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Simple Summary: Feral cats are detrimental to native biodiversity worldwide. In New Zealand,
feral cats are well established across much of the pastoral landscape, including forested areas.
Feral cats, like many carnivore species, are elusive in their nature, and often occur at low densities,
making them difficult to detect. Camera traps are a useful, non-invasive monitoring device, capable
of ‘capturing’ feral cats as they pass by. Although cameras provide a wealth of information about
animals within their field of view; there remains much to be learned about optimal camera trap
placement within a landscape, if maximizing detection probability is the objective. Here, we report
the results of two methods of camera trap deployment within similar sites: (1) systematic deployment
on a grid and (2) strategic deployment, predominantly favoring habitats with assumed higher cat
activity. Using the Royle–Nichols abundance-induced heterogeneity model (RN), which assumes
detection probability and animal abundance are linked, we found that more cats were detected by
cameras at forest margins than in mixed scrub or open farmland (but only slightly more than in forest
locations). If maximizing cat detections is the aim, we recommend that cameras should be placed at
the edges of forests (including forest fragments) whenever feasible.

Abstract: We deploy camera traps to monitor feral cat (Felis catus) populations at two pastoral sites in
Hawke’s Bay, North Island, New Zealand. At Site 1, cameras are deployed at pre-determined GPS
points on a 500-m grid, and at Site 2, cameras are strategically deployed with a bias towards forest
and forest margin habitat where possible. A portion of cameras are also deployed in open farmland
habitat and mixed scrub. We then use the abundance-induced heterogeneity Royle–Nichols model to
estimate mean animal abundance and detection probabilities for cameras in each habitat type. Model
selection suggests that only cat abundance varies by habitat type. Mean cat abundance is highest
at forest margin cameras for both deployment methods (3 cats [95% CI 1.9–4.5] Site 1, and 1.7 cats
[95% CI 1.2–2.4] Site 2) but not substantially higher than in forest habitats (1.7 cats [95% CI 0.8–3.6]
Site 1, and 1.5 cats [95% CI 1.1–2.0] Site 2). Model selection shows detection probabilities do not
vary substantially by habitat (although they are also higher for cameras in forest margins and forest
habitats) and are similar between sites (8.6% [95% CI 5.4–13.4] Site 1, and 8.3% [5.8–11.9] Site 2).
Cat detections by camera traps are higher when placed in forests and forest margins; thus, strategic
placement may be preferable when monitoring feral cats in a pastoral landscape.
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1. Introduction

Accurate and precise population estimates are necessary to understand the distribution and
relative abundance of a target species for wildlife management. Population surveys over large areas
are unlikely to detect or count every individual of a population [1,2], especially for cryptic species and
those that occur at low densities [3,4]. Often the problem is low rates of detection, i.e., the probability
of an individual being detected is much less than 1, and this problem has inspired a variety of different
statistical models and sampling designs for estimating population abundance and dynamics over time,
such as occupancy modeling [5].

Heterogeneity in detection probability at the individual monitoring station level is another issue to
account for in estimating abundance [1,6]. Failure to adjust for heterogeneity in detection probabilities
assumes uniform abundance throughout the sites, which is also often incorrect [1,7]. Animals will
usually be detected more easily where they are more abundant [1]. The detection probability may also
vary as a function of season, site heterogeneity (as in habitat complexity), animal behavior, community
structure, competitors/predators [8,9], and other environmental factors [3,10]. The abundance-induced
heterogeneity Royle–Nichols (RN) model extends the traditional occupancy modelling approach [3]
to account for heterogeneity in detection probabilities, stemming from variation in abundance at the
sampling unit level [1]. However, in order to obtain accurate and reliable detection probabilities for
the cameras at each site, the assumptions of the RN model must be met. Assumptions of single-season,
multi-state occupancy models such as the RN include closure within the occupancy state with all
potential heterogeneity modelled within the abundance and detection probabilities, independence
among sampling units, independence among detection histories, and no species misidentification [11].

