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Abstract

Despite the strong genetic basis of psychiatric disorders, the underlying molecular mechanisms 

remain largely unmapped. RNA-binding proteins (RBPs) are responsible for most post-

transcriptional regulation, from splicing to translational to localization. RBPs thus act as key 

gatekeepers of cellular homeostasis, especially in the brain. However, quantifying the pathogenic 

contribution of noncoding variants impacting RBP target sites is challenging. Here, we leverage a 

deep learning approach that can accurately predict RBP target site dysregulation effects of 

mutations, and discover that RBP dysregulation is a principal contributor to psychiatric disorder 

risk. RBP dysregulation explains a substantial amount of heritability not captured by large-scale 

molecular QTL studies, and has a stronger impact than common coding region variants. We share 

genome-wide profiles of RBP dysregulation, which we use to identify DDHD2 as a candidate 

schizophrenia risk gene. This resource provides a novel analytical framework to connect the full 

range of RNA regulation to complex disease.

Interrogating the genetics underlying psychiatric disorders is a key path to understanding the 

pathophysiological cause of mental illness. In particular, genome-wide association studies 
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(GWAS) have become a widely adopted approach for studying the genetics of human 

psychiatric disorders. With ever-increasing sample cohorts, approaching one million subjects 

for psychiatric disorders1, numerous risk loci have now been cataloged. Despite this 

progress, the biochemical perturbations and pathological mechanisms underlying human 

psychiatric disorders remain challenging to decipher, critical as this is for translating genetic 

discoveries into sorely needed actionable targets.

RNA-binding proteins (RBP) regulate various aspects of RNA metabolism, including RNA 

splicing2, localization3, stability4 and translation5. Each of these functions are critical not 

only for protein expression, but also for proper spatiotemporal function, especially in the 

brain6. Proper regulation across the full RNA life cycle by RBPs is critical in neurobiology, 

where complex regulatory events take place in synapses far away from the nucleus7.

RBP-encoding genes are frequently mutated in neuropsychiatric disorders, suggesting a 

pathogenic role8–10 and inspiring follow-up efforts to study the larger set of variants at the 

RNA target sites (trans) that impact RBP-RNA interactions11–15. These studies have shed 

light on the roles of specific RBPs and functions, particularly splicing, in mental disorders. 

However, comprehensive, genome-level insights that span diverse RBPs, their biochemical 

functions and casual target sites are lacking. Thus, the extent to which trans dysregulated 

RNA-RBP interactions contribute to psychiatric disorders remains an open question.

In this study, we address this challenge with the first genome-wide, systematic analysis of 

the role of RBP target site dysregulation in psychiatric disease (i.e. the impact of 

dysregulation at trans-regulatory RBP targets). To map the impact of variants on RBP-RNA 

interactions at scale, we leverage a deep learning-based sequence model, Seqweaver, whose 

accuracy in predicting RBP target site dysregulation we previously extensively evaluated 

both computationally and experimentally, applying it to detect de novo noncoding mutation 

signal in autism in probands versus their unaffected siblings16. Here, we use Seqweaver to 

build an unprecedented profile of allele-specific effects of inherited variants genome-wide, 

enabling us to examine the diverse landscape and impact of RBP dysregulation in complex 

psychiatric disorders.

Our study generates genome-wide annotations of variants linked to RBP dysregulation, 

publicly available at hb.flatironinstitute.org/seqweaver. We show that across RBPs with 

diverse functions, the dysregulation of RBP target sites are top drivers of psychiatric 

disorder risk. Leveraging this resource, we discover a novel link between a RBP-disrupting 

variant in DDHD2, a phospholipase involved in hereditary spastic paraplegia, and a 

multiethnic-associated locus that increases the risk of schizophrenia. Our study provides an 

analytical framework that will greatly facilitate and accelerate biochemical investigation of 

variants linked to complex disorders.

Results

RBP function is reflected in genome-wide negative selection signatures

A substantial gap still exists between connecting variants linked to RBP target site 

dysregulation and subsequent phenotypic consequences. We previously built a quantitative 
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model, Seqweaver16, that can accurately estimate RBP binding based on sequence 

information (Supplementary Fig. 1), trained on in vivo RBP-RNA interaction profiles 

(CLIP17 experiments). The single-nucleotide sensitivity in our model allows changes in RBP 

target site binding for any given variant to be quantified (defined as RBP dysregulation 

effects), and thus individual RBP phenotypic effects to be mapped to these genetic changes. 

Because our models enable exploration of RBP dysregulation at a genome-wide scale, we 

first sought to analyze selection traces that act on binding site sequences that would impact 

the RBP regulation. Case studies exploring pathogenic de novo mutations18 predict that 

negative selection is expected to act strongly on large effect mutations. We hypothesized that 

RBP target site variants that lead to dysregulation are also subject to negative selection.

To test this expectation, we leveraged the largest pool of human variants from control 

cohorts released by the Genome Aggregation Database (gnomAD)19. For each transcribed, 

noncoding variant in gnomAD (> 20 million SNPs), we interrogated the levels of RBP 

dysregulation using deep learning inference based on 232 Seqweaver RBP models (RBP 

model list Supplementary Table 1). We found significant depletion of strong effect RBP 

dysregulation variants at high allele frequencies (MAF > 0.05, p < 2.2 × 10−16 Wilcoxon 

rank sum test common vs ultra-rare (MAF <0.001)). The mean impact of target site variants 

increased significantly from common (MAF > 0.05) to ultra-rare inherited variants (MAF < 

0.001, p < 2.2 × 10−16 Wald test, Extended Data Fig. 1), which is consistent with the 

disruption of RBP target sites having a major impact on fitness, and negative selection acting 

on such variants.

Within genes, RBPs frequently exert their regulatory role by acting on noncoding regions, 

such as the 5’UTR, introns or 3’ UTR. We reasoned that RBP function should be reflected in 

specific negative selection signatures in these noncoding regions. For instance, RBPs that 

impact mRNA stability would show elevated negative selection signatures in 3’UTRs, 

whereas signatures for splicing RBPs should be found in introns. Importantly, localization of 

selection signatures to specific gene regions would shed light on RBP function, and provide 

information complementary to biochemical studies of RBPs.

