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e aim of the analysis of �ust 13 natural products of plants was to predict the most likely effective arti�cial mixtures of 2-3 most
effective natural products on leukemia cells from over 364 possible mixtures. e natural product selected included resveratrol,
honokiol, chrysin, limonene, cholecalciferol, cerulenin, aloe emodin, and salicin and had over 600 potential protein targets. Target
pro�ling used the Ontomine set of tools for literature searches of potential binding proteins, binding constant predictions, binding
site predictions, and pathway network pattern analysis. e analyses indicated that 6 of the 13 natural products predicted binding
proteins which were important targets for established cancer treatments. Improvements in effectiveness were predicted for arti�cial
combinations of 2 or 3 natural products. at effect might be attributed to drug synergism rather than increased numbers of
binding proteins bound (dose effects). Among natural products, the combinations of aloe emodin with mevinolin and honokiol
were predicted to be the most effective combination for AML-related predicted binding proteins. erefore, plant extracts may in
future provide more effective medicines than the single puri�ed natural products of modern medicine, in some cases.

1. Introduction

Plant-derived secondary metabolites have been used to treat
acute infections, health disorders, and chronic illness for
tens of thousands of years. Only during the last 100 years
have natural products been largely replaced by synthetic
drugs [1]. However, important anticancer agents have to
be extracted from plants, due to their complex structures
that oen contain several chiral centers. Further, some
patients show resistance to known treatments [2]. ere-
fore, new treatments with different modes of action are
constantly sought. Plants are an abundant source of new
natural products. Estimates of 200,000 natural products in
plant species have been revised upward as mass spectrom-
etry techniques have developed [3]. New databases, omics
methods, and good practice standards are promising to

deliver many newmedicines based on plant natural products
[4].

Several studies have demonstrated that mixtures in
extracts from herbal medicines had anticancer potential in
vitro or in vivo [5–7]. Among many other studies, aque-
ous extracts from willow (salix sp.; Salicaeae) leaves pre-
vented proliferation of three cancer cell types acute myeloid
leukemia (AML), acute lymphoblastic leukemia (ALL), and
Ehrlich ascites carcinoma cells [7]. erefore, the complex
mixtures in crude extracts may be more effective than single
puri�ed natural products.

Leukemia was among the most common cancers
throughout human history [8]. However, the greater prev-
alence of leukemia in the modern world may be due to the
reduction of infectious diseases that lead to the increased
life span for most human populations. Unfortunately, by
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2012 treatments for cancer diseases were expensive with no
assurance that even simple leukemia can be cured.

For developing countries the identi�cation and use of
endogenous medicinal plantsas cures against leukemia and
other cancers have become attractive [9]. In developed
countries the use of in silico analysis to predict useful new
treatments and potential side-effects has risen to prominence
[4, 5, 10]. Here, the two approaches were combined.

Single natural products with well-known bioactivities
[11, 12] were used in this study. e objectives here were
to identify potential antileukemic compounds; to predict
effective combinations of natural products; and to rank them
on the basis of putative antileukemic activity. In addition
the in silico analysis sought to identify target protein(s)
for potentially antileukemic natural products; to predict the
modes of action of those compounds; to predict poten-
tial adverse drug reactions (toxicity); and to predict the
absorption, distribution,metabolism, and excretion (ADME)
pro�les.

2. Materials andMethods

2.1. Databases and Soware. e reference databases and
soware of Ontomine were used for predictive analysis.
Ontomine was chosen because it provided an innovative
chemoinformatics prediction tool based on the presence
or absence of chemical group(s) of a set of related natu-
ral products. Ontomine searches were performed against
large and manually curated databases. ey included (i)
Literature searches based on experimentally determined
properties from around 100.000 diverse small molecules,
collected from databases, encyclopedias, and other litera-
ture followed by expert hand-curation; (ii) BioAssay Knowl-
edgebase that was compiled from over 500 bioassay data
found at NCBI-PubChem; (iii) Target Protein Knowledgebase
that was compiled by curation among the ∼1500 proteins
from DrugBank at NCBI-PubChem (details given in Fig-
ure 1). (iv) Pathway Analysis; KEGG pathways were used
as references (p://p.genome.jp/pub/kegg/); (v) Docking
Algorithms were used to identify molecular binding sites
and predict ligand binding constants. Ontomine databases
and tools are among those used widely in this �eld [4].

