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ABSTRACT
Genomic instability contributes to the neoplastic phenotype by deregulating 

key cancer-related genes, which in turn can have a detrimental effect on patient 
outcome. DNA amplification of the 8p11-p12 genomic region has clinical and biological 
implications in multiple malignancies, including breast carcinoma where the amplicon 
has been associated with tumor progression and poor prognosis. However, oncogenes 
driving increased cancer-related death and recurrent genetic features associated 
with the 8p11-p12 amplicon remain to be identified. In this study, DNA copy number 
and transcriptome profiling data for 229 primary invasive breast carcinomas 
(corresponding to 185 patients) were evaluated in conjunction with clinicopathological 
features to identify putative oncogenes in 8p11-p12 amplified samples. Illumina 
paired-end whole transcriptome sequencing and whole-genome SNP genotyping 
were subsequently performed on 23 samples showing high-level regional 8p11-p12 
amplification to characterize recurrent genetic variants (SNPs and indels), expressed 
gene fusions, gene expression profiles and allelic imbalances. We now show previously 
undescribed chromothripsis-like patterns spanning the 8p11-p12 genomic region and 
allele-specific DNA amplification events. In addition, recurrent amplification-specific 
genetic features were identified, including genetic variants in the HIST1H1E and 
UQCRHL genes and fusion transcripts containing MALAT1 non-coding RNA, which is 
known to be a prognostic indicator for breast cancer and stimulated by estrogen. In 
summary, these findings highlight novel candidate targets for improved treatment 
of 8p11-p12 amplified breast carcinomas.

INTRODUCTION

Molecular profiling of cancer genomes and 
epigenomes with microarray and next-generation 
sequencing (NGS) technologies has, in recent years, 

provided a more in-depth overview of disease-
specific aberrations, thereby identifying novel targets 
for treatment. These complex landscapes of somatic 
structural rearrangements and epigenomic modulations 
are comprised of a composite of driver and bystander 
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aberrations either acquired via chromothripsis or 
accumulated over time [1, 2]. Nevertheless, certain 
structural variants (SVs) confer selective advantage 
because they contain one or more genes with tumorigenic 
potential [3]. One such recurrent genetic aberration is 
DNA amplification of the 8p11-p12 genomic region, 
which has clinical and biological implications in multiple 
malignancies [4, 5]. In breast carcinoma (both familial 
and sporadic cases), the 8p11-p12 genomic region is a 
frequent target for DNA amplification and loss, resulting 
in the deregulation of multiple putative “driver” genes 
and aggressive tumor features [6–10]. However, the 
8p11-p12 genomic region spans over 10 Megabases 
(Mb) and encompasses over 50 known genes, many of 
which have been shown to be activated by more than 
one molecular mechanism, i.e. translocation and DNA 
amplification [11]. Therefore, the aggressive phenotype 
imposed by the 8p11-p12 amplicon may be the result of 
one or more interacting genes in this genomic region and/
or crosstalk with other genetic and epigenomic aberrations 
[12]. However, little is known about the type and extent of 
other structural rearrangements (translocations and fusion 
genes) and genetic variants (indels and substitutions) 
found in 8p11-p12 amplified tumors and their contribution 
to aggressive features.

In this study, we evaluated array-CGH and gene 
expression microarray data for 229 breast cancer patients 
in relation to clinicopathological features and clinical 
outcome to identify putative oncogenes and tumor 
suppressors associated with 8p11-p12 amplification [12]. 
Furthermore, we performed RNA sequencing (RNA-
seq) in conjunction with SNP genotyping analysis for 
23 amplified tumors to identify common chromosomal 
rearrangements and genetic variants.

RESULTS

DNA profiling reveals chromothripsis-like events 
spanning regions of amplification in breast 
carcinoma

In a genome-wide screen for copy number 
alterations (CNAs), array comparative genomic 
hybridization (array-CGH) data for 229 invasive breast 
carcinomas were analyzed using the Rank Segmentation 
algorithm in Nexus Copy Number. Recurrent genomic 
regions of high-level DNA amplification were observed 
with a frequency of ≥ 10% (P < 0.01) at 1q, 8p12-p11.21, 
8q11.21-q11.23, 8q11.23-q24.3, 11q13.3-q13.4, and 
17q23.3. Chromothripsis-like patterns (CTLP) for 
genomic gains and losses were then identified in the 
dataset with ≥ 20 changes in estimated copy number 
state. In total, 58 CTLPs were observed in 49 of the 
229 samples (21%), with 9/49 samples (18%) involving 
chromothripsis-like events on two different chromosomes 
(Supplementary Table 1). On average, CTLPs involved 

33 changes in copy number state (range, 20–95 changes) 
and spanned 86.7 Mb (range, 30–243 Mb), affecting 
localized genomic regions, chromosome arms and whole 
chromosomes. In agreement with a study on CTLP in 
breast carcinomas [13], chromothripsis-like events were 
observed primarily on chromosomes 1, 6, 8, 11, and 
17 (Figure 1). In the present study, CTLPs were most 
prevalent on chromosomes 11 (36%), 17 (17%), and 8 
(16%), spanning several of the detected genomic regions 
of DNA amplification on 11q, 17q, 8p, and 8q. 

