associated inflammation and cognitive deficits in AD
mice [135]. Meanwhile, in PD, direct evidence of the beneficial effects of D+Q has not been
observed, even though some advantages have been shown in aging killifish [245].

Additionally, fisetin, a natural senolytic, has been shown to improve cognitive function
in mouse models of AD and dementia [142]. Among the senolytics tested in multiple
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preclinical studies and increasing clinical trials, fisetin and D+Q appear to be the most
effective [246,247].

Animal studies further substantiate the neuroprotective potential of polyphenols.
For instance, mice receiving pomegranate juice, rich in polyphenols, exhibited significant
improvements in both cued and spatial learning tasks, along with reduced hippocampal
plaque loads, including both soluble and fibrillar forms of Aβ, as well as lower soluble
Aβ1-42 levels [248]. Red wine polyphenols have been shown to interfere with Aβ oligomer-
ization, thereby attenuating Aβ neuropathology and cognitive decline in Tg2576 mice [249].
Mori et al. [250] demonstrated that tannic acid shifts amyloid precursor protein metabolism
toward a non-amyloidogenic pathway by lowering β-secretase 1 (BACE1) expression and
β-secretase activity, decreasing Aβ peptide levels.

Similarly, grape-derived polyphenolics from Vitis vinifera grape seeds significantly
inhibited Aβ aggregation in vitro and ameliorated cognitive deterioration in Tg2576 mice
when administered orally [251].

Collectively, these findings illustrate the multifaceted neuroprotective potential of
dietary polyphenols. By modulating intracellular signaling pathways, gene expression,
and enzyme activities, polyphenols offer promising therapeutic avenues for preventing
and treating neurodegenerative diseases, highlighting their potential as valuable agents in
mitigating age-related cognitive decline and neuronal dysfunction.

In addition to polyphenols, terpenes and terpenoids exhibit notable neuroprotec-
tive, antioxidant, and anti-inflammatory properties, which may play a role in their anti-
senescence effects. Among these compounds, limonene has shown hormetic-like activity.

While high doses of limonene are toxic to the Mediterranean fruit fly (Ceratitis cap-
itata), with lethal doses recorded at 39.74 nL per male and 75.51 nL per female, lower
doses (3.47 nL per male and 12.26 nL per female) have been found to extend lifespan. This
highlights its potential in modulating aging processes [143].

Similarly, Ginsenoside F1, a minor saponin derived from Panax ginseng leaves, has
been reported to suppress the SASP in astrocytes exposed to D-galactose. This effect is
mediated by inhibiting the p38MAPK-dependent NF-κB signaling pathway, suggesting a
potential role in reducing astrocyte-driven inflammation in AD [144]. Additionally, ginseno-
sides from P. ginseng have shown inhibitory activity against BACE1 activity in vitro, an
important enzyme involved in Aβ production [145]. Artemisinin, a sesquiterpene lactone
extracted from Artemisia annua, has shown moderate inhibition of acetylcholinesterase
(AChE) at 1 mg/mL in vitro, alongside its known anti-inflammatory properties [146].

Another promising compound is Astragaloside IV (AS-IV), an antioxidant saponin
extracted from the traditional Chinese medicinal herb Astragalus membranaceus Bunge.
AS-IV exerts anti-inflammatory, neuroprotective, and longevity-promoting effects. In both
replicative senescence (long-term culture-induced) and premature senescence models in-
duced by LPS or MPP+, AS-IV attenuated astrocyte senescence by reducing SA-β-Gal
activity and p16 expression while restoring nuclear lamin B1 levels and suppressing SASP.
In a PD mouse model, AS-IV also protected against dopaminergic neuron loss and behav-
ioral impairments, effects associated with a reduced accumulation of senescent astrocytes
in the substantia nigra pars compacta [147].

