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MOTIVATION Identifying lineage-specific regulators during dynamic biological processes, such as differ-
entiation from single-cell transcriptomics data, remains challenging. Current methods rely on correlations
between the expression of transcription factors (TFs) and their target genes without considering the dy-
namics of their regulatory activity, often resulting in complex lists or networks of TFs, from where the dy-
namic cascade of interactions is difficult to disentangle. Hence we developed FateCompass, an integrative
pipeline that estimates TF activity dynamics and predicts lineage-specific regulators. FateCompass facili-
tates hypothesis generation to advance our understanding of the gene-regulatory networks underlying cell-
subtype specification processes.
SUMMARY
Time-specific modulation of gene expression during differentiation by transcription factors promotes cell di-
versity. However, estimating their dynamic regulatory activity at the single-cell level and in a high-throughput
manner remains challenging. We present FateCompass, an integrative approach that utilizes single-cell tran-
scriptomics data to identify lineage-specific transcription factors throughout differentiation. By combining a
probabilistic framework with RNA velocities or differentiation potential, we estimate transition probabilities,
while a linear model of gene regulation is employed to compute transcription factor activities. Considering
dynamic changes and correlations of expression and activities, FateCompass identifies lineage-specific reg-
ulators. Our validation using in silico data and application to pancreatic endocrine cell differentiation datasets
highlight both known and potentially novel lineage-specific regulators. Notably, we uncovered undescribed
transcription factors of an enterochromaffin-like population during in vitro differentiation toward ß-like cells.
FateCompass provides a valuable framework for hypothesis generation, advancing our understanding of the
gene regulatory networks driving cell-fate decisions.
INTRODUCTION

Gene regulation is pivotal during many biological processes,

including development, cell cycle, regeneration, reprogramming,

and cancer, and it usually occurs in a cell- and stage-dependent

mode.1 Notably, cells transition from a less to a more differenti-

ated state during differentiation via the interplay of transcrip-

tional regulation events in a highly dynamicmanner.1,2 Transcrip-

tion factors (TFs) are essential proteins able to bind specific DNA

regulatory regions and link signaling transduction networks to

gene-specific transcriptional regulation;3 hence they are

commonly used as pathway readouts.4 Currently, there are no

high-throughput techniques to measure the dynamic regulatory

activity of TFs; instead, their direct product, gene expression
Cell
This is an open access article under the CC BY-N
levels, can be measured with an unprecedented high resolution

using single-cell transcriptomics.

Single-cell RNA sequencing (scRNA-seq) techniques allow the

identification of different cell types and, more importantly, the

study of lineage specification at the single-cell resolution,5

enabling a quantitative study of differentiation. However, the chal-

lenge remains to devise a robust integrative workflow that infers

time- and cell-type-specific regulators. The inherent asynchrony

of scRNA-seq data has allowed the development of several ap-

proaches to reconstruct differentiation trajectories, which rely

on variation among cell types within the captured population.6

The developed computational techniques include pseudotime

methods7,8 and RNA velocity.9,10 Noteworthy, pseudotime algo-

rithms depend on the previous knowledge of the initial state, and
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it is limited to the analysis of general trends of biological progres-

sions rather than the precise dynamics of individual cells.

Conversely, RNA velocity overcomes the limitation of the direc-

tionality by leveraging the splicing kinetics and predicting the

RNA expression states in the near future. Nevertheless, it has

intrinsic limitations, e.g., when the spliced-to-unspliced mRNA

ratio is trendless or in predicting the continuous evolution of cells

over a long period of time.11,12

Typically, differentiation trajectories are used together with dif-

ferential gene expression analysis to identify TFs specific to a

given cell type.13 However, this approach ignores the fact that

even lowly expressed TFs can have high regulatory activity,

and it does not consider direct regulatory interactions with target

genes. In contrast, several methods to derive mechanistic signa-

tures in cell-fate decisions from transcriptomics data have been

proposed, including ISMARA14 and DOROTHEA2 for bulk RNA-

seq, and SCENIC15 and metaVIPER16 for scRNA-seq. Although

previous studies attempted to compare these methods,4,17 it is

difficult to perform a benchmark given that most of them have

different underlying assumptions. Notably, except for ISMARA,

they are based on correlations between the expression of TF

transcripts and the TF target genes or the expressed genes in

general. Using correlations requires further assumptions or

perturbation assays to distinguish causal relationships. Further-

more, none describes the dynamic change of TF activity

throughout the cell-fate decision process, which is pivotal in

time-dependent systems.

Here, we present FateCompass, an integrative workflow that

aims to identify time- and lineage-specific TFs for a system un-

dergoing differentiation. First, we outlined differentiation trajec-

tories from progenitor cells to final states using a discrete

Markov Process on a network. This allows us to describe sto-

chastic gene expression dynamics during the cell-fate decision

process incorporating RNA velocity or differentiation potentials

to infuse the differentiation direction. Then, we modeled the

observed gene expression as a linear combination of the regula-

tory sites and the TF activities; from this, we could infer TF activ-

ities. Finally, we performed a differential TF activity analysis using

statistical criteria and validated the predictions using an in silico

dataset. We applied FateCompass to a pancreatic endocrine dif-

ferentiation system, where endocrine progenitors, marked by the

transient expression of the TF Neurog3 (Ngn3), differentiate to-

ward glucagon-producing a cells and insulin-producing b cells,

among others.18 We analyzed a well-characterized scRNA-seq

dataset from the developing mouse pancreas19 recapitulating

known lineage-specific regulators and nominating novel regula-

tors. Further, to demonstrate the capabilities of FateCompass,

we used a scRNA-seq experiment from the differentiation of hu-

man stem cells toward pancreatic b-like cells.20 Of note, this

complex population includes, besides the expected endocrine

cells, a population of intestinal-like cells called enterochromaffin

(EC). FateCompass identified not only a- and b-specific but also

EC-specific known and novel factors such as CDX2, for which

we present further experimental support. The integrative

approach of FateCompass boosts the ability to identify line-

age-specific regulators by estimating TF activity dynamics,

revealing time-specific transcriptional regulatory interactions un-

derlying cell-subtype specification.
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RESULTS

Integrative methodology to infer dynamic TF activities
during cell-subtype specification
FateCompass aims to identify lineage- and time-specific TFs for

a cellular system undergoing differentiation. To this end, we de-

signed a three-step pipeline using scRNA-seq (Figure 1). First,

we characterized the dynamics of the system by sampling differ-

entiation trajectories from progenitor to final states using a

discrete Markov process on a network representing cell states

and possible transitions. Next, we focused on TFs as readouts

of pathway activity. Hence, we inferred TF activities using a linear

model of gene regulation, which involvedmodeling the observed

gene expression as a linear combination of the regulatory

sites and the TF activities, similarly to the original framework im-

plemented in ISMARA.14 Finally, we defined a differential TF ac-

tivity analysis considering dynamic changes and correlations

to coarse-grain the list of TFs and identify lineage-specific

regulators.

To infer differentiation trajectories and describe stochastic

gene expression profiles along the cell-fate decision process,

we used cell-to-cell similarity based on transcriptomic profiles

together with RNA velocity9 or a differentiation potential from

progenitor to mature cells.21 Similar to other differentiation tra-

jectory inference methods,6–8,22 FateCompass models differen-

tiation trajectories based on similarities in the expression pat-

terns, except that we implemented a cell-dependent drift that

biases the trajectories toward the direction of differentiation.

First, we represented the phenotypic manifold in a low-dimen-

sional space and modeled it using a Markov chain on a network

(Figure 1A; STAR Methods). To that end, we first embedded the

gene expression data in a significant low-dimensional manifold

using either principal-component analysis (PCA)23 or Uniform

Manifold Approximation and Projection (UMAP).24 Next, we built

a nearest-neighborhood graph in the low-dimensional space

connecting each cell with the k most similar neighbors. Notably,

FateCompass flexibility allows the input of the graph when

computed using alternative methods (Figure S1); for instance,

Sanity calculates cell-to-cell distances by removing Poissonian

noise from scRNA-seq data by implementing a rigorous

Bayesian approach.25 Currently, RNA velocity is a well-accepted

method to infer differentiation dynamics; however, some of the

method’s limitations lead to inconclusive velocity fields in

some biological systems. For instance, some datasets might

have, to name just a few, time frames out of the initial modeling

framework, insufficient unspliced counts in the key biological

driver genes, and multiple kinetic regimens.11 Therefore, to

make FateCompass flexible and applicable to any differentiating

system, we used either the RNA velocity vector (STAR Methods)

or the gradient of potential energy from progenitor cells to

mature cells (STAR Methods) to bias the transitions between

states in the Markov process (Figures 1B and S1). The resulting

transition probabilities reflect both transcriptional and directional

similarities. To ultimately describe the time evolution of the differ-

entiating system, we used a Monte Carlo sampling algorithm

where the transition matrix of the Markov chain gives the next-

jump probability (STAR Methods). This approach is instrumental

in estimating quantities of interest, e.g., gene expression or TF
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Figure 1. FateCompass workflow to identify transcriptional regulators during cell-subtype specification

(A) scRNA-seq data annotated for different cell types and embedded in a low-dimensional space showing connections to the k nearest neighbors.

(B) The direction of differentiation, either from RNA velocity or differentiation potential, is the underlying force to compute transition probabilities between cell

states.

(C) The dynamic profile of a given gene over the differentiation trajectories ending in a respective final state (A, B, and C).

(D) TF binding sites for different motifs across promoters.

(E) Linear model of gene regulation where the observed gene expression (Egc) is modeled as a linear combination of the regulatory sites (Ngf) and the TF activity

(Afc).

(F) The dynamic profile of the TF activity for TF1, TF2, and TF3 over the differentiation trajectories ending in the final state B.

(G) Differential TF activity analysis. Lineage-specific TFs were identified according to three criteria: Z score, variability of TF activity over time, and dynamic

correlation between the TF activity and the expression of its mRNA.

(H) Lineage-specific TFs identified by FateCompass ordered according to who is active first over the dynamic profiles and constitute the differentiation TF

landscape.

See also Figures S1 and S2.
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activity over differentiation trajectories (Figures 1C and 1F; STAR

Methods).

To decipher the transcriptional interactions driving cell-sub-

type specification, we used TFs as a proxy because of their

direct role in gene-specific transcriptional regulation.26 We

reasoned that changes in the transcriptional state, in response

to developmental cues, are conditioned by conserved regulatory
mechanisms, such as the interaction between TFs and cis-regu-

latory regions (Figure 1D). Similar to Balwierz et al.,14 we used a

linear model to infer TF activities (STAR Methods). The primary

assumption is that the transcription rate is controlled by the TF

binding sites in the promoters (Figure 1E; STAR Methods); we

considered promoters because of their direct assignation to

the target genes based on their proximity to the transcriptional
Cell Reports Methods 3, 100512, July 24, 2023 3
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start site (TSS). We defined a promoter region as the 2-kb region

centered in the TSS. Currently, there is no standard high-

throughput way to assign reliably long-distant regulatory interac-

tions such as enhancers to target genes. However, we designed

FateCompass such that the regulatory interactions, summarized

in a binding-site matrix, could be customized to include further

information when available (Figure S1), for example, coming

from single-cell ATAC sequencing (scATAC-seq). Importantly,

we implemented a new regularization technique using data diffu-

sion to control the model’s complexity and avoid overfitting

(STAR Methods). Shortly, we used the k-nearest neighborhood

graph to smooth the learned activities correcting for dropout

and other noise sources.27 In the data diffusion regularization,

the cells share information through the local neighbors, which

is analogous to diffusing the data over the network. The t-step

is akin to raising the diffusion operator to the tth power. We fitted

the optimal value of t using a cross-validation scheme.