Nine minimal common 8p11-p12 amplification 
peaks identified using DNA copy number 
analysis

We recently described the effect of genetic and 
epigenetic crosstalk in breast carcinomas harboring DNA 
amplification on chromosome 8p11-p12, suggesting that 
aberrant DNA methylation patterns on chromosome 8q 
may also contribute to the aggressive phenotype [12]. To 
further define the role that 8p11-p12 amplification may 
have on breast cancer pathophysiology, we examined 
genomic profiling data for 229 invasive breast carcinomas 
and transcriptomic data for 150/229 samples, as previously 
presented [12, 14–16]. The array-CGH copy number 
analysis identified 83 samples (36%) with recurrent 
CNAs on chromosome bands 8p11-p12 (47 high-level 
amplifications, 20 low-level gains and 16 losses) and 146 
samples (64%) with neutral DNA dosage on chromosome 
8p11-p12. Furthermore, the amplicon contained five 
major sub-regions mapping to a 12.0 Mb region spanning 
31.9–43.9 Mb (from telomere to centromere on the 8p 
arm, according to the hg17 build 35 reference assembly 
of the human genome), which was further refined to 
nine minimal common amplification peaks (range, 
41.2–377.4 kb) from 34.3–42.5 Mb (Figure 2A–2B and 
Supplementary Table 2). 

One of the smallest peaks and notably the 
most common mapped to a 67.9 kb region spanning 
the WHSC1L1 gene on chromosome band 8p12 
(amplified in 32/47 cases). Dual-color interphase 
FISH performed using a contig of 58 overlapping 
BAC clones spanning the 8p11-p12 genomic region 
(Supplementary Table 3) demonstrated extensive intra- and 
intertumoral heterogeneity in amplified cases (Figure 2C). 
Intratumoral heterogeneity frequently ranged from neutral 
DNA copy number (two copies per FISH probe) to high-
level amplification (up to 50 copies per FISH probe). Two 
main types of hybridization patterns were observed, e.g. 
hybridization signals that were clustered in set positions 
in the interphase nuclei or scattered signals, suggesting 
the presence of homogenously staining regions at 
8p11-p12, translocation events with DNA sequences 
from chromosome 8p on other chromosomes, double 
minutes containing sequences from chromosome 8p and/
or aneuploidy of chromosome 8.
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Allele-specific copy number analysis reveals 
elevated DNA copy number for one allele at the 
8p11-p12 locus

Whole-genome SNP genotyping analysis was then 
performed, followed by genome-wide allele-specific 
copy number analysis with the ASCAT algorithm for 23 
samples (16 Luminal B/HER2-, two Luminal B/HER2+, 
four HER2/ER-, and one Basal-like subtype) harboring 
high-level regional 8p11-p12 amplification. High-level 
amplification of the 8p11-p12 genomic region was shown 
in the ASCAT profiles for all but one case (T7631). 
Furthermore, 48% of cases were classified as aneuploid 
(ploidy > 2.7) with on average 40% nonaberrant cell 
admixture. Allelic imbalances spanning the 8p11-p12 
region (31.9–43.9 Mb) were detected (Pearson correlation 
= −0.21), where the minor allele (least frequent allele) 
frequently displayed CN = 0, CN = 1 or CN = 2, while 
the overall copy number ranged from CN = 1 to CN > 10 
(Figures 3–4). These findings suggest that certain parts of 
chromosome 8p11-p12 were amplified on the major allele, 
whereas neutral DNA dosage or DNA loss were found on 
the minor allele.

RNA sequencing identifies long non-coding 
RNAs as promiscuous fusion partners

The 23 amplified tumors were further assessed for 
genetic variants and structural rearrangements with RNA-
seq, followed by SNP genotyping analysis to further refine 

the DNA breakpoints involved with the formation of 
fusion transcripts. In total, 3,052 fusion transcripts (1,245 
unique fusion transcripts) were detected in the 23 tumors, 
with 237, 37, and 7 recurrent fusions found in at least 
two, ≥ 5, and ≥ 10 samples, respectively (Supplementary 
Figure 1A). The mean number of fusion transcripts 
identified per tumor was 132.7 ± 31.0 (± SEM, range 
12–613). Few fusions (n = 46) contained at least one gene 
fusion partner that spanned the 8p11-p12 genomic region 
(ADAM2, ADAM32, ADAM9, ASH2L, BAG4, DDHD2, 
EIF4EBP1, ERLIN2, FGFR1, HOOK3, PLPP5 (gene 
alias PPAPDC1B), RAB11FIP1, TACC1, WHSC1L1), 
of which four fusions were in-frame (ADAM9-HOOK3, 
BAG4-PDSS2, NUP93-DDHD2, TACC1-EIF4EBP1). In 
addition, three of the 46 fusion transcripts were found 
in two samples (ERLIN2-MALAT1, MALAT1-TACC1, 
NUP93-DDHD2), whereas the other 43 fusions were 
either unique to a specific tumor specimen or alternative 
splicing events of the same fusion transcript.

