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The direct-coupling analysis is a powerful method for 
protein contact prediction, and enables us to extract 
“direct” correlations between distant sites that are latent 
in “indirect” correlations observed in a protein multiple-
sequence alignment. I show that the direct correlation 
can be obtained by using a formulation analogous to the 
Ornstein-Zernike integral equation in liquid theory. This 
formulation intuitively illustrates how the indirect or 
apparent correlation arises from an infinite series of 
direct correlations, and provides interesting insights into 
protein structure prediction.
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Protein multiple-sequence alignments (MSA) are a useful 
means to extract various and valuable information about 
protein families [1]. It is well recognized that the frequency 
of amino acid residues at each alignment site is a useful mea-
sure of its functional importance. It has also been suggested 
that correlation between distant sites along the sequence is a 
rich source of information about the structure and function 
of the protein families [2]. In fact, recent years have seen a 
significant advance in our understanding of the site-site cor-
relation observed in MSA. Of particular importance is the 
development of direct-coupling analysis (DCA) and related 
methods [3–5]. Although the basic idea has been already 
suggested in the last century [6], it is only by the recent 

explosion of protein sequence data, in addition to theoretical 
development, that practical implementation of the idea was 
made possible. What DCA tells us is clear: The “apparent” 
correlation observed in a MSA is a result of “direct” correla-
tions which are closely related to structural contacts. For 
example, if residues i and j are in physical contact (directly 
correlated), and so are residues j and k, then residues i and k 
may appear to be correlated even if they are not in contact.

There are many variants of DCA today. A major one is 
based on the principle of maximum entropy [3], others are 
based on the graphical Gaussian model [4] or phylogenetic 
analysis [5]. All of these methods are good predictors of 
physical contacts between residues in native protein struc-
tures. In this Note, I derive the direct correlation based on a 
formulation that is analogous to the integral equation theory 
of simple liquids [7]. This formulation has an advantage in 
that it intuitively shows how apparent correlations are real-
ized by an infinite series of direct correlations. Based on the 
analogy with the liquid theory, it may be possible to elabo-
rate the theory of direct correlations in MSA. More impor-
tantly, the intuitive picture that the present analysis provides 
helps us examine the mechanism of protein structure predic-
tion from a new perspective, which may in turn lead to the 
development of new methods based on novel principles.

Theory
A multiple-sequence alignment consisting of M (>>1) 

amino acid sequences and N alignment sites may be regarded 
as an M×N matrix of symbols. That is, each row represents 
an amino acid sequence including gap symbols and each col-
umn represents an alignment site. Let nk,i(a)=1 if the residue 
type a appears at the site i of the sequence k, otherwise let 
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Discussion
While Morcos et al. [3] used direct correlations as pair-

wise interactions between residues, direct correlations (in 
liquid theory) are generally different from interactions. In 
fact, the approach of Morcos et al. may be interpreted as the 
mean-spherical approximation [7] which is a particular clo-
sure condition for solving the Ornstein-Zernike equation. It 
may be interesting to investigate other choices of closure con-
ditions such as those analogous to, for example, the Percus-
Yevick (PY) or hypernetted-chain (HNC) approximations 
[7]. The HMSA closure [9] is another interesting possibility.
By rearranging Eq. (6), we have

ρ = (D + C–1)–1.	 (7)

This relation can be interpreted as a self-consistent condition 
(rather than a “definition”) for ρ when D is given, and shows 
how the position-specificity of residue frequencies depends 
on the entire context of a protein family and its structure. It 
is now widely accepted that sequence-based profile methods 
[10,11] are the best method for template-based structure pre-
diction. Noting that the direct correlations well correspond 
to native contacts, Eq. (7) tells us that an infinite series of 
tertiary interactions are effectively convoluted into a sequence 
profile through the alignment of many evolutionarily related 
sequences. On the contrary, purely structure-based profile 
or threading methods [12], intuitively speaking, take into 
account only the first one or two terms in Eq. (4) where ρ in 
this case is position-independent. This may be a reason for 
the insufficient position-specificity, and hence the limited 
success, of purely structure-based profile methods.