Finally, to identify lineage-specific TFs, we defined a differen-

tial TF activity analysis based on three metrics (Figure 1G; STAR

Methods). First, we reasoned that activities that are important to

explain the expression variation across cells should be relevant

in the cell-fate decision; we summarize this using the Z score

(STAR Methods). Next, we looked for TFs whose activity profile

over the differentiation trajectories was highly changing, intuiting

that these will have a crucial role in the state-transition process

(STAR Methods). Lastly, we acknowledge that for a TF to be

active, it has first to be expressed; hence, we sought TFs with

high and positive dynamical cross-correlation (STAR Methods).

The strength of FateCompass lies in its integrative approach,

which boosts the ability to identify time- and lineage-specific

regulators by estimating TF activity dynamics.

We tested FateCompass performance with an in silico dataset

generated using the simulation engine Dyngen (Figure S2A).28

The synthetic data has an underlying ground truth for develop-

mental trajectories, RNA velocity profiles (Figure S2B), and

cell-specific regulatory networks (Figure S2C). We applied

FateCompass using the differentiation potential mode (Fig-

ure S2D), and we used the prior biological knowledge on the

initial and final fates of the ground-truth system. FateCompass

accurately estimated fate probabilities (Figure S2E) for each final
Figure 2. Islet cell formation landscape in the mouse

(A) UMAP plot of 3,696 cells at E15.5;19 colors highlight clustering into eight main

using RNA velocity. Red dots represent the possible neighborhood a cell can ex

(B) Propagator (Pij ) of the Markov chain as a function of the direction of differ

probability of transitioning to the state j when being at the state i.

(C and C0) Stochastic differentiation trajectories starting in a Sox9 bipotent cell a

(D and D0) Fate probabilities for the a (D) and b (D0 ) fates.
(E and E0) UMAP plots with normalized gene expression of known lineage-specifi

(F and F0) Average gene expression of Arx and Nkx6-1 over a and b differentiatio

(G and G0) UMAP plot with TF activity distribution for Arx (G) and Nkx6-1 (G0).
(H and H0) Average TF activity of Arx and Nkx6-1 over a and b differentiation traj

(I and I0) Dynamic Pearson correlation between mRNA expression and TF activit

(J–L) Heatmaps showing the average TF activity over differentiation trajectories a

full list). Right: activity distribution on the UMAP embedding of selected example

each trajectory.

(J) TFs predicted as drivers of both b and a fates.

(K) TFs predicted as b specific.

(L) TFs predicted as a specific.

See also Figures S3–S5.
fate (sEndC and sEndD). Also, when exploring the expression

and the TF activities computed using FateCompass of fate-spe-

cific TFs for each lineage, according to the underlying gene-reg-

ulatory network, we observed a coherent behavior in the

dynamic profiles (Figures S2F and S2G). Finally, the differential

TF activity analysis identified TFs that drive each cell subtype

at the decision point: B11 for the sEndC fate and B14 for the

sEndD fate (Figure S2H). Altogether, these results showed the

potential of FateCompass to identify time-specific regulatory in-

teractions, thereby providing the opportunity to generate hy-

potheses on transcriptional regulation cascades underlying

cell-subtype specification processes.

Delineating transcriptional regulators during mouse
islet cell formation
To assess the robustness of FateCompass, we applied it to a

well-characterized scRNA-seq dataset from the developing

mouse pancreas at 15.5 days post-coitum (E15.5).19 In the

pancreas, endocrine cells differentiate from endocrine progeni-

tors marked by the transient expression of the TF Ngn3.18

Bastidas-Ponce et al.19 profiled pancreatic epithelial cells using

a Ngn3-Venus fusion reporter mouse line, sequencing both

Venus-positive and Venus-negative (Epcam+) cells using

droplet-based scRNA-seq (10X genomics chromium). We tested

the capabilities of our workflow with the data from E15.5 (3,696

cells), when endocrine cell commitment ends in four major cell

types: glucagon-producing a cells, insulin-producing b cells, so-

matostatin-producing d cells, and ghrelin-producing ε cells (Fig-

ure 2A). Moreover, this dataset presents a strong directional

velocity flow toward the final endocrine fates (Figure 2A).10

To retrieve the dynamic profiles toward the final endocrine

fates, we embedded the data in a low-dimensional manifold us-

ing UMAP, and we built the nearest-neighborhood graph in the

reduced space. Next, we leveraged the robust RNA velocity pro-

file to direct the edges of the Markov chain (Figure 2B) and esti-

mated transition probabilities using a velocity-driven kernel

(see STARMethods). We used the transition matrix with a Monte

Carlo sampling algorithm to simulate stochastic gene expression

profiles along the differentiation trajectories, which allowed us to

plot gene expression trends. The time-evolution simulation
cell types. Arrows indicate the direction of cell transitions, which was estimated

plore when modeled using a Markov chain.

entiation (V) and the stochasticity of gene expression (D). Pij represents the

nd ending in a (C) and b (C0) fates.

c markers: Arx for a (E) and Nkx6-1 for b (E0) cells.
n trajectories. Shaded areas represent standard errors of the mean.

ectories. Shaded areas represent standard errors of the mean.

y over a and b trajectories for Arx (I) and Nkx6-1 (I0).
nd dynamic Pearson correlation. Not all TF names are shown (see Table S1 for

s and respective Z score. TFs are sorted according to which was active first in

Cell Reports Methods 3, 100512, July 24, 2023 5
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showed that, after two thousand iterations, the simulations

mainly ended in three of the final endocrine fates, a, b, and ε,

with higher frequencies for a (12.4%) and b (77%). We next

focused the analysis on a and b lineages. In Figures 2C and

2C0, we presented an example of the simulated trajectories for

the final fates a and b. These fates represent sinks during the

endocrine cell-subtype specification. We computed fate proba-

bilities utilizing the information from stochastic simulations

(STARMethods) and summarized this information in a fate-prob-

ability distribution (Figures 2D and 2D0). In summary,

FateCompass can integrate RNA velocity information to esti-

mate gene expression dynamics and identify final fate states

from scRNA-seq data.

To assess the influence of the kernel on our dynamic inference

approach, we computed fate probabilities using the differentia-

tion potential as the drift of the stochastic differentiation process.

Notably, no major changes were observed in the fate-probability

distribution (Figure S3A). This suggests that differentiation po-

tential can be used when prior biological knowledge is available

on final cell fates and RNA velocity fails to provide useful dy-

namic information. Furthermore, we tested the robustness of

FateCompass by examining whether the number of nearest

neighbors (k) or the dimensionality reduction method could influ-

ence the inference dynamics. To this end, we recomputed

fate probabilities for different values of k or using PCA to reduce

the dimensionality of the data. As shown in Figure S3B for

three random cells, we did not observe any significant change

in their fate probabilities. These findings demonstrate that

FateCompass is robust to different parameter settings and

dimensionality reduction methods.

Importantly, we compared the fate probabilities inferred with

FateCompass and CellRank, another computational method

that uses RNA velocity to estimate fate probabilities.29 In the da-

taset we used, which differs from the one used in the original

CellRank paper in the fact that we included the Ductal and

Ngn3 low EP populations, CellRank identified ε and b cells as ter-

minal hormone-producing fates failing to identify the glucagon-

producing a cells as a terminal state (Figure S3C). Importantly,

for all the variations in parameters and kernels, FateCompass

accurately identified the b fate as the most likely terminal fate

for endocrine progenitors at E15.5, consistent with the previous

biological knowledge.19,30

Next, to evaluate the dynamic profile of transcriptional regula-

tors, we estimated TF activities from the behavior of the pre-

dicted target genes. To assess the inferred transcriptional dy-

namics objectively, we examined the expression and activity

profiles of known lineage-specific regulators. The TF Arx is

essential for a cell formation,31 and unsurprisingly, it had high

expression in a cells (Figure 2E), and the expression profile

over the a trajectories increased, whereas over the b trajectories

it was flat (Figure 2F). Similarly, the TF Nkx6-1, necessary for b

cell development,32 was highly expressed in developing b cells

(Figure 2E0), and its expression profile increased only over b tra-

jectories (Figure 2F0). Strikingly, we found high Arx and Nkx6-1

activity in both a and b cells (Figures 2G and 2G0). According
to the TF activity definition, there will be increased activity for a

TF when its targets show, on average, an increase in expression

that cannot be explained by the presence of sites for other TFs in
6 Cell Reports Methods 3, 100512, July 24, 2023
their promoters.14 We reasoned that for a TF to have an effect, it

must be present, and we assumed that if the TF is expressed in

the population of interest, its protein will be present and can have

regulatory activity. Hence, TFs that show a positive correlation

between their activity and their mRNA expression are predicted

to be activators, andwhen the correlation is negative, the TFs are

predicted as repressors. To assess the role of Arx and Nkx6-1 in

both a and b cells, we extracted the dynamic profile of Arx (Fig-

ure 2H) and Nkx6-1 (Figure 2H0) activities and then performed

dynamical correlation over a and b trajectories between the

expression and the activity. We found that Arx is an activator

of a cell identity (positive correlation without any time lag),

whereas it is a repressor of the b lineage (negative correlation)

(Figure 2I). This cell-dependent role has been well docu-

mented.31,33 In contrast, Nkx6-1 behaves as an activator during

b cell differentiation, whereas it has a repressor role in a cells

(Figure 2I0). This antagonistic behavior is supported by the find-

ings of Schaffer et al.34 showing that repression of Arx by

Nkx6-1 is important for determining and maintaining b cell iden-

tity. Importantly, we tested the robustness of the TF activity

profiles against the number of nearest neighbors and the dimen-

sionality reduction method used in the first step of graph con-

struction, and we found consistent activities for several values

of the parameters; in Figure S4A we showed Nkx6-1 activities

as a relevant example.

The differential TF activity analysis identified 86 TFs (Table S1),

from which 22 were predicted to be specific for both a and b

fates (Figure 2J), 38 were b specific (Figure 2K), and 25 were a

specific (Figure 2L). Of note, we also checked the robustness

of the differential TF activity analysis against the number of near-

est neighbors and the dimensionality reduction method. Specif-

ically, when we focused on the b lineage, we found that the TFs

identified by FateCompass were largely overlapping (Fig-

ure S4B). Interestingly, although Neurod1 was identified for

both fates, the profile over the differentiation trajectories was

higher in the b cells; this can also be observed in the distribution

of activities in the UMAP plot (Figure 2J). The prediction of Neu-

rod1 for both fates is consistent with previous publications about

the role of Neurod1 inmurine a and b cell specification, where the

authors found a cell-type-dependent role of Neurod1 in combi-

nation with Nkx2-2,35 whose activity profile is similar to Neu-

rod1’s profile (Figures S5C and S5C0). Bcl11a was the factor

with the highest Z score (4.1192) (Figure 2J), indicating the signif-

icance of this TF to explain the variance of the linear model of

gene regulation. Remarkably, Bcl11a has an active role as a

potent suppressor of insulin secretion in adult islets;36 however,

its role during islet cell-subtype specification remains to be stud-

ied. Some of the identified factors for both a and b fates have not

yet been reported to have a function during pancreatic endocrine

differentiation; thus, they are potential novel regulators. For

instance, we found Cxxc1 early on during differentiation (Fig-

ure 2J); it has already been pointed out as a critical factor during

other differentiation processes, such as in thymocyte develop-

ment.37 Also, previous studies from our group reported it to be

a direct target of Ngn3.38

Regarding the identified b-specific factors, we identified

several TFs known for playing a role in b cell subtype specifica-

tion or identity, including Nkx6-1,32 Glis3,39 Mlxipl,40,41 and
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Pdx1,42 as well as novel candidates such as Cebpg (Figure 2K).