To define sub-genic selection signatures, we looked for statistically significant interactions 

between the genomic location of a variant and the degree of selection acting on RBP 

dysregulation. We found that diverse RBPs can be segregated by their selection signature 

across the 5’UTR, 3’UTR or introns (Fig. 1a, 212 RBP models with a Benjamini-Hochberg 

corrected FDR < 0.05 sub-genic annotation interaction, full results in Supplementary table 

2). The significant association of each RBP with a sub-genic location rules out the baseline 

interpretation of confounding stochastic non-functional interactions, and points to an active 

regulatory function with specific fitness consequences.

For many known splicing factors (e.g. SMNDC1 and PRPF8; p < 2.2×10−16 Wald test on 

coefficient of interaction term), intronic variants displayed a significantly elevated level of 

selection spanning the spectrum of minor allele frequencies compared to the whole genic 

background (Fig. 1b). The cap-binding protein NCBP2 showed the most significant 

enrichment for 5’ UTRs, whereas for 3’UTRs, we confirmed the strong human fitness effect 
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of many known mRNA stability, localization and polyA regulatory proteins (e.g. MSI2, 
PUM2, PABP and ELAVL; all p < 2.2×10−16).

Unexpectedly, we found that 3’UTR variants that disrupt binding of UPF1, a superfamily I 

RNA helicase, are under a significantly elevated level of negative selection compared to the 

rest of the gene (p < 2.2 × 10−16). UPF1 is an essential component of the nonsense-mediated 

decay (NMD) machinery and interacts with the exon junction complex20. While our finding 

seems unanticipated, it is consistent with recent work suggesting that UPF1 binding to the 

3’UTR can regulate target mRNA stability21. The regional selection enrichment of UPF1 
provides strong corroborating genetic evidence for its role in 3’UTR-mediated post-

transcriptional regulation, beyond its canonical NMD function.

Variants that disrupt RBP binding influence risk of psychiatric disorders

Having established the importance of RBPs in selection and fitness, we next investigated the 

contribution of variants involved in RBP dysregulation to psychiatric disorder heritability. 

The high heritability estimates of psychiatric disorders make tracing major phenotypic 

outcomes of risk variants an important tool for understanding pathogenicity22,23. To address 

this question, we applied stratified LD score regression24 as a statistical framework for 

partitioning disease heritability into various functional annotations while directly modeling 

the extensive LD structure between SNPs. The LD score regression framework allows 

estimation of SNP effects (τ*, per-SNP heritability enrichment factor) standardized for 

comparison across different disease or trait-based GWAS studies while conditioning on a 

collection of baseline functional annotations (e.g. coding region, allele age, CpG content, 

enhancers, promoter and epigenetic histone marks Methods)25. Here we combine LD score 

regression with our deep learning framework Seqweaver to estimate the contribution of RBP 

dysregulation to psychiatric disease.

The stratified LD score regression framework has been tested and shown to produce robust 

results in large collections of studies24–26. Nevertheless, we performed a comprehensive 

negative control test in the context of RBP dysregulation. We simulated genetic architecture 

traits where the underlying casual SNPs were sampled entirely from experimentally profiled 

brain enhancers, promotors, and brain-expressed protein coding regions (i.e. mostly non-

RBP regulatory regions) using real genotypes from the 1000 Genomes Project27 (Methods). 

Overall, across the 232 RBP models, the simulations produced well-calibrated estimates of 

RBP dysregulation effect sizes without any upward bias (Supplementary Fig. 2), 

demonstrating the robustness of our regression models.

Having established the statistical framework, we focused on GWAS from five well-

established polygenic psychiatric disorders: ADHD28, autism spectrum disorder29, bipolar 

disorder30, major depression31 and schizophrenia32. These GWAS were conducted with 

standardized analysis pipelines by the Psychiatric Genomics Consortium (PGC), minimizing 

potential sources of technical artifacts. We observed significantly elevated levels of RBP 

dysregulation effect size (τ*) estimates across all five psychiatric disorders, with 304 cases 

where target site dysregulation for specific RBPs had a significant effect on psychiatric 

disorder risk after correcting for multiple hypothesis testing (Fig. 2a, 304 RBP-disease pairs 

with FDR < 0.05 after Benjamini-Hochberg correction, Supplementary Table 3, 
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Supplementary Fig. 3). These results indicate that risk variants for psychiatric disorders are 

extensively spread across RBP target regulatory networks, and biochemically underlie the 

polygenic architecture of mental disorders. In particular, we observed significantly larger 

per-SNP heritability effect sizes for RBPs with dysregulated target sites that are also 

differentially expressed in the developing human brain (P < 2.2 × 10−16, spearman rank test 

between τ* and developmental target site overlap, Extended Data Fig. 2, Supplementary Fig. 

4).

Additionally, we found novel associations between disrupted RBP target sites (trans-
dysregulation) and RBPs that were themselves previously associated with disease (cis-
dysregulation). For example, target site dysregulation of the spliceosome-associated factor 

EFTUD2 contributed significantly across psychiatric disorders (trans-dysregulation, e.g. 

ADHD p=1.4×10−4, SCZ p=6.4×10−4 jackknife). Meanwhile exemplifying cis-

dysregulation, haploinsufficiency of EFTUD2 causes craniofacial malformation, 

microcephaly and developmental delay9, phenotypes shared with many non-Mendelian 

neurological diseases. In addition, major depression was significantly associated with 

variants that disrupt target binding by RBFOX, a key splicing regulator in the brain6 

(τ*=1.4, p=8.6×10−3). Additionally, two cis GWAS loci within the RBFOX1 RBP gene 

locus are associated with major depression risk31. Overall these data suggest that psychiatric 

disease risk is significantly linked with perturbations not only of RBPs (cis), but also the 

dysregulation of their targets (trans), which represent a much larger set of variants spread 

across the transcribed regions of the genome.

Post-transcriptional regulation broadly impacts psychiatric disorder risk

We find significant dysregulation effects across diverse biochemical regulatory categories of 

RBPs. For instance, for the most well-powered study, schizophrenia, we observed 49/91 

significant RBP models (FDR < 0.05) that were UTR regulatory RBPs. This observation 

reveals the broad importance of post-transcriptional regulation beyond splicing, and was not 

limited to schizophrenia: the top psychiatric disorder-associated (TPA) RBPs (mean z-score 

> 2.5) covered RNA regulatory modes spanning splicing to transcript stability, based on the 

shared risk across all five psychiatric disorders studied (Fig. 2b). For example, UPF121 and 

FAM120a33, which regulate transcript degradation, showed consistent, strong signals across 

these disorders, with top ranked effect sizes in schizophrenia (UPF1 τ*=1.16 p= 2.0×10−6, 

FAM120a τ*=1.2 p= 1.4×10−7). We also observed a pair of ATP-dependent RNA helicases 

(DDX6, DDX42) among the top psychiatric disorder-associated RBPs. De novo mutations 

within DDX6 have been shown to result in intellectual disability and developmental delay, 

adding support to the neuropathogenic role of this helicase34. Overall, these data 

demonstrate that disruption of diverse types of post-transcriptional regulation are highly 

associated with psychiatric disease risk.