The majority of the 3,052 fusion transcripts (86%) 
contained at least one gene partner predicted to be in 
exonic regions (with no known coding DNA sequence, 
CDS), such as the MALAT1 and NEAT1 non-coding RNAs 
(ncRNAs). In contrast, relatively few fusion transcripts 
were predicted to be promoter-coding (5′UTR; 1.7%), 
coding-3′UTR (2.4%), in-frame/coding-coding (2.5%), 
out-of-frame/coding-coding (2.2%), and truncating (0%; 
Supplementary Figure 1B). Four recurrent in-frame 
fusion transcripts were each identified in two individual 
samples originating from the same patient, i.e. MAST2-

Figure 1: Chromothripsis-like events frequently occur at chromosomes 11, 17, and 8 in breast carcinoma. (A) Frequency 
of CTLP regions in the genome. Red and blue bars indicate the fraction of chromothripsis-like regions in percent and chromosome size in 
megabases, respectively. (B) Three representative examples of chromothripsis-like patterns in array-CGH DNA copy number profiles from 
the 229 breast carcinoma samples. The x-axis depicts the genomic location and the log2ratio on the y-axis.



Oncotarget24143www.oncotarget.com

PRKCA, NUP93-DDHD2, TTC19-MYO1D, and VMP1-
CEP112. In-frame kinase fusions with therapeutic 
potential were also identified in eight fusion partners 
(CDC42BPA, CSNK1A1, ERBB2, ERBB4, LRGUK, 
MAST2, PRKCA, and TAOK1 genes). Additionally, only 
one fusion transcript spanned the promoter regions of 
both gene partners (TRPS1-CPB1). Fifty-one percent of 
fusion transcripts contained gene partners with inverted 
orientation, implying fusion transcript formation via 
inversion events.

Among the 1,245 unique fusion transcripts, 
interchromosomal fusions (n = 1,089) were significantly 
more prevalent than intrachromosomal fusions 
(n = 158). In particular, chromosome 11 formed fusion 
transcripts with all other autosomal chromosomes 

and the X chromosome (n = 437). Intrachromosomal 
fusions on chromosome 11 and 8 were most common 
with 84 and 23 fusion transcripts, respectively 
(Supplementary Figure 1C–1D). The highest number of 
interchromosomal fusions were found on chromosomes 
1–11, 11–1, 11–8 and 8–11 with 61, 52, 45, and 45 fusions 
in the patient cohort, respectively. Locus 11q13.1 (5′-
gene partner) fused with 303 different loci followed by 
11q12.3 (24 other loci), 8q23.3 (15 other loci), 2q35 (13 
other loci), 3q24 (13 other loci), and 8q21.11 (11 other 
loci). As the 5′-gene partner, loci 8p11.25, 8p11.22, 
8p11.23-p11.22, 8p11.21, 8p12 fused with 5, 4, 3, 1, and 1 
other loci, respectively. The top 5′-gene partners included 
the MALAT1 (11q13.1), NEAT1 (11q13.1), SCGB2A2 
(11q12.3), and TRPS1 (8q23.3) genes with 411, 30, 19, 

Figure 2: Nine common 8p11-p12 amplification peaks identified despite breast tumor heterogeneity. (A) Frequency plot 
of 8p11-p12 amplification in 47 breast tumors. The x-axis depicts the genomic position on chromosome 8 in Mb according to UCSC May 
2004 hg17: NCBI Build 35 from the telomere on the 8p arm to the centromere; y-axis, percentage of tumors with amplification (green) 
and loss (red). Vertical dashed lines indicate the nine most common amplification peaks (P1-P9). Horizontal green lines indicate the DNA 
amplification regions for each tumor sample. (B–C) Zoom-in of peaks P2–P5 showing BAC clones used in locus-specific dual-color FISH 
and significantly associated genes spanning each peak. Biotin-labeled (green) BAC clones RP11-621B1 (P2), RP11168H8 (P3), RP11-
350N15 (P4), RP11-742H5 (P5) were combined with digoxigenin-labeled (red) BAC clones RP11-527N22 (P2), CTD-2015B18 (P3), 
RP11-389E22 (P4), RP11-732D22 (P5). Overlapping DNA sequences were detected as yellow hybridization signals. The interphase nuclei 
were counterstained with DAPI.



Oncotarget24144www.oncotarget.com

and 15 3′-gene partners, respectively. Additionally, the 
top 3′-gene partners included the MALAT1, NEAT1, 
SCGB2A2, and TRPS1 genes with 445, 39, 20, 14 5′-
gene partners, respectively. Gene reciprocals (geneA-
geneB and geneB-geneA) were common among the top 
gene partners, suggesting inversion-mediated gene fusion 
formation. In the case of MALAT1-AHNAK/AHNAK-
MALAT1 and MALAT1-TRPS1/TRPS1-MALAT1 gene 
reciprocal fusions, the 3′-gene partners (AHNAK and 
TRPS1) had significantly higher expression levels in 
samples containing the fusion only when MALAT1 was the 
5′-gene partner (Figure 5). FISH analysis for 12 recurrent 
fusion transcripts, including AHNAK-MALAT1 fusions, 
revealed intratumoral heterogeneity with few neoplastic 
cells containing specific fusions on the DNA level. 

