CORRECTION

Correction: A Likelihood Approach to Estimate the Number of Co-Infections

Kristan A. Schneider, Ananias A. Escalante

The authors wish to acknowledge an error that was overseen in the proof of Result 1 in [[1\]](#page-2-0). By carefully inspecting the authors' proof, it becomes clear that an MLE cannot exist if $N_k = N$ for at least one *k*. This is easily seen from the authors' formula for \hat{p}_k in Result 1, where N_k = *N* implies $\hat{p}_k = 1$, a contradiction since then $L(\lambda,\hat{\bm{p}}|\bm{x}) = -\infty$. All results however remain valid as stated if their Assumption 1 is replaced by the following version.

Assumption 1 *Assume that the sum over the lineages' prevalences is larger than one*, *but no alleles is* 100% *prevalent. In other words, more than one lineage is found in at least one infection,*

 $i.e., \sum_{n=1}^{n}$ $\sum_{k=1}^{N} N_k > N$ and all lineages are not found in every infection, i.e., $N_k \neq N$ for all k .

By replacing Assumption 1 with the version above in $[1]$ $[1]$, the results hold without modifications. All other modifications that need to be made in the article are minor and obvious. However, the case $N_k = N$ for at least one k was not properly addressed. This occurred because it was overseen that the proof of in Result 1 is not applicable then. What goes wrong in this case? The answer is somewhat subtle. Heuristically, this contradiction occurs because no point in the parameter space is a critical point, i.e., a point at which all derivatives of *L* vanish. However, for any fixed λ , $L(\lambda,\bm{p}|\bm{x})$ attains a maximum for some $\hat{p}^{(\lambda)},$ with $0<\hat{p}_k^{(\lambda)}< 1.$ The reason is that $L(\lambda,\bm{p}|\bm{x})$ = − ∞ for $\bm{p}\in bd\mathcal{S}_n$ (where \mathcal{S}_n denotes the *n−*1-dimensional simplex). For *λ* → 0, *L*(*λ,* $\hat{\bm{p}}^{(\lambda)}|\bm{x})$ → −∞. Hence, *L*(*λ,* $\hat{\bm{p}}^{(\lambda)}|\bm{x})$ *is necessarily* monotonically increasing in λ , implying that no MLE exists. In mathematical terms this can be formulated as follows:

Remark 1 Assume that at least one lineage is found in every sample, i.e., $N_k = N$ for at least one k, but not all are found in every sample, i.e., $N_k \neq N$ for at least one j. Then, the log-likelihood *function does not attain a maximum*. *However*, *its smallest upper bound is*

OPEN ACCESS

<u>[a1111111111](http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192877&domain=pdf&date_stamp=2018-02-08)1111111111111111111</u> **a** 111 [a1111111111](http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192877&domain=pdf&date_stamp=2018-02-08) Check for updates

Citation: Schneider KA, Escalante AA (2018) Correction: A Likelihood Approach to Estimate the Number of Co-Infections. PLoS ONE 13(2): e0192877. [https://doi.org/10.1371/journal.](https://doi.org/10.1371/journal.pone.0192877) [pone.0192877](https://doi.org/10.1371/journal.pone.0192877)

Published: February 8, 2018

Copyright: © 2018 Schneider, Escalante. This is an open access article distributed under the terms of the Creative [Commons](http://creativecommons.org/licenses/by/4.0/) Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

$$
\sup_{p\in \mathcal{S}_n,\lambda>0} L(\lambda, p|\mathbf{x}) = \sum_{\substack{k=1\\N_k\neq N}}^n (N-N_k) \log(1-\frac{N_k}{N}).
$$

The supremum is reached in the limit of any sequence (λ_p, p_t) *with* $\lim \lambda_t = \infty$,

 $\lim_{t\to\infty}p_{k}^{(t)}=-\text{log}\big(1-\frac{N_{k}}{N}\big)$ \sqrt{N} $\int f N_k \neq N$ and $\lim_{t \to \infty} p_k^{(t)} \lambda_t = \infty$ if $N_k = N$.

Proof. Because $L(\lambda, p|x)$ is bounded by 0, the supremum exists. Furthermore, a sequence $(\lambda_t, \mathbf{p}_t)$ exists with $L(\lambda_t, \mathbf{p}_t | \mathbf{x}) \rightarrow \sup L(\lambda, \mathbf{p} | \mathbf{x}).$ *p*∈S_n, λ >0

Without loss of generality let N_1 ,..., $N_m < N$ and $N_{m+1} = ... = N_n = N$. Hence,

$$
L(\lambda, p | \mathbf{x}) = -N \log(e^{\lambda} - 1) + \sum_{k=1}^{n} N_k \log(e^{\lambda p_k} - 1)
$$