Similarly, among the factors designated as a-specific (Figure 2L),

we found known ones such as Arx31 and novel candidates such

as Prox1.43 Of note, Prox1 needs to be downregulated in b cells

for their expansion and maturation.43 Hence our predictions

might suggest a role for Prox1 in a cell differentiation, where

this gene, in contrast with b cells, is highly expressed. We also

identified core clock factors such as Arntl as a specific. Previous

studies have shown that the distinct characteristics of a cell and

b cell clocks harbor different circadian properties resulting in dif-

ferential gene expression and functional regulation.44 Notably,

Arntl was previously identified with an advanced phase in a

cells.44

Finally, we compared the TF activities inferred with

FateCompass and Scenic, a computational approach that infers

regulatory activity using the AUCmethod.15We performed aWil-

coxon test on the estimated activities to highlight the top five TFs

per cluster (Figures S4C and S4D). Of note, this statistical test is

not part of the Scenic workflow, and although through it TFs such

as Pdx1 and Arx are pinpointed for b and a cells, respectively

(Figure S4C), Scenic does not identify relative-time-lineage-spe-

cific regulators. We would like to point out that just a statistical

test on the estimated activities by FateCompass is not enough

to retrieve TFs involved in differentiation dynamics (Figure S4D).

Taken together, by integrating dynamics and TF activity infer-

ence, FateCompass predicted well-known TFs, which serve as

a positive control of the method’s performance. Beyond that,

we identified novel potential b and a fate regulators with clearly

distinct dynamic behaviors. This information can be harnessed

further to characterize the regulatory interactions behind pancre-

atic endocrine cell formation.

FateCompass identifies transcriptional dynamic profiles
beyond RNA velocity
To test whether the FateCompass workflow retrieves differentia-

tion trajectories and identifies lineage-specific TFs in more com-

plex experimental designs, with several harvesting points, we

considered a scRNA-seq experiment from an in vitro differentia-

tion of human stem cells toward pancreatic b-like cells.20 In this

study, the authors used the SC-b cell protocol to mimic b cell

development45 in six stages using specific inducing factors to

produce ‘‘stem-cell-derived islets’’ (SC-islets) that contained

SC-b cells (Figure S6A). We applied FateCompass to a dataset

of 25,299 cells profiled using In-Drops sequencing across eight

time points throughout stage five. Notably, at the beginning of

stage five, there were NKX6-1+ pancreatic progenitors, as well

as the first SC-a cells, and by the end of it, there were three clas-

ses of endocrine cells: SC-b cells expressing INS, NKX6-1, ISL1,

PDX1, and other b cell markers; SC-a cells expressing GCG,

ARX, IRX2, and also INS; and SC-EC cells expressing CHGA,

TPH1, LMX1A, and SLC18A1 that resembled intestinal EC

cells (Figure 3A). We were interested in seeing how well

FateCompass retrieved lineage-specific TFs in this setting,

where there is a directed differentiation (toward SC-islets) with

an undesired by-product (SC-EC cells).

To infer the differentiation trajectories toward the final endo-

crine cell types, we first computed RNA velocities using scVelo10

and visualized them using two-dimensional UMAP embedding
(Figure S6B). Notably, the projected velocities did not have a

conclusive pattern toward the final fates, probably because of

the high proportion of unspliced transcripts (30%; Figure S6C).

The above, together with the inherent limitation coming from

the batch effect introduced by harvesting at different time points

(Figure S6A),11 made the use of RNA velocity as a drift for the

transition probabilities a liability. Therefore, we estimated

FateCompass transition probabilities using the differentiation

potential gradient from NKX6-1+ progenitors to each terminal

fate (SC-a, SC-b, and SC-EC) (Figures 3B and 3C; see STAR

Methods). To summarize the information of the stochastic simu-

lations, we plotted the fate-probability distribution for each final

cell type. Notably, the likelihood of having SC-a as final fate

strongly decreases for NEUROG3-mid and NEUROG3-late pro-

genitors, suggesting that this cell type comes mainly from early

endocrine precursors (Figure 3D), consistent with previous

reports.46 Conversely, SC-b and SC-EC are the prevalent end-

points for trajectories passing through late NEUROG3 progeni-

tors (Figures 3E and 3F), consistent with previous studies,20,47

validating our drift-dependent Markov chain approach to infer

differentiation dynamics. Of note, alternative methods to infer

fate probabilities, such as the pseudotime-based kernel avail-

able in a recent update of CellRank, failed to distinguish between

the SC-b and SC-EC fates (Figures S6D–S6F).

Next, we checked the dynamic profile of known regulators.

NKX6-1 is pivotal at several differentiation stages to giving rise

to b-like cells.46 Congruently, Veres et al.20 reported high expres-

sion of NKX6-1 in early endocrine precursors (named NKX6-1

progenitors), NEUROG3-late progenitors, SC-b cells, and SC-

EC cells (Figure 3G). In agreement, the dynamic profile of

NKX6-1 expression (Figure 3H) started at a high value that corre-

sponds to the trajectories passing through NKX6-1 progenitors,

and then a decreasing profile is followed by an expected burst on

SC-b and SC-EC cells, corresponding to its influence in endo-

crine cell-subtype specification.20 Similar to the in vivo situation

in the mouse embryonic pancreas, we found high NKX6-1 activ-

ity in SC-b and SC-a cells and, in this context, also in SC-EC cells

(Figures 3I and 3J). After checking the dynamical correlation of

mRNA expression and TF activity (Figure 3K), we consistently

predicted NKX6-1 as an activator of the SC-b identity. Also, we

provide evidence of the possible role of NKX6-1 protein as an

activator of the EC fate specification during pancreatic endo-

crine differentiation in vitro (positive correlation without time lag

with the mRNA expression in Figure 3K). In contrast, the high

NKX6-1 activity in SC-a cells that negatively correlated with

the mRNA expression of the NKX6-1 transcript points to a

possible repressor role in the SC-a cells, suggesting a similar

function to that reported by Schaffer et al.34 in the mouse. In

contrast, ISL1 is a well-known marker of b cells,48 and it func-

tions as a regulator of ARX during a cell development.49 Indeed,

Veres et al.20 reported it as differentially expressed in the SC-b

branch (Figure 3G0), and the dynamic expression profile showed

an increasing pattern over SC-a and SC-b differentiation trajec-

tories (Figure 3H0). Moreover, the activity profile of the ISL1 motif

was higher in the expected populations, SC-a and SC-b cells

(Figures 3I0 and 3J0). Also, the dynamic correlation between

expression and activity (Figure 3K0) confirmed the expected acti-

vator role over SC-a and SC-b trajectories. Altogether, these
Cell Reports Methods 3, 100512, July 24, 2023 7
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Figure 3. FateCompass retrieves dynamic profiles of in vitro b cell differentiation beyond RNA velocity

(A) UMAP plot of 25,299 cells profiled during a 7-day time course at stage 5 of differentiation toward pancreatic b-like cells;20 colors highlight clustering into nine

main cell types.

(B) UMAP plot colored according to the differentiation potential; the gradient goes from NKX6-1+ progenitors to the hormone-producing cell types (SC-a, SC-b,

and SC-EC). Red dots represent the possible neighborhood a cell can explore when modeled using a Markov chain.

(C) Propagator (Pij ) of the Markov chain as a function of the differentiation potential ( F
!
).Pij represents the probability of transitioning to the state jwhen being at

the state i.

(D–F) Fate probabilities for the SC-a (D), SC-EC (E), and SC-b (F) fates.

(G and G0) UMAP plots with normalized gene expression of known lineage-specific markers; NKX6-1 for SC-b and SC-EC (G) and ISL1 for SC-a and SC-b (G0)
cells.

(H and H0) Average gene expression of NKX6-1 and ISL1 over SC-a, SC-b, and SC-EC differentiation trajectories. Shaded areas represent standard errors of the

mean.

(I and I0 ) UMAP plot with TF activity distribution for NKX6-1 (I) and ISL1 (I0 ).
(J and J0) Average TF activity of NKX6-1 and ISL1 over SC-a, SC-b, and SC-EC differentiation trajectories. Shaded areas represent standard errors of the mean.

(K and K0) Dynamic Pearson correlation between mRNA expression and TF activity over SC-a, SC-b, and SC-EC for NKX6-1 (K) and ISL1 (K0).
See also Figure S6.
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results further validate the FateCompass integrative approach to

infer regulators in challenging experimental setups.

Differential motif activity analysis predicts driving
factors during in vitro b cell differentiation protocols
To check FateCompass performance in identifying lineage-spe-

cific regulators on the in vitro b cell differentiation dataset, we

applied the differential TF activity analysis. We identified 126

differentially active TFs (Table S2), 14 for the three endocrine lin-
8 Cell Reports Methods 3, 100512, July 24, 2023
eages (Figure 4A), 14 for both SC-b and SC-a (Figure 4B), 15 for

SC-b and SC-EC (Figure 4C), 10 for SC-a and SC-EC, 20 were

SC-b specific (Figure 4D), 25 were SC-EC specific (Figure 4E),

and 28 were SC-a specific (Figure 4F). Interestingly, the TF

CDX2 was differentially active for SC-b, SC-EC, and SC-a; this

finding was puzzling because CDX2 is well known for its role in

intestinal specification of the gut endoderm during develop-

ment.50 Different organs, such as the stomach, pancreas, liver,

and intestine, derive from the gut endoderm during mammalian
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Figure 4. Differential TF activity analysis during in vitro pancreatic b cell differentiation

Heatmaps showing the average TF activity over differentiation trajectories and dynamic Pearson correlation. Not all TF names are shown (see Table S2 for full list).

Right: activity distribution on the UMAP embedding of selected examples and respective Z score. TFs are sorted according to which was active first over the

respective trajectory.

(A) TFs predicted as drivers of the three lineages: SC-b, SC-EC, and SC-a.

(B) TFs predicted as drivers of both SC-b and SC-a fates.

(C) TFs predicted as drivers of both SC-b and SC-EC fates.

(D) TFs predicted as SC-b specific.

(E) TFs predicted as SC-EC specific.

(F) TFs predicted as SC-a specific.

See also Figures S7 and S8.
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development; particularly, the repression of CDX2 by the posi-

tive cross-regulatory loop between PDX1 and SOX9 promotes

the expression of pancreas-specific factors.51 Thus, our predic-

tions suggest that, during in vitro differentiation, the early endo-

dermal progenitors might still be plastic and have the potential to

activate other fates that will be repressed on pancreatic commit-

ment; Ramond et al.52 also found a distinct population charac-

terized by CDX2 when comparing pancreatic cells generated

in vitro with in vivo fetal cells. Of note, CDX2 activity is high at

the beginning of the three endocrine fates trajectories, then it

decreased in SC-b and SC-a cells while remaining high in SC-

EC cells, which resemble intestinal EC cells (Figure 4A). For its

part, MAFB was also identified for the three endocrine fates.

However, its activity was higher through SC-b and SC-a trajec-

tories (Figure 4A); this predicted behavior agrees with the known

role of MAFB during islet a and b cell development.53

FateCompass predicted some factors to be specific for two

lineages simultaneously. As expected, ISL1 and NEUROD1

were classified as SC-b and SC-a specific (Figure 4B).35,48,49
Contrary to what we observed in the mouse in vivo, where

NEUROD1 and NKX2-2 had a similar activity profile, in this

case, during human in vitro b cell differentiation, the activity of

NKX2-2 was restricted to NEUROG3 endocrine progenitors

and SC-EC cells (Figure S7). This observation points to differ-

ences in the regulatory programs of endocrine cell differentiation

in mice versus humans. PAX6 was also identified as SC-b and

SC-a specific (Figure 4B). Previous chromatin analysis and short

hairpin RNA (shRNA)-mediated gene suppression experiments

showed that PAX6 has a key role in the identity and function of

b cells by activating specific markers and repressing alternative

islet genes. Interestingly, using RNA-seq and luciferase assay,

the authors found that PAX6 represses NKX2-2.54 We observed

mutually exclusive behavior for PAX6 and NKX2-2 activities (Fig-

ure S7), which supports antagonistic roles for PAX6 and NKX2-2.