Effects of RBP dysregulation exceed those of coding variants

Next, we examined how variants that dysregulate RBP function compare to other functional 

variant categories, by comparing across the jointly fit annotations in the regression models. 

We found that the statistical association between disease heritability and RBPs are among 

the top functional annotations, exceeding the collective set of coding variants or previously 

Park et al. Page 5

Nat Genet. Author manuscript; available in PMC 2021 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



annotated epigenetic regions (Fig. 2b). Furthermore, within gene regions, the collective 

impact of disrupted RBP target sites can exceed coding region variant effects 

(Supplementary Fig. 5), thus providing further evidence that noncoding post-transcriptional 

regulation is a primary contributor to psychiatric disorder risk. These results remain 

significant and robust after conditioning on potential confounding factors, such as 

background selection rate, low levels of LD (LLD), allele age and minor allele frequency 

(Fig. 2b baseline annotations included in the regression model, Methods).

RBP effects explain substantial heritability beyond known molecular QTLs

Previous reports have found that molecular QTLs are strongly enriched for disease 

heritability13,35. We therefore investigated whether the profiled RBP dysregulation effects 

capture information about disease that is independent of the large-scale molecular QTL 

studies. We estimated the effect size of each RBP for each disorder while jointly 

conditioning on the molecular QTL-based annotations from GTEx26, CommonMind36 and 

BLUEPRINT37 consortium (in addition to all baseline annotations). We found that the top 

psychiatric disorder-associated RBPs remain highly significant and display overall greater 

effect sizes compared to the QTL annotations (Fig. 2c, Supplementary Table 4). Importantly, 

this implies that RBP dysregulation effects are largely independent from known molecular 

QTLs, and thus provide an important additional tool for dissecting genetic architectures 

underlying disease.

Cross-ethnic replication

Finally, we sought to replicate our findings regarding the effects of RBP dysregulation using 

an independent cohort. We leveraged a recently published GWAS of East Asian 

schizophrenia participants38 (22,778 schizophrenia cases and 35,362 controls), and 

compared our European PGC-schizophrenia RBP effect sizes with estimates that we 

obtained from the East Asian cohort. In this cross-ethnic replication analysis, we found 

highly significant concordance of RBP-associated risk between the two cohorts (P < 2.2 × 

10−16 spearman rank test, see Extended Data Fig. 3 for RBP dysregulation effect sizes). 

Next, we tested if cross-disorder RBP effect size estimates from the Psychiatric Genomics 

Consortium cohort replicate in the iPSYCH cohort: a homogenous Danish population 

diagnosed using the same Danish public healthcare system criteria39. Likewise, we find 

consistent RBP dysregulation disease risk in the two independent cohorts (P < 2.2 × 10−16 

spearman rank test, Extended Data Fig. 4). In summary, these replication analyses 

demonstrate that our RBP dysregulation disease risk estimates are concordant across 

populations with different genetic backgrounds.

RBP contributes to shared and distinct aspects of psychiatric disorders

In prior comparative analyses of genetic architectures, RBP biology has largely been ignored 

when stratifying genetic correlations into functional categories22. Here we sought to 

examine how variants disrupting RBP target sites shape shared and distinct genetic 

landscapes across psychiatric phenotypes. At the gene level, mutation-intolerant genes have 

been a shared source of enriched psychiatric disorder heritability40. We hypothesized that 

this enrichment could be in part driven by variants that affect RBP dysregulation. Indeed, we 

observed that RBP effect sizes were significantly larger for target site variants within loss-
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of-function (LoF)-intolerant genes (Fig. 3a, P < 2.2 × 10−16 paired Wilcoxon rank sum test 

for RBP effect size τ*, LoF intolerant defined by ExAC41, controlling for different baseline 

gene heritability enrichment levels Methods).

Beyond psychiatric disorders, we found that numerous RBP models were significantly 

associated with the heritability of a broad set of psychiatric and related phenotypes 

examined by the Brainstorm Consortium26 (Extended Data Fig. 5, 856 RBP model-

phenotype pairs FDR < 0.05 after Benjamini-Hochberg correction). In particular, psychiatric 

disorder-associated RBPs also showed the largest effect sizes for psychiatric phenotypes 

(Fig. 3b spearman correlation). This association was especially strong for cognitive-

behavioral traits like “Cigarettes per day” (a common proxy for addictive risk-taking 

behavior42) and “Depressive symptoms” (a widely shared clinical feature for many 

psychiatric disorders43), whereas the non-brain related phenotypes displayed lower 

correlation between overall RBP effect sizes and psychiatric disorders (Fig. 3b). These 

results suggest that RBP dysregulation variants affect neuropathogenic pathways and are a 

significant driver of the high genetic correlations observed between disease and cognitive-

behavioral traits (Extended Data Fig. 6 for disease-phenotype stratified genetic correlation).

Beyond the aforementioned similarities, risk odds correlation of RBP dysregulation variants 

also shows distinct clustering of psychiatric disorders (Extended Data Fig. 7). Thus, we 

tested whether distinct RBP target sites can help explain differences between psychiatric 

disorders. We found that RBP ILF3 target site dysregulation contributes to the differential 

liability between schizophrenia and bipolar disorder (Fig. 3c, two biological replicate ILF3 

models highlighted, p=4.1×10−5 LoF intolerant genes, jackknife), extending recent findings 

by the Psychiatric Genomics Consortium study30. In addition to trans-dysregulation 

enrichment of ILF3 target sites, when inspecting cis-dysregulation effects, ILF3 was the 5th 

most significantly associated gene locus in bipolar disorder, though it had no significant cis-

association in the better-powered schizophrenia study32 (p=1.2×10−9 MAGMA statistical 

framework44). Colocalization analysis with the GTEx cohort further supports this ILF3 cis-
dysregulation differential association (extended results, Supplementary Fig. 6). As further 

independent evidence, the PsychENCODE cohort transcriptome-wide association study 

(TWAS) analysis45 identified the cis-regulated expression of RBP ILF3 as significantly 

associated with risk of bipolar disorder, but no evidence of association was observed for 

schizophrenia (TWAS-bipolar ILF3 p=3.9×10−7, TWAS- schizophrenia ILF3 p=0.61, Fig. 