1.1. Camera Trap Deployment

Carnivores often occur at low densities, have cryptic behavior [9,12], and require sophisticated
monitoring and statistical modelling techniques to circumvent issues of low detection [13]. As a result,
camera traps have become an increasingly popular tool for providing population estimates for a variety
of carnivore species [9,13,14], including feral cats (Felis catus) [15–17]. However, there is often wide
variation in the deployment of camera traps within a landscape (i.e., number of sampling units used at
each site and their distance from each other) [18,19]. For example, camera traps may be placed in a
variety of ways, such as with a horizontal or vertical orientation [20,21]; baited or unbaited [22,23];
non-biased or biased allocation across a landscape [24], as in systematic grids/transects [9,25,26];
or deliberately placed near likely target species ‘hot spots’, such as trails, roads, and water features [27].

1.2. Feral Cats as a Target Species

Feral cats have a deleterious effect on native wildlife, especially in New Zealand, Australia,
and many offshore islands [28–30]. Thus, they are often targeted as part of routine predator control
operations [16,31]. Cats are adaptable and have variable home-ranges that may overlap, depending
on resource availability and density [32]. In New Zealand, feral cat home ranges in Hawke’s Bay
farmland are estimated at c. 1.9 km2 (males) and 0.9 km2 (females), with a density of 3–6/km−2 [33].
However, in other habitats around New Zealand such as steep forest terrain in the southern North
Island, feral cats were found to have linear home ranges of up to 6.34 km (males), 3.83 km (females),
and smaller home ranges for females with kittens (0.84–2.0 km) [34]. Cats may prefer a variety of
habitats, but most often those that include water sources and a mix of forest cover (both exotic and
native) [31,32].

We aim to compare detection probabilities and mean abundance estimates for cameras using
different deployment strategies (systematic vs strategic) on two similar pastoral sites. We choose to
use an occupancy modelling approach, particularly the RN model, as we assume feral cats utilize
some habitat types more than others. However, for the abundance estimates given by the RN model to
remain valid, certain assumptions must be met throughout.
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2. Materials and Methods

The study took place at two sites on the East Coast of North Island, New Zealand. Site 1, Toronui
Station (~39◦ 0 S, 176◦ 46′ E; Figure 1a), is a 1600-ha pastoral property with a mix of open farmland
and native forest. Site 2 lies within a 26,000-ha portion of the Cape to City ecological restoration area
(~39◦ S, 177◦ E; Figure 1b). The habitat is similar to that in Site 1, with a mixture of native forest,
open farmland, and some semi-urban habitat. Different camera trap models were used at the two sites,
as these sites were originally intended for use in separate studies [26].

In June 2014, we placed 40 camera traps (Reconyx PC 900, RECONYX Inc., Holmen, Wisconsin) in
Site 1 for 21 days. Cameras were placed systematically on pre-determined grid points, across a 7-km2

grid with c. 500-m spacing between individual cameras. Due to the unbiased deployment method
used in Site 1, several cameras were deployed in different habitat types, such as forest (both exotic
and indigenous), forest margin (any edge between a forest and another habitat), mixed scrub (scrub,
rocky areas, or a combination of the above), and open farmland (exposed farmland/paddocks).

In November 2015, we placed 60 camera traps (Browning Strike Force BTC-5, Prometheus Group,
Birmingham, Alabama) in Site 2 for 21 days. Cameras were placed spatially independent of one another
(≥ 2-km) according to literature on mean cat home range size [33,35]. Cameras were deployed with
a bias towards the forest and forest margin habitat (assumed to be high cat activity areas), however,
as well as in mixed scrub and open farmland habitats. Paddocks with large numbers of livestock,
including red deer (Cervus elaphus), sheep (Ovis aries), and cattle (Bos taurus), were avoided, to protect
the cameras from damage and to reduce the number of non-target images, that we had previously
experienced when deploying cameras at Site 1.