2.2. Natural Products Selected for Prediction of the Basis
of Antileukemia Activity. irteen commercially available,
puri�ed, natural products of plants were selected to be tested
for their antileukemic (AML) properties (Table 1). Natural
products had been shown to cause some cell deathwhen incu-
bated with a primary AML cell lines for 24 hrs at low concen-
trations (Supplemental Table 1 see Supplementary materials
available online at http://dx.doi.org/10.1155/2013/801501).
Mortality rate and dose dependence were known [7], but
bioassays had not clearly identi�ed the best therapeutics, and
the in vivo analysis of all mixtures would have been costly.
erefore, in silico prediction was used to identify the best
candidates for later testing in vivo. A parallel analysis was
made with established drugs for AML treatments so that the
predictions could be compared.

2.3. Ontomine-Based Analyses of Functional Groups. On-
tomine was used to transform the structural information
for chemically, biologically, or pharmacologically related
molecules to a hierarchical schema of functional groups. It
was used to discover patterns in the related schema and pre-
dict biological activity, toxicity, and side-effects using rules
inferred from analyzing the patterns. e basic algorithms
underlying Ontomine-based predictions were as follows.

For rule or pattern detection the cluster formation was
based on a similarity threshold (ST) that was calculated for
each molecule using the formula:

No. of common functional groups in molecule 1 and 2
Maximum functional group count in either molecule

(1)

Once ST was calculated, clusters formed if the ST was less
than or equal to 0.7. Two clusters could be merged if each
contained the same molecules or a subset thereof. Results
were generated with con�dence levels of high, medium, and
low.

e Ontomine algorithm took into account presence and
absence of functional groups among sets of related molecules
(with similar bioactivity or toxicity) to derive rules formaking
predictions. is approach was different from traditional
maximum common subgraphs (MCS) approaches in which
only a part of molecule is taken into consideration for
decision making.

2.4. Drug Target Analysis. e database used contained
bioassay data for ∼500 predicted binding proteins (Supple-
mental Figure 1). Natural product target identi�cation was
done by mining two speci�c knowledgebases: the “Drug
Target KB” and “BioAssay KB”. BioAssay KB was generated
from 493 bioassay records from NCBI and Drug Target KB
(1,346 records) was generated from PubChem, DrugBank,
and TTD [4]. Predicted binding proteins for 13 natural
products were predicted at three con�dence levels of high,
medium, and low. e predicted bioassays were validated
using scienti�c journals, and some of the bioassay targets
were found as active against AML in the literature [13–24].

2.5. Reverse Docking to Predict Binding Affinities for Proteins.
Docking was a computational method used to estimate
binding strength among biomolecules (protein-ligand and
protein-protein interactions). Traditionally docking was used
as computational tool for screening databases of natural
products to mine a set of a few candidate drug-like com-
pounds. Reverse docking was a comparatively new appli-
cation of docking in which a database of proteins (drug
targets) was docked against a set of natural products (poten-
tially anticancerous compound), to predict binding affinities.
AutoDock4.0 soware was used to carry out reverse docking
over a database of∼1,100 predicted binding proteins available
in the Potential Drug Target Database (PDTD) [10]. e
PDTDcontainedmore than 1,100 protein entries with known
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F 1: Subnetwork dysregulated in AML versus normal white blood cells. Interaction-type annotations from KEGG were shown as the
letters above the arrows where; E was enzymatic ; T was transcription with subscript + showing activation and − showing inhibition; B was
protein-to-protein binding. Subscripts for the predicted protein-to-protein interactions were c: for compound interactions, +: activation,
−: inhibition, i: an indirect effect, s: a state change, p+: phosphorylation, p−: dephosphorylation, m: methylation, u: ubiquitination, g:
glycosylation and “none” for missing information.