4.3. Spices

Over the past decade, numerous studies have underscored various spices’ broad
spectrum of anti-aging and anti-senescence properties. For instance, the primary bioactive
compounds of black pepper, including piperine, chavicine, and sabinene, exhibit significant
pharmacological potential. Notably, in vitro studies have shown that black pepper oil,
which contains terpenoid compounds such as β-caryophyllene, limonene, β-pinene, and
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sabinene, has reduced the percentage of doxorubicin-induced senescent cells in CHO-K1
and NIH-3T3 cells [252]. Furthermore, curcumin, the primary component of Curcuma
longa, has demonstrated a capacity to mitigate age-related deterioration by counteracting
oxidative stress [253], modulating inflammatory pathways [254,255], promoting telomere
elongation and telomerase activity [150], and influencing key metabolic regulators such
as AMPK [256,257] and SIRTs [258,259]. Similarly, coriander seeds, which are rich in
phenolic acids, coumarins, flavonoids, carotenoids, tocopherols, fatty acids, and sterols,
have shown potential in reducing oxidative stress and cellular senescence, as evidenced by
the decreased expression of senescence markers SA-β-Gal and p21 in the cardiac [260] and
brain tissues [261] of obese rats.

Beyond their culinary roles, spices have emerged as promising agents for preventing
or even counteracting neurodegenerative processes associated with aging. The neuropro-
tective effects of spices show promising therapeutic potential in PD as well. Curcumin
has exhibited multiple protective mechanisms in PD, facilitated by its ability to cross the
blood–brain barrier due to its lipophilic nature [262]. Its neuroprotective effects are at-
tributed mainly to its potent antioxidant properties, surpassing conventional antioxidants
such as vitamins C and E [263,264]. The ability of curcumin to donate hydrogen ions from
its β-diketone moiety is believed to underlie its anti-ROS activity [265]. Notably, pre- or
post-treatment administration of curcumin in 6-OHDA-lesioned rats reduced dopaminergic
neuron loss [151], while MES cells treated with curcumin exhibited increased Cu-Zn super-
oxide dismutase expression and reduced intracellular ROS accumulation [152]. Moreover,
curcumin was found to modulate inflammatory processes by decreasing the production of
prostaglandins, glutamate, and pro-inflammatory cytokines in the hypothalamus, as well
as reducing GFAP levels, a marker of astrocytic proliferation [266].

Similarly, piperine, the principal bioactive component of Piper nigrum (black pepper)
has demonstrated neuroprotective effects in PD models. Yang et al. reported that piperine
administration ameliorated MPTP-induced motor and cognitive deficits while preventing
the loss of tyrosine hydroxylase-positive neurons in the substantia nigra [157]. Additionally,
piperine reduced microglial activation, IL-1β expression, and oxidative stress and exhibited
anti-apoptotic properties by modulating the Bcl-2/Bax ratio. Interestingly, piperine has
been evaluated in combination with quercetin due to its well-documented ability to enhance
the bioavailability of other compounds [267]. Combining quercetin and piperine improved
MPTP-induced behavioral and neurochemical deficits while mitigating oxidative stress
and inflammation in the striatum [268].

Emerging in vitro evidence further supports the beneficial role of cinnamon and its
metabolites in PD. Cinnamaldehyde (10 µM) was shown to protect BE(2)-M17 human
neuroblastoma cells from MPP+-induced toxicity by inhibiting autophagy [160]. Cinnamon
extract (CEppt), with its main bioactive component cinnamaldehyde, has also shown
protective effects against 6-OHDA-induced cytotoxicity by enhancing cell viability, reducing
apoptosis, and decreasing ROS levels [161]. Furthermore, CEppt has been found to interfere
with α-synuclein aggregation by stabilizing its soluble oligomeric form and promoting the
disassembly of preformed aggregates [162].