A review of the array-CGH data showed that only 
one-third of fusion breakpoints could be attributed to 
DNA copy number gains and losses. However, SNP 
genotyping revealed that the majority of fusions occur 
at DNA breakpoints in addition to allelic imbalance on 
almost all chromosomes (Figure 5). Intrachromosomal 
fusions, in particular, frequently spanned regions of high-
level amplification. As expected, the majority of recurrent 
fusions spanning genomic regions with DNA copy number 
changes included fusions with the MALAT1, NEAT1, and 
TRPS1 genes, but also NDUFC2-KCTD14-TMSB15A 
(n = 2), NDUFC2-TMSB15A (n = 2), FANCC-CNTNAP2 
(n = 2), VMP1-CEP112 (n = 2), ZNF671-SPAG1 (n = 2).

Consequently, the Oncofuse Bayesian classifier 
pipeline classified 83/1,245 (6.7%, range 0–20) fusion 

transcripts (65 fusion genes) as “driver” fusion events 
with oncogenic properties, including the COL1A2-TRPS1 
and MAST2-PRKCA fusions that were identified in more 
than one tumor and several other known breast cancer-
related genes, e.g. BCL2, ESR1, ERBB2, IGFBP5, TRPS1 
(Supplementary Table 4). One or both of the gene fusion 
partners (27/65 and 19/65 fusion transcripts, respectively) 
also frequently exhibited high gene expression patterns 
irrespective of DNA copy number in samples harboring 
“driver” fusion events (Supplementary Figure 2). Pathway 
analysis showed that these fusion transcripts play a pivotal 
role in cancer, cell cycle, DNA replication, recombination 
and repair, cell death and survival, cellular growth and 
proliferation, cellular movement, ErbB signaling, PTEN 
signaling, and DNA double-strand break repair by 
homologous recombination (P < 0.05). 

Mutation analysis reveals few amplification-
specific exonic variants

The RNA-seq data were then evaluated to identify 
recurrent insertions/deletions (indels) and single-
nucleotide variants (SNVs) in genomic and exonic 
(coding) regions. The dbSNP, 1000 Genomes Project, 
SweGen dataset, and NHLBI GO Exome Sequencing 
Project databases were used to identify and remove 
common genetic variants present in the human population. 
After filtering, the mean number of genomic and exonic 
variants per tumor was 85,066 ± 4,127.9 (± SEM; range, 
46,290–115,402) and 399.0 ± 16.2 (range, 279–540), 

Figure 3: Allele-specific copy number analysis reveals elevated DNA copy number for the 8p11-p12 genomic region on 
one of the alleles. SNP genotyping copy number profiles for samples T7253 and T11659, showing (A) logR and (B) B allele frequency 
(BAF) plots. Green lines indicate genomic segments of constant logR and BAF values, as identified using the ASCAT (allele-specific copy 
number analysis of tumors) algorithm. (C) Raw ASCAT profile containing allele-specific copy number for all loci. The x-axis depicts the 
genomic location and the DNA copy number on the y-axis. Purple and blue indicate the copy number of the minor allele and the estimated 
overall copy number, respectively. (D) ASCAT profile containing probes that are heterozygous in the germline. The x-axis depicts the 
genomic location and the DNA copy number on the y-axis. Green and red indicate the copy number of the minor allele and the estimated 
overall copy number, respectively.
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respectively. Genomic variants were most commonly 
identified in the intronic regions (mean, 60,496), in 
addition to nonsynonymous SNVs (mean, 211.0) and 
synonymous SNVs (mean, 85.0) in the coding regions 
(Supplementary Figure 3A–3B). Single-nucleotide 
substitutions associated with A > G (44.0%) and T > C 
transitions (43.4%) were most prevalent in the genomic 
regions and A > G (16.9%), T > C (16.2%), G > A 
(15.7%), and C > T transitions (14.6%) in coding regions 
(Supplementary Figure 3C–3D). In addition, 11 tumor-
specific exonic variants were identified in six genes 
spanning the 8p11-p12 genomic region (RAB11FIP1, 
GPR124, ADAM2, LSM1, TACC1, ZNF703). 