3D structures. e PDTD covered diverse information of
more than 830 known or potential drug targets, including
protein and active site structures, related diseases, biological
functions, and their associated regulating (signaling) path-
ways. Taking every ligand as a probe, reverse docking was
carried out with the entire database (PDTD). e respective
ligands were also prepared using AutoDock4.0. A grid of
each protein’s binding pocket (site) was constructed using
the Autogrid module of AutoDock4.0. Every ligand was
separately docked into the binding site of each protein. e
interaction energies between the ligand and the proteins
were calculated in the form of docking scores. AutoDock4.0
also yielded the inhibition constant (𝐾𝐾𝑖𝑖) for every docking
calculation. e predicted binding proteins were screened

using a cut off value of <10 𝜇𝜇M for the inhibition constant
(𝐾𝐾𝑖𝑖).

2.6. Pathway Analyses. Pathway analyses were performed on
predicted binding proteins, to provide insights into potential
mechanisms of natural product activity. ree statistical
con�dence levels were considered for pathway analyses.
Statistical analysis used Fishers Exact Test to identify over-
represented pathways.

2.7. Gene Expression Network Analysis. Protein-protein
interaction network analyses can provide important infor-
mation about disease mechanisms and help to select
candidates for genes and their encoded proteins underlying
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T 1: Bioassay targets are con�rmed as AML active proteins by literature searches and associated binding proteins are predicted by
Ontomine.

S. no Ontomine predicted
bioassays

Con�dence
level Compound(s) Reference no

1

Guanine nucleotide
binding protein, alpha
activating
polypeptide-O

Medium Honokiol
[13]

Low
Cholecalciferol
Limonene
Retinyl palmitate

2 Multidrug resistance
protein 1 Low

Mevinolin
Limonene
Resveratrol
Chrysin

[14]

3
Myeloid or lymphoid or
mixed-lineage leukaemia
protein

High Aloe emodin
Mevinolin

[15]

Low

Barbaloin
Limonene
Retinyl palmitate
Cholecalciferol
Chrysin
L-Ascorbic acid 6-palmitate

4
Runt-related transcription
factor 1 isoform AML1c

High Chrysin

[16]
Medium Honokiol

Low

Barbaloin
Mevinolin
Limonene
L-Ascorbic acid 6-palmitate

disease. Networks can include transcript and protein co-
expression data. Here AML was compared to normal white
blood cell transcript abundance data from published studies
[12, 25] available within the NCBI-GEO database (Gene
Expression Omnibus) (Accession: GSE17054, GSE9476).
e algorithm described [25] for �nding signi�cant
subnetwork/modules in gene interaction network was used
to �nd transcripts which are altered in abundance in AML
samples when compared to normal samples. is algorithm
focused on �nding small networks, which would be easier
to be interpreted and validated. It computes 𝑃𝑃 values for
subnetworks, which helped identify signi�cant subnetworks.
is analysis produced lists of signi�cant sub-networks
(Supplemental Table 2).

2.8. Final Protein Target Selection. e objective of the
protein target selectionwas to analyze data generated through
chemoinformatics and structural informatics method, and
select relevant and important predicted binding proteins,
which would be used for selecting potential drug/drug
combination. Detailed literature searches were conducted for
predicted binding proteins generated by the earlier analy-
ses (Target Discovery/Identi�cation). e disease pathways
annotations from KEGG were used to select cancer related
predicted binding proteins along with additional literature

searches.e literature searcheswere used to support annota-
tions from KEGG and also to provide additional information
about target protein whose role in carcinogenesis has been
established recently [13–24].

Predicted binding proteins were selected based on following
criteria:

(1) Target protein should be predicted as related with
compounds of interest (natural products estimated
from Reverse Docking or Ontomine).

(2) Predicted binding proteins should be related with
AML/cancer (KEGG annotation and/or literature).