In addition to their anti-inflammatory properties, these bioactive compounds exert
antioxidative effects and inhibit acetylcholinesterase activity and Aβ aggregation in AD.
Curcumin has demonstrated potent antioxidant activity in both in vitro and in vivo mod-
els [269–271]. Mechanistically, curcumin enhances the macrophage-mediated clearance of
Aβ plaques [153], suppresses microglial proliferation [272], attenuates neuroinflammation
by downregulating pro-inflammatory cytokines [273,274], and inhibits oxidative stress by
preventing free radical formation and propagation [154,275]. Remarkably, in vitro studies
suggest that curcumin reduces Aβ levels by modulating APP processing and downregulat-
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ing BACE1 expression [155]. Additionally, curcumin exhibits a high binding affinity for Aβ

aggregates, thereby preventing their formation both in vitro and in vivo [156].
In addition to Curcuma longa, Cinnamomum verum has demonstrated significant

neuroprotective properties. Studies have shown that cinnamon has potent antioxidant ef-
fects, boosting the activity of endogenous antioxidant enzymes through various antioxidant
biomolecules. These include cinnamic acid, which is widely reported, and some phenolic
compounds, such as proanthocyanidins A and B and kaempferol [276,277], which also si-
multaneously exert anti-inflammatory effects [163,278]. Notably, CEppt effectively inhibits
the formation of toxic Aβ oligomers and protects neuronal PC12 cells from Aβ-induced
toxicity, eliminating tetrameric Aβ species in the brain. Moreover, oral administration of
this extract in an aggressive AD transgenic mouse model significantly reduced 6 kDa Aβ

oligomers, diminished plaque burden, and improved cognitive performance [164].
Piperine has been reported to exert neuroprotective effects [158]. In animal models,

black pepper administration reduced cholinesterase activity and amyloid plaque forma-
tion in the brain [159]. Furthermore, piperine significantly attenuated lipid peroxidation
and acetylcholinesterase activity while preserving neuronal density in adult male Wistar
rats [158].

Similarly, cardamom oil treatment, constituted by 1,8-cineole, α-terpinyl acetate,
limonene, linalyl acetate, and linalool, improved neurobehavioral parameters in male
Wistar rats, inhibited acetylcholinesterase activity in the hippocampus and cortex, and
enhanced antioxidant enzyme levels while reducing oxidative damage. Additionally, it
increased BDNF levels and suppressed Aβ expression in the hippocampus and cortex [165].

Overall, accumulating evidence suggests that spices such as Curcuma longa, cinnamon,
black pepper, and cardamom possess significant neuroprotective properties that may be
exploited to prevent and treat neurodegenerative diseases, including AD and PD.

4.4. Dietary Fiber

Recent findings suggest that a high-fiber diet may protect against neurodegenerative
disorders by supporting metabolism, modulating neuroinflammation, and regulating epige-
netics. Unfortunately, although it displays several effects on the key mechanisms of cellular
senescence, a direct link to senescence itself remains unclear. Dietary fiber, composed
of non-digestible and non-absorbable carbohydrates, influences gut microbiota composi-
tion and short-chain fatty acid (SCFA) production, impacting brain function through the
microbiota–gut–brain axis [279,280].

Shi et al. studied dietary fiber deficiency (FD) in mice, revealing alterations in hip-
pocampal synaptic ultrastructure, the proteome, and microglial–neuroinflammation path-
ways, affecting cognition and dopamine cholinergic synapses [279].

Gut microbiome alterations have also been linked to PD, with decreased SCFAs,
particularly butyrate, observed in PD patients [281]. Similarly, Matt et al. showed that
butyrate administration and high-fiber diets reduced neuroinflammation in aged mice [166].

For AD, dietary fiber and SCFAs have shown benefits in cholesterol reduction, Aβ

clearance, and neuroinflammation regulation, potentially mitigating Aβ deposition and
brain hypometabolism [282–285].

Furthermore, in vitro studies found valeric, butyric, and propionic acids to interfere
with neurotoxic Aβ aggregation [167], while in vivo, fiber influenced amyloid load in
GPCR KO mice, suggesting a role in amyloid metabolism [168].