Regarding the factors classified as SC-b and SC-EC specific

(Figure 4C), we found NKX6-1, supporting our previous observa-

tion of the possible activator role of NKX6-1 for both the pancre-

atic b-like cells and SC-EC cells. Along the same line, a recent
Cell Reports Methods 3, 100512, July 24, 2023 9
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Figure 5. Cross-species comparison of the b-specific factors

(A) Venn diagram showing the number and overlap of b-specific TFs predicted by FateCompass.

(B and B0) Heatmaps showing the average TF activity over b trajectories of the 10 overlapping factors in the mouse in vivo system (B) and in the human in vitro

system (B0).
(C) Heatmaps showing the average TF activity over b trajectories of the 50 mouse in vivo-specific factors; TFs are sorted according to which was active first.

(D) Heatmaps showing the average TF activity over b trajectories of the 53 human in vitro-specific factors, TFs are sorted according towhichwas active first. Color

code for the name of the TFs in the heatmaps: green for the b specific; blue for the b and a specific; pink for the b and EC specific; and black for the b, a, and EC

specific.

See also Figure S9.
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study found an enrichment of the NKX6-1 motif on EC-like cells

using single-cell ATAC-seq.55 Notably, we identified PHOX2B,

which belongs to the same motif family as LMX1A (Figure S8);

LMX1A has a known role as a regulator of the EC fate in the adult

small intestine downstream of NKX2-2.56 Thus, our findings sug-

gest that promoters with the binding site for PHOX2B/LMX1A

are, on average, highly expressed on the SC-b and SC-EC tra-

jectories. Whether the differentiation of SC-EC cells has similar

regulatory mechanisms to those in the murine small intestine re-

mains largely elusive.

To learnmore about SC-b, SC-a, and SC-EC development, we

focused on FateCompass predictions for each lineage. MAFA, a

hallmark of b cells,57 was among the SC-b-specific factors (Fig-

ure 4D). GLIS3, which we previously found as a direct target of

NEUROG3 in pancreatic endocrine progenitor (PEP) cells,38

was classified as SC-EC (Figure 4E). Notably, it has been re-

ported both as a b cell marker in the pancreas39 and as an EC

marker in the adult small intestine.58 Thus, our data might imply

a tissue- and cell-dependent role for GLIS3. ARX is the first TF to

become highly active during SC-a trajectories, corroborating its

function during glucagon-producing cell development in mice.31

IRX2 was highly active later on during SC-a specification (Fig-

ure 4F); importantly, Gage et al.59 found it was downregulated

in human pluripotent stem cell (hPSC)-derived human islet cells

lacking ARX,59 and Schreiber et al.38 found it as a direct target of

NEUROG3. Hence our predictions and previous evidence posi-

tion IRX2 as a potential a-specific novel TF acting downstream
10 Cell Reports Methods 3, 100512, July 24, 2023
of NEUROG3. Taken together, by integrating dynamics and TF

activity inference, FateCompass systematically predicts known

and novel potential regulators during a complex differentiation

system, highlighting the possible use of the pipeline in the

improvement of differentiation protocols.

Comparison between in vivo and in vitro b cell-specific
regulators
The design of stepwise directed differentiation protocols to pro-

duce islet-like cells has relied heavily on mouse pancreas devel-

opmental biology knowledge. We compared the differentially

active TFs involved in b cell specification inmouse in vivo and hu-

man in vitro. Interestingly, we found only around 8% of the differ-

entially active TFs at the intersection (Figure 5A). We reasoned

that having few overlapping factors could be because of signifi-

cant differences at the expression level that translate in different

TFs driving such an expression pattern. We performed hierarchi-

cal clustering among both populations to test this. We found that

mouse b cells are more similar to the rest of murine hormone-

producing cells (a, ε, and d), with a Pearson correlation higher

than 0.7 (Figure S9). Although human-derived SC-b cells clus-

tered with most of the endocrine-committed murine cells, their

relationship with mouse b cells was not that high, Pearson corre-

lation of 0.6 (Figure S9).

Next, we focused on the common TFs to see whether there

were relative time-specific profiles. To that end, we sorted the

TFs according to which was active first for each system
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independently (Figures 5B and 5B0). Estrogen-related receptor g

(Essrg) had a different dynamic profile despite being b specific in

both systems. Although it was constantly highly active in the

mouse in vivo and appeared third on the dynamic ranking, it

had a slowly increasing profile in the human in vitro and showed

next to last. This result was striking because Esrrg is a hallmark

of adult and not developing b cells, with a known function for

metabolic maturation.60 Then, our prediction might indicate

that Esrrg has a stage-dependent role that remains to be

explored in the mouse embryo. Notably, Neurod1 was b and a

specific, appearing at later stages in both datasets (Figures 5B

and 5B0), indicating a similar role in both systems. Similarly,

Nkx6-1 was a common factor that became active progressively

during the b-differentiation trajectories. Of note, NKX6-1 was

also involved in the EC cell-subtype specification in the human

in vitro dataset, which raises flags about its organism-dependent

role and the different programs it is activating.

To unravel possible time-specific regulatory interactions, we

plotted the dynamic profiles of the species-specific TFs

(Figures 5C and 5D). Regarding the mouse-specific factors (Fig-

ure 5C), Sox9 was active early on, supporting its role in inducing

Ngn3 in the progenitor cord.61 In addition, we found Meis2 with

an increasing profile toward the end of the b trajectories; previ-

ous studies reported it to be enriched in the second wave of mu-

rine fetal a cells,62 but its specific role in b cell differentiation re-

mains unknown.We observed two dynamic waves regarding the

human-specific factors (Figure 5D). The first includes factors

active early on during the SC-b trajectories with fetal-like func-

tions, such as SOX4, PTF1A, and CDX2; the second with factors

active later on during b cell differentiation resembling maturation

and maintenance roles, such as MAFA and PAX6. This suggests

that the human in vitro regulatory programs differentiate b-like

cells activating adult-like factors to produce insulin-responsive

cells. Interestingly, FateCompass identified GATA4 as human

specific; this factor represents a well-known human-mouse dif-

ference. Indeed, its expression is delayed during human devel-

opment, appearing simultaneously as PDX1.63 Altogether, these

comparisons showed that significant differences in gene expres-

sion profiles lead to inferring different lineage-specific TFs.

FateCompass guides hypothesis generation to
understand SC-EC cell-fate determination during
in vitro b cell differentiation protocols
FateCompass identified NKX6-1 as a regulator of the SC-EC fate

during human in vitro b cell differentiation, which suggests this TF

activates different programs in an organism-dependent manner.

Thus, we looked at the targets of the NKX6-1 motif in the mouse

and the human (Figure 6A). Remarkably, CDX2, a small intestinal

epithelial marker,64 and NKX2-2, a well-documented factor for

having a role in developing endocrine cells in the small intestine

and the pancreas,56,65–67 are human-specific targets. Hence, we

hypothesized that CDX2 and NKX2-2 drive the specification of

the SC-EC cells downstream of NKX6-1 during human in vitro

b cell differentiation (Figure 6B).

To test this hypothesis (Figure 6B), we lineage-traced

NEUROG3-NKX6-1-positive cells at the PEP stage and exam-

ined the heterogeneity of this population. First, we generated a

human induced pluripotent stem cell (hiPSC) line where
NEUROG3 is fused to a cleavable mCherry reporter and

NKX6-1 to a GFP reporter (NKX6.1-GFP/NEUROG3-HA-

mCherry) (Figure 6C). Next, we differentiated the NKX6.1-GFP/

NEUROG3-HA-mCherry hiPSCs toward the islet lineage until

the PEP stage at day 13, FACS-sorted the differentiated cells,

and sequenced the different fluorescent populations using

SortSeq68 (Figures 6C, S10A, and S10B). The sequenced cells

clustered according to the reporter for which they were sorted

(Figure S10C). Negative cells expressed gut endoderm markers

such as GATA4 and RFX6, GFP+ cells were more pancreatic

epithelial progenitors expressing SOX9 and PTF1A, and

mCherry+ cells were endocrine committed cells expressing

CHGA, GCG, INS, etc. We focused on the double-positive pop-

ulation, which clearly expressed markers of both SC-b cells and

SC-EC cells (Figure S10D). Indeed, after clustering the double-

positive population, we identified two groups, SC-b and SC-EC

precursors (Figures 6D, S10D, and S10E), confirming that both

cell types differentiate from similar progenitor cells. Furthermore,

we computed TF activities to see the potential regulators of each

fate. We found NKX6-1 activity in both SC-b precursors and SC-

EC precursors; NKX2-2 followed a similar pattern, whereas

CDX2 activity was higher only in SC-EC precursors (Figure 6E).

SC-b-known drivers, such as PDX1, PAX6, and NEUROD1,

had high activity on the SC-b precursors. Likewise, the well-

described EC markers LMX1A and FEV were highly active in

the SC-EC precursors; interestingly, GLIS3, a factor that

FateCompass predicted to be a driver of the SC-EC fate, also

had high activity on the SC-EC precursor cells (Figure 6E).

Taken together, by exploring the behavior of common TFs and

digging further into the transcriptional interactions of NKX6-1, we

opened the question of whether the SC-EC differentiation is

regulated by the TFs NKX2-2 and CDX2 acting downstream of

NKX6-1. We tested this hypothesis by lineage-tracing

NEUROG3/NKX6-1-positive cells and found a population of pre-

cursors with clear SC-b and SC-EC characteristics. Interestingly,

CDX2 activity was high exclusively on the SC-EC-precursors,

indicating that promoters with a binding site for CDX2 were, on

average, highly expressed in this population. This type of hy-

pothesis merits further investigation to identify key targets to

improve b cell differentiation protocols.

DISCUSSION

Here, we have introduced FateCompass, an integrative work-

flow that robustly estimates time- and lineage-specific TFs.

FateCompass pipeline integrates a flexible framework to infer

gene expression dynamic profiles with a linear model of gene

regulation based on interactions between TFs and promoters

to predict regulators implicated in fate choice during develop-

ment in different contexts (in vivo and in vitro), across

sequencing platforms (10X and InDrops) and across organisms

(mouse and human). We designed an innovative differential TF

activity analysis that considers the significance of the TF to

explain the variability of the linear model of gene regulation,

the change of the regulatory activity throughout the cell-fate

decision process, and the dynamical correlation of the TF activ-

ity with the TF mRNA level. We tested FateCompass with a

ground-truth system generated using the simulation engine
Cell Reports Methods 3, 100512, July 24, 2023 11
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Figure 6. FateCompass guides hypothesis generation to understand SC-EC cell-fate determination during in vitro b cell differentiation
protocols

(A) Nkx6-1 common and diverging targets for the mouse and human motif.

(B) Diagram of the hypothesis generated using FateCompass predictions.

(C) Scheme of the experimental design to test the generated hypothesis. NKX6-1-GFP/NEUROG3-HA-mCherry cell line to lineage-trace the NEUROG3+ and

NKX6-1+ population. Cell differentiation, sorting, and sequencing strategy.

(D) UMAP plot of 150 cells from the double-positive population.

(E) UMAP plot with TF activity profile of lineage-specific regulators.

See also Figure S10.