2.9. Validation of Existing Drugs for AML. Seventeen existing
drugs forAMLwere included in the analysis to (i) understand
the mode of action of drugs; (ii) predict activity pro�les;
and (iii) use them as benchmarks for the natural products
analysis. e following drugs were used as benchmark sets in
analysis; natural products 6-mercaptopurine; 6-thioguanine;
L-malate and vincristine; and synthesized drugs, amona�de,
belinostat, clofarabine, cytarabine, daunorubicin, etoposide,
�udarabine, gemcitabine, idarubicin, mitoxantrone, pacli-
taxel, prednisone, and tipifarnib. Reverse docking for 13
natural products along with 17 benchmark drugs was car-
ried out with a target database (PDTD) of ∼1060 protein



Evidence-Based Complementary and Alternative Medicine 5

T 2: Protein targets for natural products previously reported in the literature.

S. no Ontomine predicted compound(s) Bioassay targets References no
1 Mevinolin Multidrug resistance protein 1 [17]
2 Limonene Multidrug resistance protein 1 [18]
3 Resveratrol Multidrug resistance protein 1 [19]
4 Chrysin Multidrug resistance protein 1 [20]
5 Cholecalciferol Myeloid or lymphoid or mixed-lineage leukaemia protein [21]

F 2: Aloe emodin was predicted to be bound at the centre
surrounded by the amino acid residues from the active site of
2GDZ. It can be seen that aloe emodin forms 4 hydrogen bonded
interactions with the residues of the active site. ese hydrogen
bonded interactions are partly responsible for stabilizing the ligand-
protein complex. In addition the hydrophobic interactions present
between the ligand and the protein are displayed as wireframe
spheres.

structures. EachDockingwas performed using 50,000 energy
evaluations for 5 conformational searches per ligand, with a
60 × 60 × 60 dimensional grid box size and a 0.375Å grid
covering the whole of the active site. e predicted binding
proteins were further screened using the cut off value of
10 𝜇𝜇M for the inhibition constant (𝐾𝐾𝑖𝑖).

2.10. Drug Combination Selection. Searching potential inter-
actions among 13 natural products required a factorial design
to consider all possible combinations (78 pairs or 286 sets of
3 natural products). e search algorithm was designed to
�nd potential nodes in the tree structure where root nodes
represented singlet drugs and processes. Finding interactions
involved moving up the tree to explore combinations. is
approach helped to avoid false positives by limiting the
search space to signi�cant nodes and processes. Combiscores
(hereaer Cscores) were used in drug/drug-combination

ranking and selection. e Cscore was derived by analyzing
target pro�le by Ontomine for drug combinations where

Cscore = (0.2 ∗ (𝐴𝐴𝐴𝐴 𝐴 (𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴)) + (0.4 ∗ 𝐴𝐴𝐴𝐴)

+ (0.3 ∗ 𝐴𝐴𝐴)) − 0.1 ∗ comm + sp,
(2)

where Ac was the number of predicted binding proteins
related to cancer; Am was the number of predicted binding
proteins related to AML; Ah was the number of predicted
binding proteins detected as hubs in interaction networks
from gene-expression network analysis; commwas the num-
ber of common target protein(s) shared by constituent drugs
in combination; sp was the speci�city score de�ned as (the
number of cancer-related predicted binding proteins minus
the number of protein not related to cancer)/(Total no. of
predicted binding proteins for drug/combination).

Dscore was derived by analyzing target pro�le obtained
through docking analysis for drug combinations where

Dscore = ((0.2 ∗ (𝐴𝐴𝐴𝐴 𝐴 (𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴)) + (0.4 ∗ 𝐴𝐴𝐴𝐴))

+ (0.3 ∗ 𝐴𝐴𝐴)) − 0.1 ∗ comm)𝑁𝑁−1;
(3)

𝑁𝑁was the number of proteins used for forward docking (𝑁𝑁 𝑁
59).

Combiscore: was the statistic derived from combining
Cscore and Dscore:

Combiscore = (0.6 × Cscore) + (0.4 × Dscore) . (4)

Computing the scores weights was associated with
parameters, to alter their relative importance. For example
predicted binding proteins related with AML were given
more weight than proteins associated with cancers in general.
For single natural products the process began by computing
the Combiscore for each of the 13 natural products. e
mean Combiscore was calculated (1.36) and natural products
with Combiscore greater or equal to 1.36 were selected as
potentially useful.