4.5. Probiotics and Prebiotics

Probiotics and prebiotics influence human health by modulating metabolic regu-
lation, immune response, and neurological function via the gut microbiome [286–290].
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Probiotics, particularly Lactobacilli species, have demonstrated benefits in aging by en-
hancing immunity and maintaining gut microbiota balance, potentially extending the
healthspan [289,291–293]. Probiotics can regulate neuroinflammation and oxidative stress
in neurodegenerative diseases, reducing the risk of disorders like PD and AD [169–171,294].
Furthermore, as previously mentioned, in synergy with polyphenols, probiotics can also
function as hormetic nutrients modulating antioxidant and anti-inflammatory signaling
pathways [54].

In PD, probiotics improve gut health, mitigate permeability, and reduce neuroinflam-
mation [295]. Cellular studies show that probiotic treatment can shift cytokine production
towards an anti-inflammatory profile [172], while in vivo studies suggest protection against
dopaminergic neuron loss and neurotrophic factor depletion [173–175].

Similarly, specific probiotic strains in rat models can restore gut microbiota balance
in AD, improve cognitive function, and mitigate pathological features such as Aβ de-
position and oxidative stress [296,297]. However, the precise mechanisms remain un-
clear [176,177], and probiotics’ role as modulators of cellular senescence per se is only
beginning to be understood.

Conversely, prebiotics, including fructo- and galacto-oligosaccharides, promote SCFA
production and support cognitive function [298]. They modulate oxidative damage, en-
hance GLP-1 secretion, and potentially regulate brain glucose metabolism and CNS inflam-
mation via GLP-1 receptors [299,300]. Prebiotics modulate gut microbiota composition in
PD, reducing pro-inflammatory bacteria and increasing SCFA-producing taxa with promis-
ing neuroprotective effects [178,179]. Intriguingly, their combination with probiotics, via
the consumption of fermented milk containing multiple probiotic strains and prebiotic
fiber [301], appears particularly beneficial in PD patients, improving gut motility [301,302].

On the other hand, prebiotic supplementation in AD rodent models has shown im-
provements in neurotransmitter levels, cognitive function, and Aβ pathology, with chitosan
oligosaccharides demonstrating neuroprotective properties in several studies [180].

Despite strong evidence supporting the role of probiotics and prebiotics in neuroin-
flammation and neurodegeneration, their direct impact on cellular senescence remains
unclear. However, they have been shown to exert regulatory effects on oxidative stress,
inflammation, and metabolism. Notably, they may modulate neuroinflammation, which is
at least partially influenced by the presence of senescent cells. Further studies are needed to
clarify this relationship and explore their potential in aging and neurodegenerative diseases.

4.6. Polyunsaturated Fatty Acids (PUFAs)

PUFAs are crucial in neuroprotection, presenting potential therapeutic implications
for neurodegenerative diseases. Evidence supports their involvement in modulating in-
flammation, oxidative stress, and neurotoxicity. However, further research is required to
investigate their direct action as senolytic or senostatic agents and their influence on the
broader aging process [303]. PUFAs play a fundamental role in neurodevelopment, neu-
rotransmission, and neuromodulation, with potential neuroprotective effects that include
reducing neuroinflammation, mitigating neurotoxicity, promoting neural recovery, and
preserving blood–brain barrier integrity [304].

Among PUFAs, omega-3 (n-3) and omega-6 (n-6) long-chain polyunsaturated fatty
acids (LCPUFAs) are essential for brain function, constituting 30–35% of total brain fatty
acids. Docosahexaenoic acid (DHA) and AA are the predominant LCPUFAs in phospho-
lipids, playing key roles in synaptic integrity, plasticity, and cognitive function [305,306].
Neuroinflammation is a major contributor to age-related neurodegeneration, and n-3 LCP-
UFAs, particularly eicosapentaenoic acid (EPA) and DHA, exhibit anti-inflammatory prop-
erties by downregulating IL-6 and TNF-α while enhancing cognitive function [307]. Inter-
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estingly, higher brain DHA concentrations correlate with improved cognitive performance,
likely due to its effects on membrane fluidity, neurotransmitter release, gene expression,
neuroinflammation, and neuronal growth [308,309]. These fatty acids also possess antioxi-
dant and anti-apoptotic effects, mitigating neurotoxicity in preclinical models [181,310].