The mutational landscape was also assessed in 
10 non-amplified breast carcinomas from The Cancer 
Genome Atlas (TCGA). As expected, the mean number 
of genomic variants was significantly lower in the non-
amplified TCGA samples (10,822.2 ± 1,113.0; range, 
4,073–15,688) than the 8p11-p12 amplified tumors due to 
the use of whole transcriptome sequencing in the current 
investigation and mRNA-seq for the TCGA dataset. 
However, there was no significant difference in the mean 
number of exonic variants (358.7 ± 43.1; range, 216–677, 
in the TCGA cohort), the type of exonic variants or single-
nucleotide substitutions identified in the two study groups 
(Supplementary Figure 3B and 3D). The distribution of 

indels and SNVs in coding regions was also evaluated 
in the non-amplified samples to identify exonic variants 
associated with 8p11-p12 amplification. Frameshift 
insertion in HIST1H1E (encoding p.Ala167fs) and 
nonsynonymous SNV in UQCRHL (encoding p.His56Arg) 
were only present in samples harboring 8p11-p12 
amplification and resulted in mutation-dependent changes 
in gene expression levels. Consequently, neither of the two 
transcripts have been previously reported in the Catalogue 
Of Somatic Mutations In Cancer (COSMIC) database 
(Figure 6A).

Sequence Ontology analysis was then performed to 
identify potential deleterious genetic variants predicted 
to have a disruptive effect in the protein by resulting in 
protein truncation, gain/loss of function or nonsense 
mediated decay, i.e. frameshift insertion, frameshift 
deletion, frameshift block substitution, stopgain, or 
stoploss. In total, 33 potential deleterious genetic variants 
were identified in ≥ 20% of the amplified tumors; none 
of the 33 genetic variants were found in the COSMIC 
database (Figure 6B). Pathway analysis showed that the 
genes associated with the genetic variants play a pivotal 
role in cancer, cell cycle, cell death and survival, cell 
morphology, and gene expression. To distinguish whether 
the 33 deleterious genetic variants were 8p11-p12 
amplification-specific, the mutation frequency was then 

Figure 4: Distribution of the minor and overall copy number in the 23 samples. Density plot for the minor and overall copy 
number spanning the 8p11-p12 genomic region (31.9–43.9 Mb). The overall copy number ranged from 1 to 13, whereas the minor allele 
displayed comparatively low copy number (range 0–3). The x-axis depicts the copy number; y-axis, density.
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evaluated in the 10 non-amplified TCGA samples. This 
analysis showed that 10/33 genetic variants (ACACA, 
AP2M1, BECN1, C3, HIST1H1E, INPP5B, MAGI3, 
MTRNR2L8, MTUS1, PIMREG) had significantly higher 

mutation rates in 8p11-p12 amplified samples, of which 
7/10 genetic variants were only found in amplified samples 
(P < 0.05). The 10 genetic variants were further evaluated 
to assess the effect of 8p11-p12 amplification status and/

Figure 5: Elevated AHNAK expression levels in samples harboring MALAT1-AHNAK gene fusions. (A) Circos plot depicting 
genome-wide SNP genotyping, array-CGH, and RNA-seq data in breast carcinoma sample T11378. Track 1: Chromosome cytobands from 
pter to qter. The centromere is shown as a red bar. Track 2: Mutations in exonic regions (exonic variants) identified with RNA-seq data 
are shown as dark gray bars. Track 3: B allele frequency of SNP genotyping data. Track 4: Log R ratio of SNP genotyping data, where 
copy number gains and losses are depicted in green and red, respectively. Track 5: Array-CGH data, where copy number gains and losses 
are depicted in green and red, respectively. Track 6: Gene fusions identified with RNA-seq data. Intrachromosomal and interchromosomal 
gene fusions are shown in red and blue lines, respectively. (B) Locus-specific dual-color FISH with biotin-labeled (green) BAC clones 
RP11-642F7, RP11-1104L6, RP11-472D15 for MALAT1 were combined with digoxigenin-labeled (red) BAC clones CTD-2240J20 for 
AHNAK. Overlapping DNA sequences were detected as yellow hybridization signals (see arrow). The interphase nuclei were counterstained 
with DAPI. (C) Overview of the exon structure, breakpoint location, and nucleotide sequence for the MALAT1- AHNAK fusion transcript 
(5′ and 3′ fusion gene partners are depicted in blue and red, respectively) in sample T11378. The breakpoint sequence positions for each 
of the fusion gene partners are indicated by vertical arrows and the DNA strand orientation by horizontal arrows. The exon structure and 
nucleotide sequence at the fusion transcript breakpoint (indicated by asterisk) is indicated by dotted gray lines. Sequence positions are based 
on alignment with hg19 from the UCSC Genome Browser. (D) Breast carcinomas containing MALAT1-AHNAK gene fusions have elevated 
AHNAK expression levels (P = 0.0031). Statistically significant differences (P < 0.05) in AHNAK expression levels between tumors with 
and without MALAT1-AHNAK gene fusions are indicated by an asterisk (*). (E) Breast carcinomas containing MALAT1-AHNAK gene 
fusions (dark red dots) have elevated AHNAK expression levels compared to tumors without gene fusions (blue dots).