For pairs of natural products all possible binary combi-
nations were considered, with constraint of considering only
those combinations which started from a selected singlet.
A Combiscore was computed for each pair and ranked.
e mean Combiscore was calculated. Finally, potential
combinations that had a Combiscore greater or equal to the
mean Combiscore (4.25) were reported.

For sets of three natural products combinations the same
process was followed with the Combiscore threshold set
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T 3: List of drugs predicted to form useful mi�tures by signi�cant Cscores� Dscores� and Combiscores.

(a) Singlet analysis

Compound Cscore Dscore Combiscore
Aloe emodin 9.409090909 0.027118644 5.656302003
Chrysin 8.2 0.044067797 4.937627119
Honokiol 6.133333333 0.054237288 3.701694915
Mevinolin 5.35 0.020338983 3.218135593
Resveratrol 4.559259259 0.013559322 2.740979284
L-ascorbic acid 6-palmitate 2.376470588 0 1.425882353
Cholecalciferol 2.25 0.025423729 1.360169492
Limonene 2.230769231 0.018644068 1.345919166
Cerulenin 2 0.038983051 1.21559322
Retinyl palmitate 1.4 0.005084746 0.842033898
Aloe sin −1 0.025423729 −0.589830508
Salicin −10 0.052542373 −5.978983051
Barbaloin −10 0.037288136 −5.985084746

(b) List of binary combinations selected by analysis

Compound Cscore Dscore Combiscore
Aloe emodin + honokiol 10.33333333 2.125423729 7.050169492
Aloe emodin + Aloe sin 8.833333333 2.588135593 6.335254237
Aloe emodin + cholecalciferol 10.25384615 0.376271186 6.302816167
Aloe emodin + salicin 8.520754717 2.806779661 6.235164695
Aloe emodin + mevinolin 9.523076923 1.154237288 6.175541069
Aloe emodin + l-ascorbic acid 6-palmitate 8.968421053 1.637288136 6.035967886
Aloe emodin + cerulenin 9.561538462 0.610169492 5.980990874
Aloe emodin + barbaloin 8.520754717 1.93220339 5.885334186
Aloe emodin + retinylpalmitate 8.945454545 0.86440678 5.713035439
Aloe emodin + limonene 9.255932203 0.376271186 5.704067797
Aloe emodin + resveratrol 7.910344828 2.313559322 5.671630625
Chrysin + l-ascorbic acid 6-palmitate 8.711764706 0.503389831 5.428414756
Chrysin + cerulenin 8.784615385 0.284745763 5.384667536
Chrysin + salicin 7.838461538 1.672881356 5.372229465
Aloe emodin + chrysin 7.87704918 1.418644068 5.293687135
Chrysin + barbaloin 7.838461538 0.798305085 5.022398957
Mevinolin + chrysin 7.77704918 0.569491525 4.894026118
Cholecalciferol + chrysin 6.881481481 1.698305085 4.808210923
Honokiol + resveratrol 7.696296296 0.354237288 4.759472693
Honokiol + limonene 7.775 0.166101695 4.731440678
Mevinolin + resveratrol 6.824489796 1.46440678 4.680456589
Honokiol + chrysin 7.609836066 0.166101695 4.632342317
Honokiol + cholecalciferol 7.433333333 0.166101695 4.526440678
Mevinolin + honokiol 6.385714286 1.276271186 4.341937046
Honokiol + cerulenin 7.030769231 0.166101695 4.284902216
Mevinolin + limonene 6.885714286 0.305084746 4.25346247
Mevinolin + cholecalciferol 6.572727273 0.305084746 4.065670262
Honokiol + salicin 6.033333333 0.847457627 3.958983051
Mevinolin + salicin 5.15 1.957627119 3.873050847
… … … …

(c) List of triple combinations selected by analysis

Compound Cscore Dscore Combiscore
Aloe emodin + mevinolin + honokiol 12.00864198 1.866101695 7.951625863
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(c) Continued.