3d). In conclusion, the molecular network composed of both RBP ILF3 and its trans-

regulatory targets differentiates mechanisms underlying these two psychiatric disorders. 

Determining how the ILF3 network alters cellular functions in the brain can shed light on 

how genetics influences variations in clinical outcome.

Functional mapping identifies DDHD2 as a schizophrenia risk gene

Hundreds of genomic regions are associated with the risk of psychiatric disorders, consistent 

with a polygenic architecture32. However, very few disease-associated regions have been 

mapped to their causal SNPs, and the underlying biochemical mechanism dissected. As a 

case study, we leveraged our ability to interrogate genome-wide, allele-specific RBP target 

site dysregulation to investigate a schizophrenia risk region.
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The 8p12 genomic region was first identified as a significant schizophrenia risk region in the 

Han Chinese population46 and was subsequently found to be significantly linked to this 

disorder in Europeans40. Cross-population replication implies a robust molecular cause 

underlying the associated loci with global clinical prospective. Our analysis provides a 

potential biochemical mechanism for this association: within this region we identified a SNP 

in the DDHD2 3’UTR that can disrupt binding by the RBP QKI, which is known to play an 

important role in schizophrenia47,48 (Fig. 4a, this top Seqweaver predicted SNP rs6981405 

was a fine-mapped candidate SNP (95% credible set)40).

ENCODE49 QKI eCLIP data, available in two cell lines (K562 and HepG2), support this 

association. The candidate SNP rs6981405 is homozygous CC in HepG2 and homozygous 

AA in K562. QKI and its target DDHD2 are robustly expressed in both cell lines (> 15 

TPM). Importantly, QKI-DDHD2 binding is observed only in homozygous C allele 

genotype (Fig. 4b), consistent with our estimation that the A allele disrupts QKI binding. 

Furthermore, RNAi-mediated depletion of QKI led to elevated levels of DDHD2 mRNA in 

C allele genotype cells, but not in the homozygous A allele genotype line, where QKI 

binding is already disrupted (Fig. 4c,d). Thus, mutation of this SNP in DDHD2 mRNA 

disrupts QKI regulation.

DDHD2 is a principal brain triglyceride lipase, that when mutated causes a hereditary 

neurological disease, spastic paraplegia50. Our genetic evidence, provided by RBP 

regulatory mapping, coupled with supporting experimental data, suggest that QKI-mediated 

regulation of DDHD2 transcript levels influences the risk of schizophrenia and implies a 

pathogenic role for altered lipid metabolism in this disease.

Discussion

A critical challenge in human disease research involves moving from cataloging disease risk 

loci to understanding the underlying molecular mechanisms. RBPs start acting on nascent 

RNA substrates, and influence every aspect in the life of a transcript, including protein 

expression and function. Therefore, interrogating genetic architectures at this early layer of 

molecular regulation is powerful because it reduces the complexity of identifying causal 

factors compared to further downstream approaches. Importantly, targeted biochemical 

perturbation of RBP-RNA interactions has a promising record in clinical intervention51. 

Therefore, establishing RBP dysregulation as a major source of molecular dysfunction 

contributing to psychiatric disorders and further identifying specific pathogenic target sites is 

a critical task.

In this work, we establish RBP dysregulation as a key factor affecting human fitness by 

identifying extensive negative selection signatures in the largest-to-date human WGS 

gnomAD19 cohort. We further find that concentrated regional fitness effects observed for 

each RBP provide a genetic indicator for the underlying biochemical regulatory function. 

We also highlight that disruption of diverse RBP functions significantly affect fitness, 

supporting an extensive pathogenic contribution beyond splicing regulation.
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Focusing on psychiatric disorders, we provide support for a significant causal role for RBP 

dysregulation, linking inherited risk variants to biochemical perturbations that ultimately 

lead to psychiatric clinical phenotypes. Intriguingly, one key theme that emerges is the 

convergence of psychiatric disorder risk at both the RBP protein itself, and its target site. For 

instance, variants within RBFOX and its downstream targets are linked to major depression 

risk, and variants within EFTUD2 and its downstream targets are linked to neurological 

dysfunction. In addition, we find converging evidence links RBP ILF3 and its RNA targets 

to molecular differences between schizophrenia and bipolar disorder. Similarly, the RBP 

“fragile X mental retardation protein” (FMRP) is the most common monogenic cause of 

autism52, and FMRP mRNA targets are highly linked to both autism and 

schizophrenia18,53,54. Thus, these converging RBP regulatory networks may present ideal 

clinical targets, due to their greater collective biochemical contribution to pathogenicity.

Methodologically, we demonstrate that deep learning inference of genome-wide molecular 

effects allows us to estimate major modes of biochemical perturbation and their contribution 

to disease. We find that splicing disruption is the tip of the iceberg, as widespread 

psychiatric disease risk is associated with RBPs that regulate processes across the life of the 

RNA. Current molecular QTL resources, while incredibly valuable, lack the breadth to 

capture these diverse molecular functions (e.g. we estimate for schizophrenia the collective 

contribution of RBP dysregulation exceeds that of GTEx sQTLs by over 4 times, Extended 

Data Fig. 8). This caveat limits the scope of analysis for disease, now encapsulating 

hundreds of thousands of cohort samples (e.g. UK biobank55). Indeed, increasing evidence 

supports an extensive pathogenic role for RBPs in diseases ranging from cancer56, 

autoimmune disease57,58 to myopathy59. Our computational framework enables study of 

RBP dysregulation in these and other disorders at a whole-genome-scale (e.g. significant 

RBP associations identified for non-brain phenotypes, Extended Data Fig. 5). Furthermore, 

as more tissue- and cell-type-specific CLIP data becomes available, this approach can 

provide a data-driven window into tissue-specific RBP dysregulation in disease.

To enable rapid analysis of psychiatric diseases and the extension to the greater collection of 

disease GWAS studies, we have profiled and made available genome-wide inference of RBP 

target site dysregulation effects for the largest collection of human variation identified by the 

gnomAD cohort. This resource, capturing the entire spectrum of common to ultra-rare 

variants, should provide the means to interrogate RBP-derived human diseases at an 

unprecedented scale.