Article
ll

OPEN ACCESS
Dyngen28 and validated its capabilities. Applied to pancreatic

islet cell-subtype specification, we predicted time- and fate-

specific known and novel TFs; the former serves as ground
12 Cell Reports Methods 3, 100512, July 24, 2023
truth, whereas the latter represents an advance in the current

understanding of the transcriptional interactions underlying

endocrine cell differentiation.
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In the inference of differentiation trajectories, we assumed, like

other studies, that the process of a cell changing states along a

trajectory until it reaches a final fate can be understood as a par-

ticle diffusing on a volume;8,69 but, unlike them, we infused the di-

rection of the differentiation as a drift to bias the transition prob-

abilities. When RNA velocity profiles are robust, FateCompass

uses them to direct the edges of the Markov chain. On this line,

similar existing methods29 did not recover glucagon-producing

a cells as a terminal state. During development, when the starting

cell and the final fates are clear, and the RNA velocity profiles are

inconclusive, FateCompass infers differentiation trajectories

beyond RNA velocity, biasing the transition probabilities using

the gradient of differentiation potential from the starting cells to-

ward the final states. We validated this approach using a dataset

from an in vitro differentiation toward b-like cells, where we accu-

rately recovered that b-like cells differentiate fromNEUROG3-late

progenitors, whereas a-like cells start to differentiate from

NEUROG3-early progenitors.20,46,47

FateCompass uses TFs as the leading players in the gene

regulation model; they are well known for their direct role in

gene-specific transcriptional regulation; hence, they are

commonly used as readouts of pathway activities.4 Other ap-

proaches attempting TF activity inference from transcriptomic

data, both bulk and single cell, do not consider their dynamic na-

ture.2,15,16,70 Some studies have based their predictions merely

on correlations between mRNA level of the TF and expressed

genes.16,70 Other more advanced studies rely on known regu-

lons and inferred TF activities using the correlation of the

mRNA level of the TF and the group of genes that it can poten-

tially regulate, based on the presence of binding sites on a given

regulatory region.2,15 In contrast with the previously cited

methods, ISMARA, initially developed for bulk RNA-seq data,

does not rely on correlations; it modeled the expression levels

as a linear combination of TF binding-site predictions and un-

known TF activities.14 Here, we extended the use of ISMARA

to single-cell transcriptomics. The original ISMARA model pro-

posed a symmetric Gaussian to avoid overfitting; however, in

that way, all the parameters are regularized equally, which might

not be suitable on single-cell data, where different regions of the

manifold represent, usually, different phenotypes associated

with changing TF activities. FateCompass addresses the multi-

collinearity problem in linear regression using a newly developed

regularization approach.We defined a data-diffusion-based reg-

ularization, where we enforced the smoothness and stability of

the inferred activities across cells. This approach has been

widely used for imputation methods.27

In the embryonic mouse pancreas (in vivo) dataset,

FateCompass recovered well-documented regulatory interac-

tions, such as the antagonistic role of Arx and Nkx6-134,35 and

the cell-type-dependent interaction between Neurod1 and

Nkx2-2.35 We also identified putative driver factors with inter-

esting known roles in b cell function71 and a circadian pattern

in a cells,44 but whether they are also involved in endocrine cell

differentiation remains to be tested. A recently published study

aimed to identify lineage-specific drivers during pancreatic

endocrine differentiation, where they focused on the differential

gene expression of TFs, and also identified some of the known

regulators.72 In contrast, we steered on regulation principles by
considering interactions between TFs and promoters, which

provide a more accurate picture of gene-specific regulation.

We anticipate applying our framework to guide experiment

design to test the function of the identified lineage-specific fac-

tors. In the stem-cell-derived human pancreatic islet (in vitro) da-

taset, we identified TFs acting early on during the differentiation

trajectories that confirmed the plasticity of the less mature cells

in differentiation protocols.52,64 Moreover, we retrieved cell-

type-specific drivers for the pancreatic endocrine cells and the

intestinal-like EC population. Importantly, our differential TF ac-

tivity analysis pinpointed NKX6-1 as a potential regulator of the

SC-EC cells; we generated the hypothesis that NKX2-2 and

CDX2 drive the SC-EC fate downstream of NKX6-1, leveraging

FateCompass predictions. Further experimental validation sup-

ported the role of CDX2 as a potential regulator of SC-EC cells;

this observation agrees with recent studies on stem-cell-derived

pancreatic islets.73 Comparing the in vivo and in vitro predictions

for the b cell trajectories, we found known TFs at the intersection,

such as NEUROD1 and NKX6-1;34,35 also, we were able to reca-

pitulate mouse- and human-specific differences.63 In summary,

we foresee the use of FateCompass to generate hypotheses tar-

geted to provide means to optimize differentiation protocols.

The fast evolution of high-throughput methods and generation

of large-scale datasets impose the need for robust computa-

tional approaches not only to characterize genome-wide pat-

terns but also to extract information and mechanistically model

biological phenomena that, in the end, will provide predictions

aimed at increasing the current state of the knowledge. As with

any inference method, aspiring to reconstruct the exact interac-

tions underlying a complex biological process, such as endo-

crine cell formation, is a futile task. In this study, we rely on

computationally predicted regulatory sites, summarized in a

binding-site matrix; this represents a bias on the structure of

the gene-regulatory network. Moreover, we are considering

only interactions between TFs and promoters, and it is well

known that some essential regulatory interactions occur at distal

regulatory sites.74 We have designed our pipeline such that the

limitations mentioned above could be addressed by extending

the binding-site matrix; indeed, with the advent of single-cell

chromatin accessibility assays such as single-cell ATAC-seq,

FateCompass could be extended to consider binding sites

only in open regions and to perform de novo binding-site predic-

tions at proximal and distal cis-regulatory regions. However,

including this information in the binding-site matrix, as well as

incorporating appropriate regularization terms to solve the linear

model, may not be a straightforward task. As a framework for

identifying lineage-specific drivers, we forecast FateCompass

to be used as a tool to explore scRNA-seq data, guide hypothe-

sis generation, and direct experiment design. Further experi-

mental validation of the generated hypothesis will increase the

current understanding of a given process and provide means

to improve existing translational experiments aimed at cell

therapy.

Limitations of the study
FateCompass builds differentiation trajectories in a nearest-

neighbor graph computed in a reduced gene expression space.

Except for PCA, commonly used dimensionality reduction
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methods such as UMAP should be treated carefully, given the

lack of biological interpretability. Moreover, when using differen-

tiation potential as a drift for guiding the transition probabilities,

FateCompass depends on the input of prior biological knowl-

edge, which is difficult to provide in some cases, such as cancer

studies. FateCompass estimates TF activities considering bind-

ing sites in the promoter regions of the target genes, an exten-

sion considering long-range interactions will provide a more ac-

curate picture of the regulatory landscape. To that end, we

designed FateCompass so that the binding-site matrix could

be updated. Finally, the pipeline depends on input parameters

that must be hand tuned. However, we provide detailed tutorials

to guide the user on the parameter setup.
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Experimental models: Cell lines

Human: NKX6-1-GFP/NEUROG3-HA-mCherry

clone#10 hiPS cells

This paper N/A

Human: NKX6-1-GFP (1a-21) hiPS cells Provided by C. Honoré (NovoNordisk)
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en/stable/index.html

scVelo v0.2.4 Bergen et al., 202010 https://scvelo.readthedocs.io/en/stable/

dropEst Petukhov et al., 201877 https://github.com/kharchenkolab/dropEst
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fatecompass
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Nacho

Molina (molinan@igbmc.fr).

Materials availability
The NKX6-1-GFP/NEUROG3-HA-mCherry iPSC line is available upon request to the Gradwohl lab.
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Data and code availability
d Single cell RNA sequencing data of this study have been deposited in the Gene Expression Omnibus (GEO) under accession

code GSE202092.

d Scripts to reproduce our analysis and run the FateCompass pipeline are available at https://github.com/sarajimenez/

fatecompass.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The NKX6-1-GFP hiPSC female line (1a-21) in which the NKX6-1 coding region is fused to a T2A-eGFP reporter is described in Gupta

et al.75 and was obtained through the IMI/EU sponsored StemBANCC consortium via Christian Honoré (Novo Nordisk A/S). This line

was gene edited to knock in a 3xHA-P2A-3xNLS-mCherry cassette in fusion with NEUROG3 coding sequence. The heterozygous

NKX6-1-GFP/NEUROG3-HA-mCherry (clone 10) was used in the present study. The heterozygocity of the NEUROG3 locuswas con-

troled by ddPCR (Institut Clinique de la Souris, Illkirch) and sequencing. All hiPSCs were maintained in mTeSR1medium (STEMCELL

Technologies) and cultured on hESC-qualified Matrigel (Corning) coated plates in a humidified incubator at 5% CO2 at 37
�C, with

everyday medium change. Cells were routinely passaged at 80% confluency either by manual colony scrapping, or as single cells

with TryPLE Select (Thermo Fisher Scientific); in that latter case cells were reseeded in mTeSR1 supplemented with 10 mM

Y-27632 (STEMCELL Technologies) for the first 24 h. The hiPSC lines used in this study were negative for mycoplasma tests per-

formed by the IGBMC Cell Culture facility.

METHODS DETAILS

FateCompass pipeline
The FateCompass workflow aims to identify lineage-specific transcription factors (TFs) during a cellular system undergoing differen-

tiation. To mechanistically understand the dynamic transcriptional interactions underlying the cell subtype specification, we

reasoned that inherent asynchrony of the cells, coming from single-cell RNA sequencing (scRNAseq) experiments, provides a tem-

poral resolution of how the transcriptome changes during the differentiation process. In addition, we assumed that cis-regulatory

regions of the expressed genes contain essential information of the TFs that regulate their transcription. Thus, we integrated both

state-of-the-art methods and newly developed algorithms in a coherent and flexible pipeline (https://github.com/sarajimenez/

fatecompass). The main input of FateCompass is a pre-processed data object (adata), with annotations of at least cell types

(‘clusters’) and optionally the RNA velocity field, and a TFs binding sites matrix, where the columns are the TFs or motifs and

the rows are the expressed genes. We suggest performing basic pre-processing using Scanpy and scVelo.10,76 Importantly, the

FateCompass pipeline can be generalized to include epigenetic information coming from chromatin accessibility and interactions

between promoters and enhancers by extending the binding site matrix. The FateCompass pipeline consists of three main steps.

i. Retrieve gene expression dynamics of cell differentiation.

ii. Estimate TF activities along the cell-fate decision process.

iii. Identify lineage-specific regulators.

Cell differentiation dynamics from single-cell RNA sequencing

The first step of FateCompass aims to describe the trajectory a cell follows to arrive at its final state. A single cell, whose phenotype is

represented by a point in the multidimensional space, will move along a specific trajectory as its transcriptome changes. Considering

a regionalized scenario such as the Epigenetic Landscape of Waddington,79 we reasoned that trajectories converge to end-states

that are essentially different from one another; also, that if a cell moving along a specific trajectory is pushed slightly out of its

way, then the canalization of the landscape will compensate, and eventually, the cell will arrive in the stable state it would typically

have done.79 The process of a cell changing states along a trajectory until it reaches a final fate can be understood as a particle

diffusing on a volume, where the diffusing particle is a single cell. To delineate the differentiation trajectories, we considered a biased

diffusion process employing two approaches to model the drift component. The first approach involves a single cell following a

randomwalk under the influence of a vector field, represented by the RNA velocity9 until it becomes trapped in an attractor. The sec-

ond approach entails a single cell following a random walk under the influence of a differentiation potential from progenitor cells,

defined as sources, toward mature cells, defined as sinks. In this case, sources and sinks are determined using prior biological

knowledge.