Oncotarget24147www.oncotarget.com

or mutation on gene expression patterns. Consequently, 
altered gene expression levels for all 10 genetic variants 
(ACACA, AP2M1, BECN1, C3, HIST1H1E, INPP5B, 
MAGI3, MTRNR2L8, MTUS1, PIMREG) were dependent 
on amplification status (8p11-p12 amplified versus non-
amplified samples). Three genetic variants (BECN1 
frameshift deletion, MTUS1 frameshift insertion, PIMREG 
frameshift deletion) showed mutation-dependent (mutated 
versus wild-type samples) changes in gene expression in 
8p11-p12 amplified samples (P < 0.05; Figure 6C).

DISCUSSION

We report that few genes spanning the 8p11-p12 
amplicon in breast carcinoma are involved in genetic 
mutations and DNA methylation modifications, suggesting 
that DNA amplification is the primary mode of gene 
activation for this genomic region [12, 17–19]. In this 
study, an integrative analysis with multi-omics screening 
identified previously unknown recurrent genetic features, 
ranging from chromothripsis events to fusion transcripts, 
associated with 8p11-p12 amplification in breast 
carcinoma. Using array-CGH and SNP genotyping data, 
we illustrated that invasive breast tumors frequently contain 
complex rearrangements on one or two chromosomes 
(chromothripsis-like patterns) spanning regions of DNA 
amplification, including the 8p11-p12 genomic region. 
Further examination of the 8p11-p12 amplicon showed that 
DNA amplification was restricted to only one of the alleles, 
indicating allele-specific amplification events.

DNA copy number analysis revealed recurrent 
chromothripsis-like events spanning the 8p11-p12 
amplicon, including an amplification peak comprised of 
the histone lysine methyltransferase WHSC1L1 (Wolf-
Hirschhorn syndrome candidate 1-like 1), also known as 
NSD3. WHSC1L1 has been studied extensively to better 
understand its role in 8p11-p12 amplification in breast 
carcinoma and other malignancies [17, 20–23]. At least 
two co-expressed WHSC1L1 isoforms (the long and short 
isoforms) compete for binding sites on target proteins 
[24]. The full-length WHSC1L1 protein contains several 
functional domains with methyltransferase and protein 
binding activity, which play a pivotal role in chromatin 
modification and regulation of transcription by methylating 
lysine-27 of histone H3 (epigenetic tag denoting inhibition 
of transcription). In contrast, the short isoform contains 
a single PWWP-domain (proline-tryptophan-tryptophan-
proline) that may be involved in cell growth. In the 
absence of 8p11-p12 amplification, Zhou et al. showed 
an increase in cell proliferation and cell invasion in 
the MDA-MB-231 breast cancer cell line following 
WHSC1L1-long knockdown [24, 25]. These findings are 
in contrast with results found in breast cancer cell lines 
harboring the 8p11-p12 amplicon, where cell proliferation 
decreased after WHSC1L1 depletion [23]. In addition, it 
is still unclear whether WHSC1L1 overexpression really 
does play a role in cell cycle regulation of G2/M transition 
by activating CCNG1 and NEK7 [26, 27]. WHSC1L1 was 
also found to regulate methylation of lysine-36 on histone 
3 and transcriptional elongation by binding to LSD2 (a 

Figure 6: Few exonic variants are associated with 8p11-p12 amplification. (A) Box plots illustrating mutation-dependent 
changes in FPKM values for two genetic variants found in all 23 samples with 8p11-p12 amplification (denoted 8p amp) and none of 
the TCGA breast carcinoma samples with neutral 8p11-p12 copy number (denoted no amp). (B) Bar plot illustrating the percentage of 
8p11-p12 amplified samples (blue bars) and TCGA breast carcinoma samples with neutral 8p11-p12 copy number (orange bars) harboring 
a putative deleterious genetic variant in exonic regions (in at least 20% of amplified samples). Genetic variants with significantly different 
mutation frequencies in the two groups were marked with an asterisk (*) symbol (P < 0.05). (C) Box plots illustrating the effect of 8p11-p12 
amplification and mutation status on FPKM values. Asterisk denotes significant p-values (*P < 0.05, **P < 0.01, ***P < 0.001).



Oncotarget24148www.oncotarget.com

H3K4-specific lysine demethylase), and G9a (a H3K9-
specific methyltransferase) [28–31]. Although recent 
reports have shown that protein methyltransferases can be 
targeted with small-molecule inhibitors, none are currently 
used in clinical practice [26, 32, 33].