Methods

Deep learning inference of RBP dysregulation variant effects

We utilized deep convolutional neural networks (CNN)60 to build a quantitative model of 

RNA sequence features required for RBP binding, as biochemically assayed by CLIP61 

(training data). These RBP models subsequently enable probabilistic inference of the effect 

of sequence variants, capturing both direct and indirect effects, on RBP binding potential. 

The applied Seqweaver RBP model architecture and training are described in our previous 

de novo mutation autism work16, and to ensure that our current results can be directly 

comparable, we used identical 232 CLIP-based RBP models (88 RBPs represented, 
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Supplementary Table 1) without any modifications (i.e. no additional training or manual 

parameter changes). All RBPs modeled in this study show robust expression in the brain and 

neuronal progenitor cells (Supplementary Fig. 7). RBP models based on mouse CLIP 

experiments were only included for RBPs that have shown to be conserved in humans6, and 

replicate RBP models were treated separately by Seqweaver to provide users with maximum 

interpretability, linking them to specific CLIP experimental conditions.

Methodologically, CNNs allow researchers to design network architectures that can leverage 

information from high order motifs at different spatial scales but with optimal parameter 

sharing to avoid overfitting. Our Seqweaver CNN architecture consists of an initial input 

layer followed by a series of convolution and pooling layers. The input sequence layer 

contains a 4 × 1,000 matrix that encodes the input RNA sequence of U, A, G, C across the 

1,000 bp window anchored around the RBP binding site. The subsequent convolution layer 

looks at an 8 bp window that shifts 1 bp at a time and computes the convolution operation of 

160 kernels. At this first convolution level, the kernels are equivalent to searching for a 

collection of local sequence motifs in a one-dimensional RNA sequence. Analogues to 

neurons, we then apply a rectifier activation function (ReLU) that sets the convolution layer 

output to a scale of minimum of 0 (i.e. ReLU(x) = max(0,x)). Thus formally, input S results 

in convolution layer output location n for kernel k as the following:

Convolution S
n, k

= ReLU ∑
i

I
∑
d

D
wi, d

k Sn + i, d

where I is the window size and D is the input depth (e.g. for the first convolution layer D 
represents the four RNA bases).

Next, we add a pooling layer that allows the reduction of the dimensional size of the network 

and parameters. Specifically, every window of 4 for a kernel output is collapsed into the 

maximum value observed in that span. The resulting output is then used as input for a 

sequence of convolution (2nd), ReLU, pooling and convolution layer (3rd) in which higher 

order sequence motifs can be derived based on the first layer local motifs (2nd conv. layer 

320 kernels, 3rd conv. layer 480 kernels with identical ReLU and pooling layer).

Lastly, we add a fully connected layer that can now take the resulting output from the three 

convolution steps and integrate across the entire 1,000 bp context to derive a final set of 

higher order sequence motifs. These sequence motifs are shared across all RBP models that 

allow optimal parameter reduction, but are also based on the biological intuition that many 

RNA sequence features are shared in the cell (e.g. RNA polyA signal, splice sites and 

branchpoints). The fully connected layer outputs are then subjected to RBP-specific 

weighted logistic functions (sigmoid, [0,1] scale) allowing for the simultaneous prediction of 

each RBP binding potential to the input RNA sequence.

Finally, for variant effect prediction, we take the absolute predicted probability differences 

between the two alleles (reference vs. alternative) computed by the convolutional neural 

network for each 232 RBP models. Importantly, no variant-level sequence information was 

used during the training of our Seqweaver RBP models, therefore we are not limited or 
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biased by any variant-level training set. The final RBP variant effects were set to [0,1] scale 

for fitting LD score regression models. All training data and RBP models can be 

downloaded at hb.flatironinstitute.org/Seqweaver.

Genome-wide RBP dysregulation analysis of negative selection

The 2.1 release of gnomAD19 cohort variants, all passing the random forest gnomAD quality 

filter, were downloaded and filtered for noncoding region variants (i.e. nonrepeat regions of 

5’UTR, intron and 3’UTR) of protein coding genes (we use AC >1 to filter for inherited 

variants). The resulting final 21,513,861 SNP variants were used in the analysis.

For each Seqweaver RBP model, the distribution of absolute predicted probability 

differences (ref. vs alt. allele) across all variants were standardized to have a standard 

deviation 1 to obtain the final RBP dysregulation estimates. The gnomAD cohort allele 

frequencies were used to segregate the variants into four different minor allele frequency 

bins (>0.05, 0.05~0.01, 0.01~0.001, <0.001) and then to obtain the mean variant RBP 

dysregulation levels.

Variant level annotations to sub-genic regions were conducted as previously described16, 

annotating to 5’UTR, 3’UTR or 200bps introns flanking an exon previously observed to be 

alternatively spliced62. The RBP sub-genic selection signature was assessed by fitting a 

linear model regressing RBP dysregulation levels on allele frequency and sub-genic 

annotations, and evaluating the statistical significance of the interaction term between the 

two explanatory variables. This essentially involves querying for statistically significant 

interactions between a variant’s gene location and the degree of selection acting against RBP 

target site dysregulation. For downstream analysis, UTR regulatory RBPs were defined by 

RBP models that showed sub-genic selection signatures with FDR < 0.05 for only 3’ or 5’ 

UTR regions.

Estimating effect sizes due to RBP dysregulation

The extensive linkage disequilibrium (LD) between SNPs in the human population provide 

an analytical challenge for estimating the true underlying effect size for RBP dysregulation 

from GWAS. For example, high χ2 statistic SNPs in the 3’UTR may appear to be an 

indication of UTR-mediated risk for a disease, but may in reality be tagging enrichment of 

protein coding region SNPs due to high LD in the region. To resolve this challenge, we use 

the previously published statistical framework of stratified LD score regression24 to estimate 

the RBP dysregulation effect sizes for each examined trait or disease GWAS. More 

specifically from the summary statistics of a GWAS, we can write the expected χ2 value for 

SNP j as

E χj2 = N ∑
c

τcl j, c + Nb + 1

where N is sample size and the annotation specific “LD score” l j, c , representing 

annotation (c)’s cumulative effects tagged by the SNP j, can be written as
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l j, c =  ∑
k

ac k rjk
2

where ac k  is the annotation value at SNP k (e.g RBP dysregulation level or coding SNP), 

rjk is the correlation between SNP j and k in the reference panel (selected to best match the 

GWAS cohort), and b measuring the confounding bias24. Lastly, τc and the final 

standardized form τc* – normalized by the total SNP-based heritability and s.d. of an 

annotation – represents the estimated effect size of the annotation25.