Research on dietary fats is still emerging in PD, but observational studies suggest that
LCPUFA intake may offer neuroprotection [182,311]. For example, a meta-analysis reported
that higher LCPUFA consumption is associated with a reduced PD risk, while specific
plasma fatty acid levels correlate with motor and non-motor symptoms [183]. Additionally,
n-3 PUFAs have neuroprotective effects in MPTP-induced PD mice models, preventing
neuronal loss and preserving striatal dopamine levels [181,184,312–314].

In AD, epidemiological studies and randomized controlled trials (RCTs) indicate that
higher n-3 LCPUFA intake correlates with a lower incidence of cognitive impairment and
dementia [185,309]. Other RCTs in individuals with mild-to-moderate AD have reported
cognitive improvements following supplementation [186,315]. Animal studies suggest that
DHA reduces amyloid accumulation, tau pathology, and synaptic dysfunction, with several
independent reports confirming reduced Aβ levels in APP transgenic models following
DHA-enriched diets [187–190,316].

5. Conclusions and Future Perspectives
This review highlights the important role of nutraceuticals and functional foods in

reducing aging and neurodegenerative diseases by modulating cellular senescence and its
related aspects. It discusses how these natural bioactive compounds possess potent antioxi-
dant, anti-inflammatory, and epigenetic properties that can impact essential cellular path-
ways associated with aging and the onset of neurodegenerative diseases. We specifically
emphasize the importance of polyphenols, vitamins, and spices as nutritional senothera-
peutic agents in scavenging ROS, reducing the secretion of inflammatory SASP factors, and
modulating gene expression, alongside other characteristics related to cell senescence.

Collectively, these actions contribute to alleviating the cellular damage involved in
both aging and the onset of neurodegenerative disorders, such as AD and PD.

Even though this review highlights substantial evidence supporting the nutraceuticals’
beneficial effects on cellular senescence processes, such as improving mitochondrial func-
tion, reducing oxidative stress, and modulating inflammatory responses, direct evidence
demonstrating a senolytic effect is still limited.

Most existing studies have primarily focused on elucidating the mechanisms through
which these compounds influence senescence-associated characteristics rather than proving
a direct reduction in the number of senescent cells. This emerging and relatively new
field requires further research to explore these correlations in more detail and to under-
stand the potential benefits of introducing nutraceuticals into preventive strategies. Such
interventions may offer a promising approach to extending healthspan by targeting the un-
derlying mechanisms of cellular senescence, although current research is still in its infancy.
Ultimately, this review suggests that incorporating nutraceuticals into comprehensive di-
etary interventions may help reduce the risk of neurodegenerative diseases. However, the
scarcity of clinical data raises questions about their effectiveness, especially considering
the emerging hormetic properties of specific nutraceuticals. Last but not least is the issue
of the doses to be used in vivo to achieve an effect, considering aspects of absorption,
interactions, therapies, and individual characteristics that could influence functionality.
Numerous questions remain unresolved regarding the application of nutraceuticals as
senotherapeutics, but there exists a pressing necessity to identify anti-aging strategies that
promote active longevity while minimizing disability and functional dependence.
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Future research should overcome the current translational gap by prioritizing mecha-
nistic studies utilizing transcriptomics, proteomics, and metabolomics to elucidate whether
nutraceuticals exhibit senomorphic or senolytic properties and affect the corresponding
pathways involved. Experimental models mimicking the brain’s cellular complexity, such
as co-cultures and 3D organoids, should be employed to better capture the pathophysiol-
ogy and the impact of nutraceuticals on brain senescence and neuroinflammation. In vivo
studies using animal models of Alzheimer’s and Parkinson’s diseases are also necessary to
evaluate senescence biomarkers, including pro-inflammatory cytokines, genetic markers,
and cognitive outcomes.