Camera traps at both sites were programmed to capture images in bursts of three with the
minimum possible delay between triggers for each camera type (0.5 s for Recoynx, and 5 s for
Browning cameras). The minimum time delay between triggers for this model of Browning cameras
is 5 s. All images were marked with a date/time stamp. Each camera’s field of view was positioned
horizontally, parallel with the ground (10 cm from ground to the base of the camera set on brackets
screwed into trees or wooden stakes, and facing south to reduce false triggers from moving light).
If necessary, vegetation was cleared from the camera’s field of view, to reduce false triggers from
vegetation moving [36]. A perforated vial containing ferret odor (towels impregnated with the scent of
a male ferret) was placed 1.5 m in front of all cameras as a scent lure [21,37], and secured with a tent
peg to avoid removal by animals.

Occupancy Modelling

We created nightly detection histories for cats per camera trap night (as taken from midnight to
midnight) denoted by either a ‘1’ or a ‘0’, respectively. We then implemented the RN model using the
detection histories to estimate mean abundance and detection probabilities for each habitat type within
each site. We used script adapted from Bengsen (2014) in the package ‘unmarked’ [38] in R version
3.2 [39]. Habitat type was used as a covariate. Each camera location was located in either forest (F),
forest margin (FM), mixed scrub (MS), or open farmland (OF). To assess potential variation in detection
probability, we used second-order information-theoretic model-selection procedures. The global model
allowed both abundance and detection probability estimates to vary according to which habitat types
they were deployed in, whereas for the null model these remained constant. The model did not account
for variation in camera trap models.

Site 1 cat detections have been analyzed previously using a spatially-explicit capture recapture
model [26,40]. However, the model in the previous study [26] was unable to converge as there
was a low number of clustered detections, as this spatial model relies on an animal encountering
multiple sampling units with their home range. Thus, a more traditional occupancy model assuming
independence of sampling units was deemed more appropriate for the data.
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Figure 1. Camera locations at Site 1 (a) and Site 2 (b), Hawkes bay, North Island, New Zealand. 170 Figure 1. Camera locations at Site 1 (a) and Site 2 (b), Hawkes bay, North Island, New Zealand.
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3. Results

At Site 1, 39 cameras remained operative, for a total of 819 trap nights. At Site 2, 57 cameras
remained operative for a total of 1197 trap nights (four cameras were removed due to damage from
livestock/user error). Camera traps at Site 1 captured a total of 61,416 images, including 2687 non-target
wild species (birds, ship rats, mice, hare, possum, hedgehogs, mustelids, pigs, and goats), 36,143 false
triggers, and 19,338 livestock. Camera traps at Site 2 captured a total of 87,709 images, including
20,657 of non-target wild species, 56,664 false triggers, and 7271 of livestock. The number of cameras
deployed in each habitat type at each site and the average nightly detections of cats can be found in
Table 1.

Table 1. Number of cameras and mean nightly cat detections (21 days) per habitat type, for Site 1 and
Site 2.

Habitat Type Number of
Cameras (Site 1)

Number of
Cameras (Site 2)

Mean Detections
by Night (Site 1)

Mean Detections
by Night (Site 2)

Forest 2 23 0.2 2.5
Forest Margin 5 12 1 1.5
Mixed scrub 9 15 0.6 0.6

Open farmland 22 7 0.9 0.14

Sites 1 and 2 had similar detection probabilities for feral cats despite variable numbers of camera
traps and different deployment strategies (8.6 % [95% CI 5.4–13.4] Site 1, and 8.3 % [5.8–11.9] Site 2).
However, the model suggested only cat abundance varied by habitat type, and these results can be
seen in Figure 2. Feral cat abundance as seen on camera was highest in forest margin habitats at both
sites, and only slightly higher than forest habitat.
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Figure 2. Mean cat abundance (λ) for cameras in each habitat type, (± 95% CI) at Site 1 and Site 2.