τrbp* =
M*sdrbp

ℎ2 τrbp

More formally for RBP dysregulation annotations, τ* represents the per-SNP heritability 

(ℎ2
M ,  M number of common SNPs) associated with a standard deviation increase of variant 

RBP effect (sdrbp). We restrict our RBP predictions to SNPs from the 1000 Genomes Project 

(European cohort), and fit the regression model only on HapMap SNPs with MAF > 0.05 as 

previously conducted24. The block jackknife procedure was used to test statistical deviation 

from zero for each fitted τ*.

As presented in the regression model, we fit τrbp* by conditioning on a collection of baseline 

annotations to avoid upward bias in the effect size estimation. We obtain the collection of 

baseline annotations previously used in the stratified LD score regression study (i.e. 

baselineLD)25, that includes functional annotations such as coding regions, 3’/5’ UTR, 

intron, promoter, transcription start site (TSS) and multiple epigenetic marks. We included a 

new functional baseline annotation that labels all gene region SNPs, controlling for baseline 

effects tagging transcribed regions, that collectively results in appropriately calibrated null 

uniform RBP p-values based on permutation test shown in Supplementary Fig. 8. Additional 

baseline annotations include non-functional annotations such as allele age, minor allele 

frequency, low levels of LD, CpG content and background selection statistics. We excluded 

conservation-based annotations, as RBP regulatory binding sites are known to be highly 

conserved63–65, nevertheless our conclusions are robust to the inclusion of conservation to 

baseline annotations (Extended Data Fig. 9). The final reported RBP effect size (τrbp* ) were 

obtained by jointly fitting, iteratively for each RBP, with all baseline annotations (full 71 

baseline annotations listed in Supplementary Table 5, baseline annotation correlation with 

RBP annotations Supplementary Fig. 9).

Simulations for RBP effect size estimation

We conducted simulations to ensure that our regression models produced unbiased RBP 

effect sizes. Specifically, we verified that false positive results were not obtained for genetic 

architectures where the causal SNPs were derived from functional elements that are largely 

non-RBP regulatory regions – epigenetic enhancers, promoters and protein coding regions. 
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We simulated 400 GWAS summary statistics using the 1,000 Genomes Project European 

reference panel using simGWAS66. Testing for two scenarios, in each simulation, we 

sampled 1% or 5% SNPs (MAF > 0.01 and chromosome 1), as the causal set from brain 

epigenetic enhancers annotated by the PsychENCODE Consortium67, and both promotors68 

and coding regions (restricted to nonsynonymous variants) that are expressed in the brain69. 

For each causal SNP effect size, we model as a Fisher polygenic model with trait heritability 

set to h2 = 0.5. Each simulated GWAS was fit with our LD score regression model (RBP + 

baseline annotations) to obtain the RBP effect size estimate (τrbp* . Results for the 

simulations produced overall robust unbiased estimates across our RBP models 

(Supplementary Fig. 2).

GWAS disease and trait selection

We selected psychiatric disorder GWAS studies conducted by the Psychiatric Genomics 

Consortium, that were uniformly processed and analyzed, and were sufficiently powered to 

observe genome-wide significant SNPs. Datasets on five disorders met these criteria– 

ADHD, autism spectrum disorder, bipolar disorder, major depression and schizophrenia. To 

facilitate cross-study comparison, we selected psychiatric traits and non-brain associated 

diseases previously profiled by the Brainstorm consortium study (excluding traits that did 

not find genome-wide significant SNPs). The East Asian schizophrenia cohort38 and Danish 

cohort from the iPSYCH consortium cross-disorder GWAS study39 was used for replication 

analysis. For cross-disorder replication comparison, Non-iPSYCH-overlapping PGC cohorts 

obtained from older PGC GWAS studies were used for cross-disorder RBP effect size 

estimates32,70–73. Population matched schizophrenia case vs. bipolar disorder case GWAS30 

summary statistic was obtained from the Psychiatric Genomics Consortium web portal (full 

list of GWAS studies examined in this work Supplementary Table 6).

Joint modeling of molecular QTLs

Fine-mapped GTEx26 eQTL (FE-meta) and BLUEPRINT49 molecular QTL annotations 

were obtained from a previous study35, that generated and validated the max causal posterior 

probability (MaxCPP)-based QTL annotations for GWAS enrichment analysis. The 

CommonMind74 isoformQTLs and GTEx sQTL (brain cortex version 8) were fine-mapped 

to produce MaxCPP annotations following the same procedure as was previously reported35. 

The collection of molecular QTL MaxCPP annotations and all baseline annotations were 

jointly modeled in the stratified LD score regression with each RBP annotation to estimate 

the disease associated effect sizes.

RBP dysregulation effect comparison

For RBP effect size association with brain development, we obtained single bp-level 

genomic regions that are differentially differential expressed in the human prefrontal cortex 

brain with developmental stage and age from Jaffe et al75. Peak childhood stage annotations 

were obtained by filtering for regions that showed both differential expression and maximum 

expression during childhood in comparison to other age groups.
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To estimate the collective RBP dysregulation effects in comparison to other annotations (e.g. 

sQTLs), we leveraged the out-of-sample East Asian schizophrenia GWAS38. To find the top 

combined RBP dysregulation effect SNPs associated with schizophrenia, we jointly fit all 

RBP models in the regression model to SNP chi-square values from the East Asian GWAS 

via LD score regression. Next we use the joint RBP regression model (i.e. weight each RBP 

model effects by the estimated regression coefficients) to find the top combined RBP 

dysregulation effect SNPs (top 0.1%, 0.5%, 1%) to examine the amount of heritability they 

capture compared to other annotations (e.g. sQTL) in the PGC European schizophrenia 

GWAS (i.e. non-overlapping cohort with the model fitting East Asian GWAS).

Genetic architecture analysis

Loss-of-function intolerant genes were obtained by the ExAC consortium with pLI threshold 

of > 0.9 as previously described16. For stratified LD score regression models, we jointly fit, 

for each RBP model, the LoF intolerant gene and non-LoF intolerant gene regions variant 

RBP effect sizes (τ*) by splitting the RBP annotation into two by gene set. We added two 

additional baseline annotations for this analysis, that includes SNP to LoF intolerant gene 

regions, and SNP to LoF intolerant gene’s coding region, to prevent potential upward bias 

due to the general higher background heritability enrichment levels. We also added the two 

SNP to LoF intolerant gene or their coding region baseline annotations for the differential 

risk analysis between schizophrenia and bipolar disorder to mitigate any potential bias.