Compound Cscore Dscore Combiscore
Aloe emodin + honokiol + cholecalciferol 11.74146341 2.125423729 7.89504754
Aloe emodin + honokiol + cerulenin 11.49268293 2.047457627 7.714592807
Aloe emodin + cholecalciferol + chrysin 11.78888889 1.418644068 7.64079096
Aloe emodin + honokiol + limonene 11.15064935 2.125423729 7.540559102
Aloe emodin + honokiol + chrysin 11.15064935 1.777966102 7.401576051
Aloe emodin + Aloe sin + cholecalciferol 10.45384615 2.588135593 7.30756193
… … … …
Mevinolin + chrysin + barbaloin 9.87704918 0.994915254 6.32419561
Aloe emodin + resveratrol + cerulenin 9.046376812 2.23559322 6.322063375
Mevinolin + chrysin + l-ascorbic acid 6-palmitate 10.06507937 0.7 6.319047619
Mevinolin + chrysin + cerulenin 10.11343284 0.569491525 6.295856312
Aloe emodin + mevinolin + l-ascorbic acid 6-palmitate 9.523076923 1.377966102 6.265032595
Aloe emodin + mevinolin + retinylpalmitate 9.733333333 0.991525424 6.236610169
Mevinolin + honokiol + limonene 9.433333333 1.276271186 6.170508475
Honokiol + limonene + resveratrol 10.02258065 0.354237288 6.155243302
Mevinolin + honokiol + resveratrol 9.464705882 1.140677966 6.135094716
Aloe emodin + Aloe sin + barbaloin 8.833333333 2.069491525 6.12779661
… … … …

greater or equal to the mean Combiscore (6.15). Higher
Combiscores indicated better drug combinations.

3. Results

3.1. Bioassays. Ontomine analysis identi�ed probable targets
for each of the 13 natural products among proteins that were
potential bioassay targets (Table 2). In total 618 proteins were
predicted to be bioassay targets at various con�dence levels
(157 at high con�dence, 91 at medium con�dence and 370 at
low con�dence). Table 1 showed the four proteins previously
reported to be bioassays targets of the natural products.
Multiple (4–8) natural products were predicted to interact
with bioassays targets, guanine nucleotide binding protein,
alpha activating polypeptide O, multidrug resistance protein
1, myeloid or lymphoid or mixed-lineage leukaemia protein,
and runt-related transcription factor isoform 1 (AML1c).
Clearly Ontomine identi�ed a larger set of bioassays than
what has been previously reported. ose bioassay targets
could be contributing to the effects or side-effects of the
natural products.

3.2. Reverse Docking. Reverse docking was predicted with
structures of natural products docked against protein
databases. Using the structures of the natural product to
interrogate the database of protein structures identi�ed 17
proteins predicted to bind natural products with a 𝐾𝐾𝑖𝑖 less
than 1 𝜇𝜇M. All 17 were predicted to be related to AML
by network analysis. ey were ALOX12 that encoded
arachidonate 12-lipoxygenase; AR for the androgen recep-
tor; BCL2L1 and BCL2L2 for the B-cell lymphoma 2-like
proteins; CDC42 encoding the cell division cycle 42 (GTP
binding protein, 25 kDa); DUSP3 for the dual speci�city
phosphatase 3; GSK3B encoded the glycogen synthase kinase

3 beta; IGF1R for the insulin-like growth factor 1 receptor;
KLF5 for the ruppel-like factor 5 (intestinal); MAPK1 for the
mitogen-activated protein kinase 1; MMP14 for the matrix
metallopeptidase 14 (membrane inserted) protein; NFKB1
that encoded the nuclear factor of kappa light polypeptide
gene enhancer in B cells; RHOA, the ras homolog gene family,
member A; RUNX1, the runt-related transcription factor 1;
SMAD3, for mothers against decapentaplegic homolog fam-
ily member 3; and STAT1 and STAT3 the signal transducer
and activator of transcription 91 kDa protein and acute-
phase response factor, respectively. In Figure 1 three of these
proteins (STAT3,MAPK1, IGF1R) were found within a small
node of just ��een interacting proteins. Further, two proteins
were involved in B-cell regulation (BCL-2, KFKB1).