Nearest neighbor graph representing the phenotypic manifold

To model the differentiation trajectories, we assumed that scRNAseq data is a relevant sample of representative gene expression

states that cells visit during the differentiation process. Furthermore, FateCompass restricts possible state changes to those consis-

tent with a k-nearest neighbor graph based on cell-cell distances on the gene expression space. Due to the high sparsity and noise in

scRNAseq data, finding nearest neighbors directly from raw expression data is likely to accumulate spurious connections and
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obscure the structure of the phenotypic landscape. To build the neighbor graph based on solid data trends and define more reliable

distance metrics, we used dimensionality reduction approaches such as Principal Component Analysis (PCA) or Uniform Manifold

Approximation and Projection (UMAP). PCA is a linear dimensionality reduction algorithm that preservers the global variability of

the data23; hence, it is broadly used for detecting among-sample heterogeneity. On the other hand, UMAP is a non-linear dimension-

ality reduction algorithm that estimates the topology of the high dimensional data and uses this information to build a low-dimensional

representation that better preserves the local structure of the data over the global variability.24

Formally, given a data object with single-cell transcriptomes, the k-nearest neighbor graph is built in the reduced space using the

Euclidean distance on the D first components of the dimensionality reductionmethod of choice (‘pca’ or ‘umap’), where 2< D< K,

and K is the initial number of neighbors used for the basic pre-processing. Then, to build the adjacencymatrix (M) the same number of

neighbors for each cell (n neighbors) are kept. These are the default procedures in FateCompass:

from fatecompass import graph_fatecompass

graph_fatecompass(adata,mode=’velocity’,basis=’umap’,components=10,n_neighbors=10)

Alternatively, the graph could be computed using recent methods such as Sanity,25 which calculate cell-to-cell distances by

removing Poissonian noise from scRNAseq data using a rigorous Bayesian approach. When the graph is computed using an alter-

native approach, the data object should be annotated with the cell-to-cell connectivities.

Modeling transition probabilities using a Markov process

Next, tomodel transition probabilities we reasoned that single-cell transcriptomics provides a static picture of a time-evolving system

whose possible states are represented by points in a manifold, i.e., XðtÞh state point of the system at time t. The value of X at some

initial time t0 is fixed, Xðt0Þ = x0, and for successive instants t1, t2, ., tn; where t1 < t2 <.< tn; there are n corresponding random

states Xðt1Þ, Xðt2Þ, ., XðtnÞ. To determine how the cells move from progenitors to mature cells, we assumed that they traverse

themanifold in small steps under the influence of an external drift in the direction of differentiation, e.g., RNA velocity or differentiation

potential from progenitor cells (sources) to mature cells (sinks); in the FateCompass pipeline this is represented by themode param-

eter, which could be either ‘velocity’ or ‘potential’. The transition probabilities can be modeled using a Markov chain to

represent cell fate choices in a probabilistic manner as follows80:

v

vt
pðx; tÞ = v2

vx2
½Dðx; tÞpðx; tÞ� � v

vx
½Fðx; tÞpðx; tÞ� (Equation 1)

where the left-hand-side of the equation represents the changewith respect to time of the probability of being at the state x at the time

t, pðx;tÞ; the first term on the right-hand-side is the flux through the state x due to diffusion, Dðx;tÞ, and the second term on the right-

hand-side is the flux through the state due the external drift, Fðx; tÞ.
To outline the differentiation trajectories, we assumed that the continuous process described in Equation 1 can be repre-

sented in a discrete space where jumps are allowed only between observed states connected by the k-nearest graph intro-

duced above. As a result, gene expression dynamics are described by a discrete Markov process on a network. This simplifi-

cation circumvents the complex problem of inferring the high-dimensional drift field, Fðx; tÞ, with only a few thousand

observations. The jumps between observed states are then characterized by a propagator Pðxj
��xi; FðxiÞÞ, representing the

normalized transition probabilities where the function FðxiÞ is the state-dependent drift. Below, we introduce the form of the

propagator when the drift is derived based on RNA velocity or a differential potential energy (‘velocity’ and ‘potential’

mode, respectively).

RNA velocity as driving force

To obtain the transition probabilities using RNA velocity information, we reasoned that the drift directing the transition probabilities in

Equation 1 is represented by the direction of the RNA velocity vector.9 To implement this idea, we further assumed that the drift is a

time-independent vector field VðxÞ locally constant around a given state x, and that the diffusion coefficient D is homogeneous and

constant over time. Under these assumptions, and for a Dt sufficiently small, the solution of Equation 1 can be approximated by the

following Gaussian propagator:

Pðx; tjx0; t0Þ = 1

ð2pDDtÞ12
exp

 
� ðx � VðxÞDtÞ2

2DDt

!
(Equation 2)

where x is the distance between the current state and the next possible state, x = jxt � x0j. A row normalization is applied to trans-

form the Gaussian distribution into transition probabilities over the network of discrete observed states:

Pij =
1

zið2pDDtÞ12
exp

 
� ð��xj � xi

�� � VðxiÞDtÞ2
2DDt

!
(Equation 3)

with row normalization factors zih
P
j

Pij. The vector filed VðxiÞ are the RNA velocities obtained using scVelo.10 It is important to note

that we used Equation 1 to justify the functional form of the propagator in (3). However, we do not claim that the discretization of the
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stochastic process on a network can be derived and proven from Equation 1. As mentioned before, this simplification circumvents

the characterization of the force field in continuous space and the resolution of the general Fokker-Planck Equation 1.

We fitted the diffusion coefficient,D, andDt heuristically based on the number of neighbors. Shortly, we setDt such that on average

the number of nearest neighbors can be reached, andD such that the average number of connections is twice the number of nearest

neighbors. In this way, the distance traveled until the next state is close to the distance to the nearest neighbors, and the explored

neighborhood is within the velocity gradient. Therefore, we make sure that the progression of stable-states follows the direction of

differentiation.

Potential energy as driving force

When RNA velocity fails, we can alternatively estimate transition probabilities using a differentiation potential energy, provided that

prior biological knowledge is available regarding what are the progenitor and mature cells. We reasoned that the regulatory program

driving the differentiation process could be phenomenologically modeled as the combination of a repulsive force, which causes a cell

to move away from the progenitor state, plus an attractive force, which draws the cell toward its final fate. We further assumed that

the strength of these forces should decaywith the distance separating the cell from the progenitor and final states, respectively. Then,

by defining the set of initial progenitor states (sources) and the final fate states (sinks), we characterized the total force exerted at each

observable state i by the following potential energy (W):

Wi = �
X

k˛ sources

Q

½distðxi; xkÞ+1�n
+
X

k˛ sinks

Q

½distðxi; xkÞ+1�n (Equation 4)

where the coefficient Q is the strength of the attraction or repulsion; distðxi; xkÞ is the shortest network distance between the state i

and k, and n is an exponent. Finally, we used a heuristic criterion to set the values of the parameters Q and n based on the distribution

profile of the energy landscape. We reasoned that the potential energy gradient should be high enough for the sources to be pheno-

typically distinct from the sinks; hence, using a value of 100 for jQj and 0.5 for n guaranteed such a gradient. Having the potential

energy for each state, we defined the transition kernel (propagator) as81:

Pij = qðxj
��xiÞAðxi

��xjÞ+ IGðxjÞrðxiÞ (Equation 5)

where the left-hand-side of the equation,Pij, is the transition probability from xi to xj, the first term on the right-hand-side represents

the probability of jumping from state xi to state xj given by the multiplication of the proposal distribution q and the acceptance dis-

tribution A, and the second term on the right-hand-side is the probability of not jumping represented by the rejection distribution r.

Having a symmetric proposal distribution, qðxj
��xiÞ = qðxi

��xjÞ = 1
=n neighbors, the acceptance probability is

Aðxi
��xjÞ = min

�
1;
pðxjÞqðxiÞ
pðxiÞqðxjÞ

�
= min

�
1;
pðxjÞ
pðxiÞ

�
(Equation 6)

where p is the invariant distribution,

pðxiÞ = eWi (Equation 7)

Finally, the rejection distribution reads

rðxiÞ =
X

n neighbors

qðxj
��xiÞð1 � Aðxi

��xjÞÞ (Equation 8)
Prior biological knowledge
The differentiation potential approach to infer transition probabilities relies on prior biological knowledge on the initial and final fates

(sources and sinks, respectively). This information can be provided to FateCompass in three different ways via the ‘mode’

parameter.

i. ‘cell_types’: using the clustering annotation to provide the name of the initial and final cell types,

ii. ‘marker_genes’: via marker genes to specify gene names with a clear distinctive expression profile in the initial and final

fates, or

iii. ‘prior_knowledge_indices’: by annotating the data object with the indices of the cells that correspond to the initial and

final fates.

Stochastic simulations

To describe the time evolution of the previously described Markov processes, we used a numerical approach called Monte Carlo

sampling algorithm. Shortly, the idea of a Monte Carlo simulation is to draw an i.i.d. set of samples fxðiÞgS1 from a target density
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PðxÞ81. To estimate the values of X without knowing the density function PðxÞ, we used sampling methods that essentially mimic the

real-time evolution of the process. The pseudo-code for the simulations is below:
The default procedures in FateCompass depend on the driving force selected for the transition probabilities. When using RNA ve-

locity as drift they are as follows:

from fatecompass import rna_velocity_driven_stochastic_simulations

rna_velocity_driven_stochastic_simulations(adata,root=[],cell_types_key=’clusters’)

on the other hand, when using differentiation potential as drift, FateCompass default procedures are:

from fatecompass import diff_potential_driven_stochastic_simulations

diff_potential_driven_stochastic_simulations(adata,cell_types_key=’clusters’,mode=’cell_type-

s’,initial_fate=[‘cluster_initial_cell_type’],final_fate=[‘cluster_final_cell_type_1’,.])

The final output of the stochastic simulations’ functions is differentiation trajectories stored in the data object as ‘states’ and the

counting of how many trajectories end in a given final fate (or sink) stored in ‘num_trajectories.’

Average profiles over stochastic trajectories

We used the previously generated S samples (stochastic trajectories) with the following empirical point-mass function to approxi-

mate the expected value of the final quantities of interest, mean and standard deviation, for the gene expression profiles (gðXÞ) as
follows,

CgðXÞDS =
1

S

XS
i = 1

gðxiÞ (Equation 9)
and Cg2ðXÞDS =
1

S

XS
i = 1

g2ðxiÞ (Equation 10)

Of note, the estimates (9) and (10) will become exact in the limit S/N. This procedure is effectively implemented in FateCompass:

from fatecompass import avg_profiles_over_trajectories

avg_profiles_over_trajectories(adata,cell_types_key=’clusters’)

Fate probabilities

We defined the fate probabilities based on the information of the stochastic trajectories. Thus, we estimated the fate probabilities by

counting how often a random walk that visits cell i terminated in any of the terminal index sinks.

from fatecompass import fate_probabilities

fate_probabilities(adata,cell_types_key=’clusters’)

Modeling regulatory interactions between transcription factors and cis-regulatory regions

To model the regulatory interactions underlying cell-fate decisions, we considered TFs as the central drivers of transcriptional regu-

lation. TFs are usually designed to transit rapidly between active and inactive molecular states at a rate modulated by a specific
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environmental signal. Each active TF can bind the DNA to regulate the rate at which specific target genes are transcribed.3 This sec-

tion describes the model we used to infer TF activates in single cells from gene expression profiles.

Binding site matrix

The binding site matrix is one of the main inputs of FateCompass; it must be formatted in a way such that the columns are the TFs or

motifs and the rows are the expressed genes; then, each entry represents the binding of a TF in the cis-regulatory region of a given

gene. As default, we provided TF binding sites predictions reported in82 and available in the SwissRegulon Portal as ‘‘motevo pre-

dictions of binding sites’’ (https://swissregulon.unibas.ch/sr/downloads) for mouse (mm10:FANTOM5) and human (hg19) systems.

The authors used a Bayesian framework to estimate the posterior probability that a binding site for a given weight matrix (associated

with a motif) occurs in an interval. We summarized the TF binding sites in a matrix of site-counts by summing the posterior proba-

bilities for each motif in the promoter of each gene. We defined a promoter as the TSS +/� 1kb.