MAGMA44 was used to estimate the gene level association with schizophrenia and bipolar 

disorder. GENCODE76 v25 gene annotations lifted to GRCh37 coordinates and total 19,984 

protein coding genes were analyzed. We used SNPs from 10k upstream of the gene body and 

1.5k downstream for each gene as previously used in a Psychiatric Genomics Consortium 

schizophrenia GWAS analysis study77 along with the 1000 Genomes Project27 European 

reference panel. Colocalization analysis for the ILF3 locus between schizophrenia vs. 

bipolar GWAS30 and GTEx ILF3 eQTL (v8 meta-tissue) was conducted using Coloc78. 

ILF3 TWAS results were obtained from the psychENCODE study45.

Genetic correlation analysis stratified by RBP dysregulation was conducted by first fitting a 

joint RBP regression model for each disease/trait to estimate the collective phenotypic effect 

of RBP dysregulation for each SNP. Next when examining a pair of phenotypes (x,y), we 

iterate over each independent LD block79 and extract the top RBP dysregulation variant that 

influence disorder x and their GWAS effect sizes on both x and y. We then calculated 

correlation between the GWAS effect sizes on x and the GWAS effect sizes on y.

Functional mapping of DDHD2

QKI eCLIP and knockdown RNA-seq data was obtained by the ENCODE project49 in K562 

and HepG2 cell lines. eCLIP data was processed as previously described16 and visualized in 

IGV80. Kallisto81 coupled with Sleuth82 was used for differential expression analysis of 

DDHD2 transcript (ENST00000520272) following QKI KD. P-values were computed using 

likelihood ratio test implemented in Sleuth and FDR was computed across all transcripts 

using Storey’s q-value method83. Genotyping results for SNP rs6981405 in K562 and 

HepG2 lines were obtained from ENCODE project.
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Data availability

All variant predicted scores have been made available to download and as an interactive web 

interface available at https://hb.flatironinstitute.org/seqweaver.

Code availability

The code is available from https://hb.flatironinstitute.org/seqweaver/about.

Extended Data

Extended Data Fig. 1. Population genetics revels negative selection acting on RBP target site 
dysregulation.
a) Across the Seqweaver profiled RBPs, we observe differential selection signatures for 

variants when segregated by their RBP target site dysregulation levels. Specifically, for 

gnomAD cohort noncoding variants (MAF bins x-axis), mean RBP dysregulation (Y-axis) 

shows an inverse relation with allele frequency, consistent with significant negative selection 

acting on high impact RBP disrupting variants. b) The top RBPs previously implicated by 

their autism de novo mutation risk (Zhou, Park, Theesfeld et al.), all show significant 

negative selection signatures, consistent with selection impeding RBP impacting variants 

from reaching high population prevalence. P-values from Wald test for slope and all inferred 

mean RBP dysregulation scores were normalized by subtracting average dysregulation 

predicted scores of common variants (MAF > 0.05) for comparison (95% CI).
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Extended Data Fig. 2. Regions with peak childhood stage expression shows the largest 
enrichment association with RBP dysregulation.
We test the overlap between prefrontal cortex brain differential expressed regions and RBP 

dysregulation SNPs (the top 0.5%) associated with each disorder in comparison to the 

genome-wide rate. We also plot the enrichment overlap for the subset of regions in which 

the expression was highest during childhood stage. All ORs have an enrichment p-value of P 

< 2.2 × 10-16. Error bars are 95% CI.

Extended Data Fig. 3. Cross-ethnic replication – RBP dysregulation effects replicate in an 
independent cohort.

Park et al. Page 16

Nat Genet. Author manuscript; available in PMC 2021 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Replication of estimated schizophrenia RBP dysregulation effect sizes (τ*, European 

Psychiatric Genomics Consortium (PGC)) when compared to estimates from an East Asian 

cohort (Lam et al). P-value computed using spearman rank test of RBP effect sizes.

Extended Data Fig. 4. RBP dysregulation effects for cross-disorder risk replicate in iPSYCH 
cohort.
Replication of estimated cross-disorder RBP dysregulation effect sizes (τ*, Psychiatric 

Genomics Consortium cohort) when compared to estimates from the iPSYCH cohort. P-

value computed using spearman rank sum test of RBP effect sizes.
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Extended Data Fig. 5. RBP dysregulation is a major contributor to human phenotypic variation.
The per-SNP heritability effect sizes (τ*) for each RBP dysregulation is plotted across a 

collection of psychiatric traits, brain-associated anthropomorphic traits and representative 

non-brain related phenotypes previously examined by the Brainstorm Consortium study. The 

dashed line indicates RBP models below FDR 0.05 threshold after multiple hypothesis 

correction (block jackknife-based one-sided p-values; Benjamini-Hochberg correction).
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Extended Data Fig. 6. Heatmap showing patterns of correlated GWAS effect sizes between 
psychiatric disorders and behavioral-cognitive phenotypes for variants affecting RBP 
dysregulation.
For each pair of disorder and phenotype (x,y), we extracted the top RBP dysregulation set of 

variants that influence disorder x and their GWAS effect sizes on both x and y. We then 

calculated correlation between the GWAS effect sizes on x and the GWAS effect sizes on y, 

and tested whether this correlation was significantly different from zero. Stars represent 

statistical significance *** P< 0.001, ** P<0.01, * P<0.05.
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Extended Data Fig. 7. Heatmap showing patterns of correlated GWAS effect sizes between 
psychiatric disorders for variants affecting RBP dysregulation.
For each pair of disorders (x,y), we extracted the top RBP dysregulation set of variants that 

influence disorder x and their GWAS effect sizes on both x and y. We then calculated 

correlation between the GWAS effect sizes on x and the GWAS effect sizes on y, and tested 

whether this correlation was significantly different from zero. Stars represent statistical 

significance *** P< 0.001, ** P<0.01, * P<0.05.
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Extended Data Fig. 8. Heritability enrichment for the collective RBP dysregulation effects in 
comparison to QTL and genomic functional annotations for schizophrenia.
The top 0.1%, 0.5%, 1% SNPs with the largest overall RBP dysregulation effects were 

compared to known molecular QTLs and gene/promoter annotations for their enrichment of 

heritability using PGC schizophrenia GWAS.