Identifying characteristic proteins associated with senescence-related phenotypes
and cataloguing potential senescence biomarkers is imperative. This work will aid in
evaluating the burden of senescence, the stimuli that trigger this process, and the tissue
origins of senescent cells in vivo. Such information could prove invaluable in assessing the
therapeutic benefits of nutraceuticals in living organisms.

Moreover, enhancing the bioavailability of nutraceuticals through novel delivery
systems and investigating their effects within comprehensive dietary contexts, such as
the Mediterranean diet (MedDiet), will increase their translational potential. Clinically,
pilot trials in frail or cognitively impaired older adults, supported by validated senescence
biomarkers, could provide early insights into efficacy. Lastly, integration with genetic and
epigenetic studies should be pursued to assess individual responses to nutraceuticals and
develop highly personalized functional foods tailored to specific diet patterns.

6. Limitations
This review provides a comprehensive overview of the current literature on the role of

nutraceuticals and functional foods in modulating cellular senescence and their potential
implications for neurodegenerative diseases. Nonetheless, several limitations warrant
consideration. Most available evidence stems from in vitro or animal studies, with limited
clinical validation. Despite promising preclinical data, the clinical utility remains uncer-
tain due to poor bioavailability, a short half-life, and inter-individual variability, which
restricts translational relevance. Additionally, hormetic effects add a layer of complexity, as
beneficial effects depend on dose optimization, a factor rarely addressed. Indeed, an addi-
tional challenge lies in determining effective in vivo dosing, since absorption, metabolism,
and tissue distribution rarely correlate linearly with the administered dose. Additionally,
age-related changes, causing reduced renal and hepatic clearance, an increased volume of
distribution for lipophilic drugs, and prolonged elimination half-life, alongside heightened
pharmacodynamic sensitivity, further complicate dose selection [317]. As a result, dos-
ing must consider the target medical condition, patient-specific factors, and health status.
The safety profiles of the reviewed molecules in humans are primarily still being defined.
However, a safe dosage in humans has been gauged for some natural compounds, such
as resveratrol (500 mg) [318], Ginkgo Biloba extract (120 mg) [319], and curcumin (1–6 g
a day for 4–7 weeks) [320]. Some compounds discussed in this review exert pleiotropic
effects on multiple biological pathways, challenging the attribution of their benefits to
senescence-related mechanisms. Variability in compound purity, bioavailability, and dos-
ing further complicates comparisons across studies in terms of robustness and significance.
Collectively, these factors highlight the need for more rigorous, standardized, and clinically
focused research.
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Abbreviations
The following abbreviations are used in this manuscript:

αT α-tocopherol
αTP α-tocopheryl phosphate
Aβ Amyloid-β peptide
AA Arachidonic acid
AAC Ascorbic acid
AD Alzheimer’s disease
ARDs Age-related diseases
BACE1 β-secretase 1
CEppt Cinnamon extract
CNS Central nervous system
CR Caloric restriction
D+Q Dasatinib plus quercetin
DHA Docosahexaenoic acid
DOPA Dihydroxyphenylalanine
EPA Eicosapentaenoic acid
FD Fiber deficiency
GLP-1 Glucagon-like peptide 1
GSH Glutathione
GSs Geriatric syndromes
IL Interleukin
LCPUFAs Long-chain polyunsaturated fatty acids
MAO-B Monoamine Oxidase B
MDA Malondialdehyde
MedDiet Mediterranean diet
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
NFTs Neurofibrillary tangles
PD Parkinson’s disease
PUFAs Polyunsaturated fatty acids
ROS Reactive oxygen species
SASP Senescence-associated secretory phenotype
SA-β-gal Senescence-associated β-Galactosidase
SAHFs Senescence-associated heterochromatic foci
SCFAs Short-chain fatty acids
SIRT Sirtuin
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