The present analysis also has an implication for template-
free or de novo structure prediction. All template-free meth-
ods are based on some empirical energy or scoring functions 
(whether physicochemical or statistical) and suffer from the 
problem of a rugged energy landscape that leads to many 
suboptimal non-native structures. In the mean time, studies 
on protein folding have shown that the energy landscape of 
natural proteins is minimally frustrated and funnel-like. This 
property can be readily modeled by the Go-like potentials in 
which only the native contacts are stabilizing [13,14]. It is 
conjectured that natural proteins have been naturally selected 
to satisfy such property in the course of molecular evolution 
[13]. This observation suggests a way to improve structure 
prediction by improving protein sequence design. That is, an 
empirical energy function that can reproduce the sequence 
profiles of (natural) protein families in the (re)designing pro-
cess (i.e., generating sequences compatible with a given 
native structure) [15,16] may be expected to realize the “cor-
rect” direct correlation and development of such an energy 

nk,i(a)=0. We first define the frequency ni(a) of residue a at 
site i as

ni(a) = 1 M
Σ
k=1

nk,i(a) . (1)M

Next, the correlation (covariance) between residue a at site i 
and residue b at site j is defined as

Cij(a,b) = 1 M
Σ
k=1

[nk,i(a) – ni(a)][nk, j(b) – nj(b)] . (2)M

For simplicity, we assume that there are a sufficient number 
of sequences so that these statistics can be computed suffi-
ciently accurately, and also ignore the effect of the phyloge-
netic bias in a family of sequences. Another caveat is required 
when there are completely conserved sites in the case of 
which the columns and rows corresponding to those con-
served sites are zero. We assume this problem is properly 
taken care of, for example, by adding pseudo-counts. The 
correlations as a whole can be regarded as a 21N×21N matrix 
by properly ordering residues and sites. Note that, since the 
equality Σ21

a=1 nk,i(a)=1 holds for any sequence k, the matrix C 
is rank-deficient. Nevertheless, it can be made invertible by 
removing the rows and columns corresponding to the gap 
symbol, and hence the size of the matrix C is now 20N×20N, 
which is assumed in the following.

Now we assume there exists a “direct correlation” Dij(a,b) 
between residue a at site i and residue b at site j, and the 
correlation C is a result of an infinite series of the direct cor-
relations:

Cij(a,b) = ni(a)δi, jδa,b + ni(a)Dij(a,b)nj(b)

+ Σ
k,c ni(a)Dik(a, c)nk(c)Dkj(c,b)nj(b)

+ Σ
k1,c1

 Σ
k2,c2

ni(a)Dik1
(a,c1)nk1

(c1)

× Dk1k2
(c1,c2)nk2

(c2)Dk2 j(c2,b)nj(b)

+ …	 (3)

By defining the diagonal matrix ρij(a,b)=ni(a)δi,jδa,b, this 
equation is expressed as

C = ρ + ρDρ + ρDρDρ + ρDρDρDρ + …	 (4)

= ρ + ρDC .	 (5)

This matrix equation is analogous to the Ornstein-Zernike 
integral equation in the theory of simple liquids [7] and can 
be expressed as a diagram in Figure 1 (where the left-hand 
side represents H=C–ρ). By solving this equation for D, we 
have

D = ρ–1 – C –1	 (6)

which is essentially equivalent to the result of the mean-field 
DCA derived by Morcos et al. [3] based on the Plefka expan-
sion [8].

Figure 1 A diagrammatic representation of Eq. 4 with H=C–ρ.
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function may help improve structure prediction.
Physicochemically, it is the sequence that determines the 

structure. Evolutionarily, however, it is the structure that 
molds the pattern of a family of sequences. The DCA sheds 
new light especially on the latter aspect of proteins by explic-
itly providing the relation between the observed correlation 
C (i.e., the pattern of sequences) and the direct correlation D 
(≈ physical contacts). I hope the present analysis help further 
clarify the meaning of this intricate relationship between 
protein sequences and structures.
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