Extended Data Fig. 9. Estimated RBP dysregulation effects are robust after conditioning on 
conserved genomic elements.
The per-SNP heritability effect sizes (τ*) for each RBP dysregulation is plotted across the 

five major psychiatric disorders after inclusion of vertebrate, mammal and primate 

conserved phastCons elements to the conditioning baseline annotation set (including QTL 

annotations). The dashed line indicates RBP models below FDR 0.05 threshold after 

multiple hypothesis correction (jackknife one-sided p-values; Benjamini-Hochberg 

correction).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Negative selection signatures differentiate RBPs by their regulatory function.
a) For each RBP, the negative selection signatures are plotted along the major axes of sub-

genic regulatory regions (5’/3’ UTR and introns 200 bp flanking alternatively spliced exon). 

Higher coefficient z-scores, along the x, y or z axes, imply stronger regional selection 

compared to the baseline whole gene region (background). Fitness effects contributed by 

RBP functions beyond splicing are visualized by separation of RBPs along the regional 

selection axes. b) Examples of sub-genic selection signatures for the three major noncoding 

regions regulated by RBPs. GnomAD cohort noncoding variants (MAF bins x-axis) and 

variant set mean RBP dysregulation estimates (Y-axis, dysregulation in z-score units) are 

shown. Stronger RBP selection signatures can be observed by the larger slope for each sub-

genic region compared to the background gene levels (i.e. considering all variants in the 

gene). All inferred mean RBP dysregulation scores were normalized by subtracting average 

dysregulation predicted scores of common variants (>0.05 MAF) for comparison (95% CI).
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Figure 2. Genome-wide RBP dysregulation is a significant source of psychiatric disorder 
heritability.
a) The per-SNP heritability effect sizes (τ*) for the target site dysregulation of each RBP is 

plotted across the five major psychiatric disorders. The dashed line indicates RBP models 

below FDR 0.05 threshold after multiple hypothesis correction (block jackknife-based one-

sided p-values; Benjamini-Hochberg correction). Negative effect size (τ*) estimates 

represent the depletion of heritability for an annotation. b) The statistical association 

between per-SNP heritability and the top psychiatric disorder-associated (TPA) RBPs (mean 

z scores across the five disorders). The jointly fit representative baseline annotations are also 

shown for comparison (sub-genic region annotations are highlighted blue e.g. coding 

region). Annotation coefficients are obtained from LD score regression fit. c) The per-SNP 

heritability effect sizes (τ*) for TPA RBPs after conditioning on a collection of molecular 

QTL annotations (i.e. independent RBP effects from molecular QTLs and baseline 

annotations). Genotype-Tissue Expression (GTEx), CommonMind, BLUEPRINT (BP). The 

jointly fit collection of QTL annotation effect sizes is also plotted. Expression (eQTL), 

splicing (sQTL), mRNA isoform (isoQTL), DNA methylation (mDNA QTL). All error bars 

are 95% CI.
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Figure 3. RBP dysregulation underlies shared and distinct genetic architectures of psychiatric 
phenotypes.
a) The meta-analysis of RBP dysregulation effect sizes in loss-of-function (LoF) intolerant 

genes compared to the remaining set of genes is shown (95% CI). All effect sizes are 

conditioned on baseline annotations plus two additional annotations delineating LoF 

intolerant gene and their coding regions to control for the higher background heritability 

rates. b) Top psychiatric disorder-associated (TPA) RBP estimated effect sizes across a 

collection of psychiatric traits and non-brain related phenotypes are shown (95% CI). The 

adjacent heatmap displays spearman rank correlation for all RBP effect sizes between the 

phenotype and psychiatric disorders (mean effect). c) RBP dysregulation effect sizes (τ*) for 

differential risk between bipolar disorder and schizophrenia, estimated both for all genes and 

for LoF intolerant genes. The dashed line indicates RBP models below FDR 0.05 threshold 

(Benjamini-Hochberg method). d) TWAS analysis results from the PyschENCODE (Gandal 

et al) is shown by ranked gene-level statistical association for bipolar and schizophrenia 

(ILF3 highlighted).
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Figure 4. Functional RBP regulatory mapping identifies a schizophrenia risk variant in DDHD2 
3’UTR.
a) Schizophrenia GWAS signal for the cross-ethnic associated region. The highlighted SNP 

rs6981405 represents the top predicted RBP dysregulation variant disrupting RBP QKI 

binding. b) ENCODE eCLIP data confirms SNP rs6981405 C>A leads to the disruption of 

RBP QKI binding to DDHD2 (rs6981405 genotype for cell line K562 homozygous AA, 

HepG2 homozygous CC). SNPs were allowed during CLIP read alignment. c) QKI 

knockdown followed by RNA-seq confirms QKI-mediated regulation of DDHD2, which is 

disrupted in the homozygous AA genotype (i.e. QKI KD shows no effect when SNP 
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rs6981405 impedes with RBP binding). Error bars represent SEM. d) Schematic: the variant 

at rs6981405 disrupts the QKI - DDHD2 3’UTR interaction, which alters the abundance of 

mature DDHD2 mRNA, and, in turn, schizophrenia risk.

Park et al. Page 30

Nat Genet. Author manuscript; available in PMC 2021 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Results
	RBP function is reflected in genome-wide negative selection signatures
	Variants that disrupt RBP binding influence risk of psychiatric disorders
	Post-transcriptional regulation broadly impacts psychiatric disorder risk
	Effects of RBP dysregulation exceed those of coding variants
	RBP effects explain substantial heritability beyond known molecular QTLs
	Cross-ethnic replication
	RBP contributes to shared and distinct aspects of psychiatric disorders
	Functional mapping identifies DDHD2 as a schizophrenia risk gene

	Discussion
	Methods
	Deep learning inference of RBP dysregulation variant effects
	Genome-wide RBP dysregulation analysis of negative selection
	Estimating effect sizes due to RBP dysregulation
	Simulations for RBP effect size estimation
	GWAS disease and trait selection
	Joint modeling of molecular QTLs
	RBP dysregulation effect comparison
	Genetic architecture analysis
	Functional mapping of DDHD2
	Data availability
	Code availability

	Extended Data
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	Extended Data Fig. 7
	Extended Data Fig. 8
	Extended Data Fig. 9
	References
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.