Whole-transcriptome RNA-seq and genome-wide 
SNP genotyping analysis highlighted the prevalence 
of fusion transcripts and genetic variants in 8p11-p12 
amplified tumors. These analyses revealed that almost 
90% of the identified fusion gene partners were 
ncRNAs, such as MALAT1 (metastasis-associated lung 
adenocarcinoma transcript 1; also known as NEAT2) 
and NEAT1. MALAT1 was highly promiscuous with over 
400 gene partners (as both the 5′- and 3′-gene partner), 
suggesting that these fusions occur at the RNA level. 
MALAT1 is an evolutionary conserved gene that has been 
shown to be involved in chromosomal translocations and 
contain genetic variants [34, 35]. Like other ncRNAs, 
MALAT1 can migrate from the nucleus to the cytoplasm 
where it can interact with both DNA and proteins in the 
nucleus and cytoplasmic RNA molecules and proteins 
[36]. MALAT1 is particularly interesting because it is a) 
frequently overexpressed in different malignancies, b) 
a prognostic indicator of poor survival in breast cancer, 
c) has been shown to be controlled by 17β-estradiol 
stimulation in prostate cancer, d) c-MYC has been shown 
to bind to the MALAT1 promoter thereby inducing 
MALAT1 transcription, and e) has been shown to be 
associated with cell proliferation, metastasis, and the cell 
cycle [37–41]. Furthermore, a Malat1 knockout mouse 
model resulted in normal pre- and postnatal development 
and Malat1 inhibition in a mouse model for luminal B 
breast cancer gave rise to poorly developed metastatic 
tumors, suggesting that MALAT1 inhibition may be a 
feasible approach to reduce tumor growth and metastasis 
with minimal adverse effects on normal tissue [40, 41]. 

Among protein-coding genes, several breast cancer-
related genes were predicted to be fusion transcripts with 
oncogenic potential, e.g. BCL2, ESR1, ERBB2, IGFBP5, 
TRPS1. Interestingly, we have previously shown that TRPS1 
is among other genes spanning chromosome 8q that are 
hypomethylated in 8p11-p12 breast tumors [12]. Fusions 
are commonly produced during the formation of structural 
rearrangements, transcription read-throughs, and alternative 
splicing, where one fusion partner frequently deregulates the 
other [42]. As expected, the majority of the fusion transcripts 
identified here spanned genetically instable regions 
with DNA breakpoints, particularly intrachromosomal 
fusions. It was also shown that in recurrent fusions, such 
as MALAT1-AHNAK/AHNAK-MALAT1 and MALAT1-
TRPS1/TRPS1-MALAT1, our data suggest that MALAT1 
only deregulated the expression patterns of its gene partner 
(AHNAK or TRPS1) when MALAT1 was the 5′-gene partner. 
Additionally, several interesting in-frame fusions and in-
frame kinase fusions were identified, several of which may 
be targetable with kinase inhibitors.

In contrast to the fusion transcripts, few ncRNAs 
contained genetic variants such as indels and substitutions. 
Intriguingly, genetic variants in HIST1H1E encoding 
p.Ala167fs (frameshift insertion) and UQCRHL encoding 
p.His56Arg (nonsynonymous SNV) were found in all 23 
amplified samples and in none of the non-amplified TCGA 
samples. These genetic variants also resulted in significant 
up-regulation of the two genes in mutated/amplified 
samples. HIST1H1E is a linker histone gene that may play 
a role in epigenetic regulation, whereas UQCRHL has 
been identified as a prognostic factor for hepatocellular 
carcinoma that plays a pivotal role in mitochondrial 
respiration [43–45]. The few exonic variants and fusion 
transcripts identified in 8p11-p12 genes were tumor-
specific rather than amplification-specific, suggesting 
these molecular mechanisms may be secondary modes 
of gene activation. Three exonic variants were identified 
in the RAB11FIP1 and ZNF703 genes and FGFR1, 
RAB11FIP1 and WHSC1L1 were among fourteen genes 
spanning the 8p11-p12 amplicon to be identified as fusion 
gene partners.

In summary, we describe the genetic landscape of 
8p11-p12 amplification in breast carcinoma, including 
previously undescribed chromosomal rearrangements 
and gene fusions. Our work may pave the way for future 
studies investigating the mechanisms by which specific 
oncogenes within the 8p11-p12 amplification region 
promote breast tumorigenesis, which may lead to more 
specific target therapies and thereby improve treatment 
for patients with 8p11-p12 amplified breast carcinomas.

MATERIALS AND METHODS

Evaluation of genomic and transcriptomic 
profiling data

To further investigate the clinical significance 
of 8p11-p12 DNA amplification in breast carcinomas, 
genomic profiling data for 229 primary invasive breast 
carcinomas (corresponding to 185 patients) previously 
profiled with microarray-based comparative genomic 
hybridization (array-CGH) and gene expression 
microarray data for 150 of the 229 samples (corresponding 
to 140 patients) [12, 14–16] were evaluated and 
correlated with clinicopathological features and clinical 
outcome. Normalized values from five normal breast 
samples profiled with Illumina HumanWG-6 Expression 
Beadchips (GEO, accession number GSE17072) were 
used as normal controls [46]. The patients were diagnosed 
in Western Sweden between 1988 and 1999 and the fresh-
frozen tumor samples were stored in the tumor biobank 
at the Sahlgrenska University Hospital Oncology Lab 
(Gothenburg, Sweden). 