Model output showed little support for the null model with cat abundance varying by habitat
type as seen in Table 2.
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Table 2. Model selection based on Akaike information criterion that has a correction for small sample
sizes (AICc), for Site 1 and Site 2, which includes abundance varying by habitat type (abundance
varies), the null model (null), and both abundance and detection probability varying by habitat type
(abundance and detection probability vary).

Site 1

Model selection based on AICc: AICc Delta AICc AICc Wt Cum.Wt LL

Abundance varies 361.79 0.0 0.79 0.79 −174.96
Null model 365.19 3.4 0.14 0.93 −180.42

Abundance and detection probability vary 366.69 4.9 0.07 1.00 −172.86

Site 2

Model selection based on AICc: AICc Delta AICc AICc Wt Cum.Wt LL

Abundance varies 622.73 0.00 0.64 0.64 −305.78
Null model 624.35 1.62 0.28 0.92 −310.06

Abundance and detection probability vary 626.84 4.11 0.08 1.00 −303.92

4. Discussion

As pest management operations extend to larger landscape areas [41], the need for efficient,
accurate, and precise monitoring increases. The primary objective of this study was to compare
occupancy model estimates using feral cat detections made by camera traps deployed either
systematically (Site 1) or strategically (Site 2), in a pastoral landscape. Although different camera trap
models were used at the two sites, we do not believe this had a negative impact on our results, as we
categorized data into detection/non-detection events per 24-hr period.

We used the RN occupancy model to examine whether cat abundance varied by habitat type,
as well as a full model where abundance and detection probabilities both varied by habitat type.
Model selection suggested only cat abundance varied significantly with habitat type, although this
was only a little different to both the null model and full model.

The results from the RN model can only be relied upon if all model assumptions are met
throughout the study. The literature states that cat home-ranges are highly variable in size and may
overlap [32,42,43]. The same camera trap data from Site 1 had also been used in a previous study [26] as
a non-treatment control. Previous analysis using a Bayesian approach dependent on spatial correlation
of camera trap detections failed to converge due to lower rates of clustered detections than anticipated
given the close spacing of ~ 500 m. Although there may be observational spatial independence of
detections, abundance estimates at Site 1 are potentially inflated as cats are expected to travel further
than 500 m within their home range according to the literature [34]. The RN model relies on the
premise that detection probability is mostly driven by abundance at a location. We can assume there
is heterogeneity in the abundance of cats throughout different habitat types at both of these sites.
Although mean detection probabilities in total were similar for each deployment array, the higher
number of cat detections by cameras in forest margins and forest habitats suggests these should be
targeted for monitoring in future operations. Additionally, the high number of images of livestock
recorded at Site 1, compared to Site 2, resulted in increased footage processing time and higher risk of
damage to camera traps. This was mostly avoided at Site 2 with strategic placement away from open
farmland that contained livestock. Although the addition of armored security cases for the cameras
may have reduced cosmetic damage from livestock, the cameras damaged in this manner were also
unusable for our results due to altered placement and skewed field of view from trampling. We list
livestock separately from other non-target species, as they were a cause of camera damage at Site 1.

5. Conclusions

Estimates for cat abundance at both sites were highest in forest margin and forest habitats for
cameras in both deployment arrays. Our study supports the concept that camera traps placed in the
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ecotones of different habitats may maximize detections of cryptic target species [24]. Other studies
also suggest that cats prefer a combination of forest cover [44] and open habitats for hunting [45].
Accordingly, we recommend for future studies and operations, particularly where cats are an apex
predator, that cameras be placed strategically in the margins between forest and other habitat types
whenever possible to increase detections.

Future Research

Further increases in detections will improve accuracy when gauging the success of a control
operation. For example, deploying cameras in pairs [15] or in clusters as per Stokeld et al. (2015) could
increase detections. While single cameras can be strategically placed in areas that increase their chances
of detection, multiple cameras combined with a biased placement may further increase numbers of
detections. Further research into different lures such as sound lures, etc. [46], and other social lures
may also increase detections of feral cats if they are present.
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