In total reverse docking for 13 natural products and 17
drugs to ∼1,060 protein structures yielded 92 targets with
inhibition constants (𝐾𝐾𝑖𝑖) < 10 𝜇𝜇M. e reverse docking
results were then analysed in conjunction with the Ontomine
results. ese include targets which either belong to a subset
of reverse docking and study or else they are identi�ed as
important targets by Ontomine. A total of 95 targets were
�nally identi�ed (Supplemental Table 3).

3.3. Docking. Among the 95 binding proteins identi�ed by
Reverse Docking, the protein structures which could be used
for docking were available for 59 targets. ese 59 structures
were �nally used for docking against the 14 ligand structures
under consideration along with the benchmark ligands. e
docking parameters were kept the same as those used for
reverse docking.

Among the ligand-protein binding interactions of signif-
icance was aloe emodin predicted to bind to the protein 15-
hydroxyprostaglandin dehydrogenase type1 (2GDZ; Figure
2). Aloe emodin was predicted to bind at the center of
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the structure surrounded by the amino acid residues from
the active site of 2GDZ. It can be seen that aloe emodin
forms 4 hydrogen bond interactions with the residues of
the active site. ese hydrogen bond interactions were pre-
dicted to stabilize the ligand-protein complex. e human
15-hydroxyprostaglandin dehydrogenase type1 has been
reported to be elevated in abundance and activity in AML cell
lines [7].

3.4. Combinations of Natural Products and Drugs for AML
Treatments. e Cscore, Dscore and Combiscores were all
signi�cant for aloe emodin, chrysin, honokiol, mevinolin,
resveratrol, l-ascorbic acid, 6- palmitate, and cholecalciferol

(Table 3 (a)). Considering pairs of natural products with
predicted synergistic interactions, 25 combinations were
found (Table 3 (b)). Twelve pairs included aloe emodin
suggesting that this natural product would work well inmany
mixtures. ere were 7 pairs that included honokiol and
6 for chrysin. Even natural products not predicted to be
effective alone, like limonene, could be effective in paired
mixtures.

Considering sets of three natural products with predicted
synergistic interactions 15 combinations were found (Table 3
(b)). Eleven drug combinations included aloe emodin, again
suggesting that this natural product would work well inmany
mixtures. ere were 5 mixtures that included honokiol but
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only 3 for chrysin. Again natural product not predicted to
be effective alone like limonene could be effective in multiple
mixtures (Figure 3).

4. Discussion

Analysis of 13 natural products inferred that some inter-
actions might be useful and novel. Target pro�ling by
Ontomine, Docking, and Gene Expression Network analysis
indicated that the natural products were predicted to bind to
proteins which were important targets for cancer treatments.
Pathway analyses indicated statistical overrepresentation of
cancer-related pathways among drug targets for aloe emodin,
cerulenin, chrysin, honokiol, mevinolin, and resveratrol.

Mixtures of natural products were predicted to be more
effective than single products, as reported experimentally [7,
8, 26]. Improvements in predicted effectiveness for mixtures
of natural products could be attributed to drug synergism
due to increase in relevant targets or improved speci�city of
drug constituents.is increase in predicted effectivenesswas
not likely to be derived from random effects like pooling of
result of individual drugs, since the analysis accounted for
important factors for drug combinations like target relevance
to cancer/AML, speci�city, and common targets among drug
constituents, while calculating scores are used for ranking
drug combination.

e parallel analysis on benchmarked drugs which exist
in the market for AML treatment was signi�cant since the
efficacy of these drugs was supported by many publications
[2, 8, 10, 27]. Combination analysis on drugs was also suc-
cessful in discovering well-known combinations like amon-
a�de plus cytarabine and daunorubicin plus prednisone.at
aloe emodin plus mevinolin plus honokiol was identi�ed as
the best combination that has interesting clinical implica-
tions. Analysis of thismixture with respect to drug speci�city,
targeting AML-related proteins and targeting cancer-related
hubs, will be a priority for future laboratory and clinical
research. Several other combinations have potential to treat
drug-resistant cancers in the future. In future analyses in
silicomore complex drug combination search algorithms can
be applied to incorporate dose, absorption, and excretion as
suggested [27].
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