Linear model to estimate TF activities

We hypothesize that the expression level of each gene is proportional to the activity of the TFs that can potentially bind to its pro-

moter. Therefore, as in the original framework,14 we modeled the log-expression level of a gene as the linear combination of motif

activities weighted by their number of the binding sites present in its promoter, that is,

Egc =
X
F

NgfA
�
fc + noise (Equation 11)

where the left-hand-side of the equation, Egc, are the cell- and gene- normalized log-expression values, and the right-hand-side is the

summation over the number of TFs, F, of themultiplication of the TF-normalized site-counts, Ngf, and the cell-normalized TF activities

A�
fc. The noise term is related to multiple sources, namely technical, biological, and error in the model. To estimate the unknown TF

activities A�
fc, we first used minimum norm least-squares solution to linear equations to fit the best estimates of A�

fc from Equation 11.

Next, to control the model’s complexity and avoid overfitting, we applied regularization as explained in the following section.

Regularization using data diffusion

Amodel’s ability to reproduce intricate patterns in data is typically related to its number of parameters and complexity. However, the

higher the complexity of a model, the higher the risk of overfitting, i.e., fitting spurious noise in the data leading to poor generalizing

performance when applied to new observations. Single-cell transcriptomic data present large technical and biological noise intro-

ducing variability in the gene expression profiles across cells that do not reflect true variability in the physiological cellular state.

Not accounted for, this variability propagates to the inferred TF activities leading to non-functional cell-to-cell differences in TF ac-

tivity levels. To control for this, we penalized the model’s complexity by introducing a regularization term that enforces smoothness

and stability for the fitted activities across cells. We embedded the cells in a low-dimensional manifold that faithfully represents the

phenotypic similarities (using a nearest neighbor graph). Next, we imputed a cell’s TF activities as the weighted average of the ac-

tivities across the neighboring cells. This strategy, which is mathematically akin to diffusing heat through the data, has been used to

correct for dropout and other noise sources on transcriptomic data.27 It reads,

AReg
fc = ðM�ÞtA�

fc
(Equation 12)

where AReg
fc are the regularized activities, M� is the adjacency matrix, and A�

fc are the maximum-likelihood estimates of the activities.

Raising M� to the power of t results in a matrix where each entry represents the probability that a random walk of length t starting at

cell i will reach cell j, a process similar to diffusion.27 Importantly, we want a cell’s own estimated activities to have the highest impact

on the imputation of its final regularized activities; therefore, our adjacency matrix M� allows for self-loops, and these are the most

probable steps in the random walk. Thus,

M0 = M+ 10 � Ic
M�ði; jÞ = M0ði; jÞP
c

M0ði; cÞ (Equation 13)

where I is the identity matrix of size C, and c the total number of cells. To find the optimal t, we evaluated the impact of t on the final

imputed data. We used an 80/20 cross-validation scheme, where the set of promoters was divided randomly into two sets, the

training set containing 80% of all promoters and the test set with the remaining 20%. We used the training set to fit the TF activities

and the test set to evaluate the quality of the fit. Then, we choose the value of t that minimizes the mean square error (MSE) between

the observed expression levels and those predicted by the model in the test set.

Differential TF activity analysis

To identify key lineage-specific regulators during the cell-fate decision process, we defined a differential TF activity analysis based on

the following criteria:(i) TFs with high positive Z score, i.e., TFs that significantly varied across cells compared with their estimated

errors. (ii) TFs with high variability across the lineage-specific differentiation trajectory. (iii)TFs with a high dynamic correlation be-

tween their activity and their own mRNA expression within a specific window of time lags. Finally, to identify the lineage-specific

TFs, we performed a filtering using thresholds for each one of the criteria.
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Z score

To estimate the importance of a TF, we reasoned that activities that fluctuate the most across conditions should be the more impor-

tant. Therefore, we used the number of standard-deviations that the activity of TF f is away from its average of zero corrected by the

precision of the estimation (error bar), also known as Z score (zf), as an indicator of the importance of each TF

zf =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C

X
C

�m
A
Reg
fc

dAfc

�2

vuut (Equation 14)

where C is the number of cells, m
AReg
fc

is the mean of the TF activity distribution, and dAfc is the reliability of the fitting of AReg
fc (error-

bar).14 Since we do not know the posterior distribution of the AReg
fc , there is no analytical way to estimate the standard deviations

dAfc. Therefore, we used bootstrapping, as explained below.

Bootstrapping

Important to the concept of bootstrapping is that inference about a population from sample data can be modeled by resampling the

sample data and performing inference about a sample from the resampled data. Then, we built the distribution of the estimate for the

TF activities using random sampling with replacement following the steps below.

i. The activity of a TF f in cell c is a function of the gene expression on that cell and the binding-site matrix; in other words, AReg
fc =

fðEgc;NgfÞ. Similar to the cross-validation scheme, here we sampled taking the promoters/genes as observations.

ii. Resample from Egc and Ngf taking randomly 80% of the observations. Importantly, the bootstrap resample has the same num-

ber of observations as the original data used in the training.

iii. Compute the estimate of AReg
fc .

iv. Repeat (ii) and (iii) a large number of times, B, to get AReg;1
fc , AReg;2

fc , AReg;3
fc , ., AReg;B

fc .

v. Use the estimates in (iv) to build the empirical bootstrap distribution of the estimate for the TF activities.

vi. Infer m
AReg
fc

and dAfc from the empirical bootstrap distribution of the estimate.

To set the threshold for the Z score, we explored the density distribution and selected the most common value. We have made this

flexible such that a more or less stringent cutoff can be chosen.

from fatecompass import ksdensity_fatecompass

ksdensity_fatecompass(adata,criterion=[‘z_score’],cell_types_key=’clusters’,trajectory=

[‘name_final_fate’])

Variability over time

We seek TFs with a high rate of change in the activity with respect to time, which is, clearly, the definition of the first-order derivative.

However, since we do not know the exact distribution of the TF activities, there is no easy way to get the analytical solution. To get a

proxy of the rate of change, we estimate the standard deviation over time of the mean activity profile along the simulated trajectories

(computed via Equation 9), as follows:

Stdf =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n � 1

Xn
i = 1

��cAf;i � mf

��2s
(Equation 15)

where n is the number of iterations, cAf is the average activity of TF f over the simulated trajectories, and mf is the mean ofcAf

mf =
1

n

Xn
i = 1

cAf;i (Equation 16)

To set the threshold for the variability over time, Stdf, we explored the density distribution and selected the most common value.

We have made this flexible such that a more or less stringent cutoff can be chosen.

from fatecompass import ksdensity_fatecompass

ksdensity_fatecompass(adata,criterion=[‘std_tf_time’],cell_types_key=’clusters’,trajectory=

[‘name_final_fate’])

Dynamic correlation

Next, we used cross-correlation to identify dynamical correlations between average TF activities and their averagemRNA expression

along the differentiation trajectories. Cross-correlation is defined as a similarity measure between two series as a function of the

displacement of one relative to the other.

RÊfÂf
ðt1; t2ÞbE

� bEf t1 ;
cAf t2

	
(Equation 17)

the left-hand-side reads as the cross-correlation between times t1 and t2 for the average mRNA expression over the simulated tra-

jectories of f, bEf , andcAf . Next, we converted cross-correlation to Pearson correlation to facilitate the comparisons (1: maximum cor-

relation, 0: no correlation, and �1: maximum anti-correlation).
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To set the threshold for the dynamic correlation, we assumed that by having Pearson correlations, any value higher than 0 implies

correlation. We reasoned that a value of 0.5 or higher could be considered a default threshold. We havemade this flexible such that a

more or less stringent cutoff can be chosen.

The thresholds of the three criteria can be summarized using a dictionary data structure:

thresholds = {’variability’: integer, ’z_score’: integer, ’correlation’: integer}

Finally, to identify the lineage-specific TFs, we performed a filtering using thresholds for each one of the criteria and formatted the

results in a data frame data structure:

from fatecompass import differential_tf_activity, get_df_differential_tf_activity

differential_tf_activity(adata,cell_types_key=’clusters’)

df = get_df_differential_tf_activity(adata,fates=[‘final_fate’],thresholds=thresholds)

Simulated data from dyngen
We used synthetic scRNAseq data to test FateCompass performance. We obtained the in-silico data from the simulation engine dyn-

gen (https://github.com/dynverse/dyngen), which allowed the generation of a dataset with underlying ground truth for developmental

trajectories, cell-specific regulatory network and RNA velocity profiles.28We used dyngen v1.0.5, which depends on tidyverse v1.3.2,

both implemented in R (v4.2.1), to generate a dataset with 1000 cells, 1035 genes from which 130 were TFs, we used most of the

default parameters. Next, we saved the annotated data object using anndata v0.7.5.5 to continue the analysis in python.

Data pre-processing and velocity computation

The data object was already filtered, normalized, and embedded in a low dimensional space. We used scVelo10 in the dynamical

mode with most of the default parameters to compute the RNA velocity profile.

FateCompass specific computations

For downstream analysis of the FateCompass pipeline, we embedded the in-silico gene expression data in the PCA space. Next, we

computed a neighborhood graph in the reduced gene expression space with k = 10. This setting was the graph structure for the Mar-

kov chain operations of the FateCompass pipeline. The edges of the Markov chain were directed using the differentiation potential

gradient, where we used as prior biological knowledge the marker genes [‘Target62’] and [‘C5-TF1’,’D6-TF1’]which were

distinctively expressed in the initial and final populations, respectively. We outlined stochastic trajectories using Monte Carlo Sam-

pling algorithm. We retrieved the binding site matrix from the underlying ground truth interactions of the simulated data, and we

formatted it as a data frame where the columns were TFs and rows were genes. Last, the differential TF activity analysis thresholds

were: minimum Z score of 0.2, minimum standard deviation over trajectories of 0.006, and minimum Pearson correlation of 0.5.

Mouse in-vivo dataset from endocrinogenesis
We used scRNAseq data from the developing pancreas during the secondary transition, i.e., from embryonic day 12.5–15.5, pub-

lished by Bastidas-Ponce et al.,19 and available in the Gene Expression Omnibus under accession number GSE132188. In particular,

we used data from the last experimental time point, embryonic day 15.5 (E15.5). We retrieved an annotated object directly from

https://scvelo.org with the expression matrix and the annotations for unspliced/spliced reads using the following command: scve-

lo.datasets.pancreatic_endocrinogenesis(). Our final subset for Figure 2 contained 3696 cells. We kept the original cluster annotation

reported by Bastidas-Ponce et al.,.19

Data pre-processing and velocity computation

We used SCANPY76 and scVelo10 with most of the default parameters. We filtered out genes with less than 20 counts in both spliced

and unspliced layers. Next, we normalized by total counts per cell, log-transformed the data, and kept the top 2000 highly variable

genes. We embedded the data in the PCA space and used the top 30 principal components to compute a k-nearest neighbor graph

with k = 30. For visualization, we usedUMAP embedding with two dimensions with default parameters. To compute RNA velocity, we

used scVelo’s dynamic model of splicing kinetics.

FateCompass specific computations

For downstream analysis of the FateCompass pipeline, we embedded the mouse in-vivo data of gene expression and RNA velocity

on ten dimensions in the UMAP space. Next, we computed a neighborhood graph in the reduced gene expression space with k = 10.

This setting was the graph structure for the Markov chain operations of the FateCompass pipeline. The edges of the Markov chain

were directed using the RNA velocity information and Equation 3. We outlined stochastic trajectories using a Gibbs Sampling algo-

rithm. Last, the differential TF activity analysis thresholdswere: minimumZ score of 1.5,minimum standard deviation over trajectories

of 0.003, and minimum Pearson correlation of 0.7.