= $N \log \frac{(e^{\lambda p_{m+1}} - 1) \cdot \ldots \cdot (e^{\lambda p_n} - 1)}{e^{\lambda} - 1} + \sum_{k=1}^{m} N_k \log(e^{\lambda p_k} - 1)$
= $N \log \frac{(1 - e^{-\lambda p_{m+1}}) \cdot \ldots \cdot (1 - e^{-\lambda p_n})}{1 - e^{-\lambda}} e^{-\lambda (1 - p_{m+1} - \ldots - p_n)} + \sum_{k=1}^{m} N_k \log(e^{\lambda p_k} - 1)$
= $N \log \frac{(1 - e^{-\lambda p_{m+1}}) \cdot \ldots \cdot (1 - e^{-\lambda p_n})}{1 - e^{-\lambda}} e^{-\lambda (p_1 + \ldots + p_m)} + \sum_{k=1}^{m} N_k \log(e^{\lambda p_k} - 1).$ (1)

Let (λ_t) be any monotone sequence with $\lim \lambda_t = \infty$. Moreover, let $c_k > 0$ for $k = 1, \ldots, m$. Now let p_t be a sequence satisfying $\lim_{t\to\infty}p_k^{(t)}\lambda_t=c_k$ for $k=1,\dots,m$ and $\lim_{t\to\infty}p_k^{(t)}\lambda_t=\infty$ for $k = m + 1,...,n$. Without loss of generality let $p_k^{(t)} = \frac{c_k}{\lambda_t}$ for $k = 1,...,m$ and $p_k^{(t)} = \frac{1}{n-m}(1 - \sum_{k=1}^{m} \frac{c_k}{\lambda_t})$ $k=1$ for $k = m + 1, \ldots, n$. For sufficiently large *t* this sequence is defined and $p_t \in S_n$. Hence,

$$
\lim_{t\to\infty} L(\lambda_t, \boldsymbol{p}_t|\boldsymbol{x}) = N \log 1 \cdot e^{-c_1 - \ldots - c_m} + \sum_{k=1}^m N_k \log(e^{c_k} - 1)
$$

$$
= -N(c_1 + \ldots + c_m) + \sum_{k=1}^m N_k \log(e^{c_k} - 1).
$$

Next define $f(c_1, \ldots, c_m) := \lim_{t \to \infty} L(\lambda_t, p_t|x)$. Note that this definition is independent of the sequence $(\lambda_t, \mathbf{p}_t)$, with $\lambda_t \mathbf{p}_t \rightarrow (c_1, \ldots, c_m, \infty, \ldots, \infty)$ for $t \rightarrow \infty$.

The next aim, is to identify potential maxima of *f*. Clearly, $\frac{\partial f}{\partial c_k} = -N + N_k \frac{e^{c_k}}{e^{c_k}}$ $\frac{e^{c_k}}{e^{c_k}-1}$. Equating the partial derivatives to zero gives $\hat{c}_k = -\log(1 - \frac{N_k}{N}).$ The Hessian matrix is given by $H = -\text{diag}(N_k\frac{e^{c_k}}{(e^{c_k}-1)}$ $\frac{e^{c_k}}{(e^{c_k}-1)^2}\big)_{k=1,\ldots,n}$ and clearly negative definite. Thus, *f* attains a global maximum at $\hat{c}_k = -\log(1 - \frac{N_k}{N})$. Therefore $f(\hat{c}_1, \dots, \hat{c}_m) \le \sup_{p \in S_n, \lambda > 0}$ $L(\lambda, p|\mathbf{x}).$

If $(\lambda_p$ $p_t)$ is any sequence with $\lambda_t p_t^{(t)} \to \infty$ for a k with $1 \leq k \leq m$, it is easily seen from (1) that $\lim_{t\to\infty} L(\lambda_t, p_t|x) = -\infty$. Moreover, if $\lambda_t p_k^{(t)} \to c_k < \infty$ for $1 \leq k \leq m$ and at least one *k* with $m + 1 \leq k \leq n$, without loss of generality $\lambda_i p_k^{(t)} \to c_k < \infty$ for $m + 1 \leq k \leq \quad$, (1) implies

$$
\lim_{t \to \infty} L(\lambda_t, \mathbf{p}_t | \mathbf{x}) = -N(c_1 + \dots + c_m) + \sum_{k=1}^m N_k \log(e^{\epsilon_k} - 1) + N \sum_{k=m+1}^l \log(1 - e^{-c_k})
$$

<
$$
< -N(c_1 + \dots + c_m) + \sum_{k=1}^m N_k \log(e^{\epsilon_k} - 1)
$$

implying that this limit is less than the maximum of *f*. The above considerations imply that the supremum of the log-likelihood function must be the maximum of *f*. Deriving $f(\hat{c}_1, \ldots, \hat{c}_m)$ finishes the proof.

The case that $N_k = N$ for all *k* is treated in [1]. Moreover, obviously in Remark 1 of [1] a misprint occurred. The expression $\sum_{n=1}^{n}$ $\sum_{k=1}^{n}$ $N_k \geq N$ needs to be replaced by $\sum_{k=1}^{n}$ $N_k > N$, while the same expression needs to be replaced by $\sum_{n=1}^{n}$ $\sum_{k=1}^{N} N_k = N$ in the paragraph below Result 2.

Reference

[1](#page-0-0). Schneider KA, Escalante AA (2014) A Likelihood Approach to Estimate the Number of Co-Infections. PLoS ONE 9(7): e97899. <https://doi.org/10.1371/journal.pone.0097899> PMID: [24988302](http://www.ncbi.nlm.nih.gov/pubmed/24988302)