Human in-vitro dataset from differentiation toward b-like cells
We used a scRNAseq time-series dataset from a differentiation protocol from human embryonic stem cells toward pancreatic b-like

cells profiled using inDrops.20 The differentiation protocol consists of six stages, with pancreatic endocrine cells appearing

throughout stage five. Veres et al.20 performed sequencing at the end of each stage and daily sampling across stage five. The

data is available in the Gene Expression Omnibus under accession number GSE114412. We restricted the data to the endocrine line-

age, from NKX6-1+ progenitors to hormone-producing cells. Our final subset for Figure 3 contained 25299 cells. We kept the original

cluster annotations.
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Data pre-processing and velocity computation

Sequencing reads were preprocessed according to the dropEst pipeline77 (https://github.com/kharchenkolab/dropEst). A reference

index was built from the Ensembl GRCh38 human genome assembly and the GRCh38.88 transcriptome annotation to run the pipe-

line. Shortly, we first extracted the cell barcodes and UMIs from the library using the dropTag command. Next, we used STAR

2.7.9a78 to map the reads to the human transcriptome. Finally, we used the dropEst command with the option -V, which allows

the output of three separate matrices containing only UMIs of a specific type: intronic, exonic, or exon/intron spanning. These

matrices were used to build an annotated h5ad object with the unspliced layer equal to the sum of intronic and spanning UMIs

and the spliced layer corresponding to the exonic UMIs. We used SCANPY and scVelo with mostly default parameters. We filtered

genes to be expressed in at least three cells. Next, we normalized by total counts per cell, log-transformed the data, and kept the top

2000 highly variable genes.We embedded the data in the PCA space and used the top 50 principal components to compute a k-near-

est neighbor graph with k = 50. For visualization, we used UMAP embedding with two dimensions with default parameters. To

compute RNA velocity, we used scVelo’s dynamic model of splicing kinetics.

FateCompass specific computations

For downstream analysis of the FateCompass pipeline, we embedded the human in-vitro data of gene expression and RNA velocity

on ten dimensions in the UMAP space. Next, we computed a neighborhood graph in the reduced gene expression space with k = 50.

This setting was the graph structure for the Markov chain operations of the FateCompass pipeline. The edges of the Markov chain

were directed using the potential energy landscape described in Equation 5. We outlined stochastic trajectories using a Monte Carlo

Sampling algorithm. Last, the differential TF activity analysis thresholds were: minimum Z score of 1.5, minimum standard deviation

over trajectories of 0.006, and minimum Pearson correlation of 0.7.

Lineage tracing of NEUROG3+/NKX6-1+ cells
Generation of the NKX6-1-GFP/NEUROG3-HA-mCherry hiPSC line

The NKX6-1-GFP hiPSC line (1a-21)75 was gene edited by CRISPR/Cas9 to knock in a 3xHA-P2A-3xNLS-mCherry cassette in fusion

with NEUROG3 coding sequence, following exactly the strategy detailed in Schreiber et al.38 The NKX6-1-GFP hiPSC line was nu-

cleofected with a pX458-plasmid (Addgene) expressing the sgRNA targeting NEUROG3 14 bp downstream of the STOP codon and

the Cas9 fused to GFP, and the targeting vector pBSII-KS-hNEUROG3-3HA-2A-3NLS-mCherry-pA containing a 50 homology arm of

1112 bp and a 30 homology arm of 807 bp flanking the 3HA-2A-3NLS-mCherry-pA cassette (detailed information on the generation of

plasmids is available upon request). Nucleofection was performed with 8 x 105 NKX6-1-GFP hiPSC cells and 2.5 mg of each plasmid

DNA in nucleofection mix (Human Stem Cell Nucleofector Kit 2, LONZA), using a Nucleofector 2b (AMAXA) according to the manu-

facturer instructions. The day after, cells were harvested with TryPLE Select (Thermo Fischer Scientific), Cas9-GFP+ cells were

sorted and 1000 cells seeded into a Corning Matrigel-coated 35mm dish with mTeSR1 (STEMCELL Technologies), supplemented

with 10 mMY-27632 (STEMCELL Technologies) for the first 24h. Mediumwas replaced everyday with mTeSR1 for 11 days. Individual

clones were picked and characterized by PCR genotyping, sequencing and ddPCR and expanded for banking. The heterozygous

NKX6-1-GFP/NEUROG3-HA-mCherry clone#10 was selected for this study. Sequence of sgRNA oligos and PCR primers used to

amplify and sequence DNA can be found in key resources table.

Differentiation of hiPSC toward pancreatic endocrine progenitors

The heterozygous NKX6-1-GFP/NEUROG3-HA-mCherry clone#10 was differentiated to pancreatic endocrine progenitors (Stage

5 day 3, or day 13) following the protocol detailed in Schreiber et al., based on Petersen et al.38,46 Cells were harvested with

TrypLE Select and seeded at 5.5 x 105 cells/cm2 on 12-well CellBind plates (Corning) coated with Growth Factor Reduced Matrigel

(Corning) diluted 1:30 in DMEM/F12 (Thermo Fischer Scientific), in mTeSR1 (STEMCELL Technologies) supplemented with 10 mM

Y-27632 (STEMCELL Technologies). Differentiation was initiated 24 h after seeding. Cells were rinsed with 1x PBS, then exposed

daily to freshly prepared differentiation medium as described below.

d Base media composition:

Stage 1/2 base medium: MCDB 131 medium (Thermo Fisher Scientific), 1.5 g/L sodium bicarbonate (Thermo Fisher Scientific), 1X

GlutaMAX (Thermo Fisher Scientific), 10 mM D-Glucose (Sigma), 0.5% BSA (Sigma), Penicillin-Streptomycin 0.1% (Thermo Fisher

Scientific).

Stage 3/4 base medium: MCDB 131 medium, 2.5 g/L sodium bicarbonate, 1X GlutaMAX, 10 mM D-Glucose, 2% BSA, Penicillin-

Streptomycin 0.1%, 1:200 ITS-X (Thermo Fisher Scientific).

Stage 5 base medium: MCDB 131 medium, 1.5 g/L sodium bicarbonate, 1X GlutaMAX, 20 mM D-Glucose, 2% BSA, Penicillin-

Streptomycin 0.1%, 1:200 ITS-X (Thermo Fisher Scientific).

d Differentiation media composition:

Stage 1 (definitive endoderm): Stage 1/2 base medium supplemented with 100 ng/mL Activin A (STEMCELL Technologies) and

3 mM CHIR99021 (Axon Medchem) at day 0, 100 ng/mL Activin A and 0.3 mM CHIR99021 at day 1, and 100 ng/mL Activin A at

day 2.
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Stage 2 (primitive gut tube): Stage 1/2 base medium supplemented with 250 mM L-Ascorbic Acid (Sigma) and 50 ng/mL FGF7 (Pe-

protech), at days 3 and 4.

Stage 3 (posterior foregut): Stage 3/4 base medium supplemented with 250 mM L-Ascorbic Acid, 50 ng/mL FGF7, 250 nM SANT-1

(Sigma), 100 nM LDN193189 (Stemgent), 200 nM TBP (Millipore EMD), and 1 mM Retinoic Acid (Sigma), at days 5 and 6.

Stage 4 (pancreatic progenitor): Stage 3/4 base medium supplemented with 250 mM L-Ascorbic Acid, 2 ng/mL FGF7, 250 nM

SANT-1, 200 nM LDN193189, 100 nM TBP, and 100 nM retinoic acid, at days 7, 8 and 9.

Stage 5 (pancreatic endocrine progenitor): Stage 5 base medium supplemented with 10 mM ZnSO4 (Sigma), 250 nM SANT-1,

100 nM LDN193189, 10 mM ALK5i II (ENZO), 50 nM retinoic acid, 1 mM T3 (Sigma), and 10 mg/mL heparine (Sigma) at days 10, 11

and 12.

Flow cytometry analyses

Flow cytometry analyses were performed on differentiated cells as described in Schreiber et al.38 Cells differentiated at day 13 were

dissociated to single cells with TrypLE Select for 4 min at 37�C, resuspended in Stage 5 base medium, washed once with PBS and

fixed with 4% paraformaldehyde in PBS for 20 min at room temperature. After 2 washes with PBS, cells were permeabilized 30 min

with 0.2% Triton X-100, 5% Donkey serum (Jackson Immunoresearch) in PBS (permeabilization buffer) and incubated overnight

at +4�C in the dark with primary antibodies diluted in permeabilization buffer. After 2 washes with 0.1% Triton X-100, 0.2% BSA

in PBS (PBSTB), cells were incubated for 1–2 h at room temperature in the dark with fluorophore-conjugated secondary antibodies

diluted in permeabilization buffer. After 2 washes with PBSTB in the dark, cells were resuspended at 1 M/mL in 1% BSA in PBS,

filtered on 50 mm nylon mesh (NITEX, Dutscher, FR) and analyzed on a BD Fortessa LSR II Cell analyser (BD Biosciences). Analyses

were performed using FlowJo software v10. Antibodies used were: sheep anti-NEUROG3 (1:400 dilution, R&D), chicken anti-GFP

(1:8,000 dilution, Abcam), Alexa Fluor 647 coupled anti-NKX6-1 (1:20 dilution, BD), Alexa Fluor 647Donkey anti Sheep (1:500 dilution,

Jackson ImmunoResearch) and Alexa Fluor 488 Donkey anti Chicken (1:1,000 dilution, Jackson ImmunoResearch). Refer to key re-

sources table for antibodies details.

FACS sorting and single-cell RNA sequencing

Cells differentiated at day 13were harvestedwith TrypLE Select as described above, resuspended in Stage 5medium supplemented

with 10 mMY-27632, filtered using a 50 mMsterile Filcon (BDBiosciences) and sorted using a FACSAria Fusion cell sorter (BD) directly

into 2 x 384-well plates with ERCC spike-ins (Agilent), reverse transcription primers and dNTPs (both Promega), according to the

gating shown in Figure S10B. Repartition was as follow: 216 cells for each NKX6-1-GFP+, NEUROG3-mCherry+ and NKX6-1-

GFP+/NEUROG3-mCherry+ population and 104 cells for the negative population. Single cell sequencing was performed according

to the Sort-seq method68 by Single Cell Discoveries. Briefly, Sequencing libraries were generated with TruSeq small RNA primers

(Illumina) and sequenced paired-end at 60 and 26 bp read length, respectively, on the Illumina NextSeq. Reads were mapped to

the human GRCh38 genome assembly. Sort-seq read counts were filtered to exclude reads with identical library-, cell- and molecule

barcodes. UMI counts were adjusted using Poisson counting statistics.68

Data pre-processing

We considered 522 cells for downstream analysis. We used SCANPY with mostly default parameters. For quality control, we

removed cells with a high fraction of mitochondrial gene counts (>50%), and a high percentage of ERCC spike-in reads (>50%);

also, cells with more than 100000 and less than 10000 counts were excluded. We filtered genes to be expressed in at least three

cells and remove spike-in genes for downstream analysis. Next, we normalized by total counts per cell, log-transformed the data.

We embedded the data in the PCA space and used the top 15 principal components to compute a k-nearest neighbor graph with

k = 15. For visualization, we used UMAP embedding with two dimensions with default parameters. We used Louvain-based clus-

tering83 for clustering and cell-type identification. Cell types were annotated based on the expression of known marker genes.

TF activity estimation

TF activities were estimated using FateCompass. We embedded the data of gene expression on ten dimensions in the UMAP space.

Next, we computed a neighborhood graph in the reduced gene expression space with k = 10. This setting was the graph structure for

the regularization of the TF activities.

QUANTIFICATION AND STATISTICAL ANALYSIS

All figures report the value of the mean and the standard error of the mean calculated as described in the methods section. We used

Wilcoxon rank-sum test implemented in the Scanpy toolkit to compare transcription factor activities in groups of at least three mem-

bers. All statistical analyses performed are included within the Supplementary Code (key resources table).
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