In brief, CNAs were defined as log2ratio + 0.2, ≥ 
+ 0.5, −0.2, and ≤ −1.0 for low-level gain, high-level 
gain/amplification, heterozygous loss, and homozygous 
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deletions (henceforth referred to as gain, amplification, 
loss and deletion) using the Rank Segmentation algorithm 
with Nexus Copy Number Professional 4.1 software 
(BioDiscovery), respectively. Minimal common regions 
of high-level amplification were identified when observed 
in at least 10% of the tumor samples using P < 0.01. 
Furthermore, the “Peaks only” setting was used to refine 
the common regions to amplification peaks.   The dataset 
was stratified into the molecular breast cancer subtypes 
(normal-like, basal-like, luminal subtype A, luminal 
subtype B and human epidermal growth factor receptor 
2/estrogen receptor-negative (HER2/ER-)) using gene 
expression microarray data (n = 150) as previously 
described [47–49]. Luminal subtype B was further 
stratified using array-CGH to determine the HER2 
amplification status for each tumor, where HER2-positive 
was set to log2ratio ≥ + 0.5 and HER2-negative was set to 
log2ratio < −0.5 [50]. Luminal subtype B/HER2- was most 
prevalent (n = 101), followed by HER2/ER− (n = 18), 
Basal-like (n = 16), Luminal subtype B/HER2+ (n = 13), 
and luminal subtype A (n = 2). Amplified samples were 
predominantly classified as Luminal subtype B/HER2- 
(n = 30), followed by Basal-like (n = 6), HER2/ER- 
(n = 5), and Luminal subtype B/HER2+ (n = 4).

Chromothripsis-like pattern (CTLP) detection

The array-CGH data were segmented using the 
DNAcopy package (version 1.48.0) in R/Bioconductor 
(version 3.3.2), followed by chromothripsis-like pattern 
detection using the web-based CTLPScanner (http://
cgma.scu.edu.cn/CTLPScanner/) with the default settings 
(Genome assembly: NCBI35/hg17; Copy number status 
change times: ≥ 20; Log10 of likelihood ratio ≥ 8; 
Minimum segment size (Kb): 10; Signal distance between 
adjacent segments: 0.3; Genomic gains ≥ 0.3; Genomic 
losses ≤−0.3 [13].

Nucleic acid isolation and purification

For SNP genotyping and RNA sequencing (RNA-
seq) analysis, genomic DNA and total RNA were isolated 
from 10–20 mg sections of fresh-frozen tumor specimens 
for 23/47 samples with focal 8p11-p12 amplification. Prior 
to nucleic acid isolation, each specimen was evaluated for 
neoplastic cell content using touch preparation imprints 
stained with May-Grünwald Giemsa (Chemicon). Highly 
representative specimens with at least 70% neoplastic cell 
content were included in downstream analyses. Genomic 
DNA was isolated using the Wizard Genomic DNA 
extraction kit (Promega), including proteinase K treatment 
(Roche) followed by phenol-chloroform purification 
(Sigma). Total RNA was isolated with the RNeasy Lipid 
Tissue Mini Kit (Qiagen) according to the manufacturer’s 
instructions. DNA and RNA concentration were measured 
using Nanodrop ND-1000 (Nanodrop Technologies). The 

total RNA concentration was also evaluated using QuBit 
(ThermoFisher Scientific). RNA integrity was assessed 
using the RNA 6000 Nano LabChip Kit with Agilent 2100 
Bioanalyzer (Agilent Technologies).

Whole transcriptome RNA sequencing (RNA-seq)

Total RNA samples from 23 breast carcinomas with 
high-level regional 8p11-p12 amplification were processed 
at the Science for Life Laboratory (National Genomics 
Infrastructure Stockholm). Illumina TruSeq strand-specific 
RNA libraries (Ribosomal depletion using RiboZero 
human) containing 125 bp pair-end reads were obtained 
for each sample on a HiSeq2000 sequencer (Illumina). 
The computations were performed on resources provided 
by SNIC through Uppsala Multidisciplinary Center for 
Advanced Computational Science (UPPMAX) under 
Project b2015076, as described in the Supplementary 
Methods [51].
Quality control

Quality control of raw RNA-seq reads was 
performed prior to assembly using FastQC (0.11.5). The 
RNA-seq reads were then trimmed and filtered with 
TrimGalore (0.3.3) to remove adapter sequences and 
reads with Phred quality scores below 20, followed by 
alignment to the hg19 build 37 reference assembly of the 
human genome using STAR (2.5.1b) [52]. Read alignment 
yielded approximately 40–50 million aligned reads per 
sample. Counts and Fragments Per Kilobase of transcript 
per Million mapped reads (FPKM) were calculated using 
HtSeq (0.6.1) [53] and Cufflinks (2.2.1) [54], respectively. 
Quality control statistics for mapped reads (e.g. gene 
body coverage and read distribution) were obtained using 
RSeQC (2.3.6).
Fusion gene identification

Fusion transcripts were identified with 
FusionCatcher (0.99.5a) using criteria to remove false 
positive candidate fusion events, followed by classification 
of “driver” fusion events (Bayesian probability scores 
< 0.5) with oncogenic potential using Oncofuse (1.1.1) 
[55, 56]. Circos plots were generated with the Circos 
module (0.66) to visualize DNA copy number alterations, 
SNP plots, fusion genes, and exonic variants for each 
sample [57]. The difference in gene expression patterns 
for specific fusion transcripts was determined using t-test 
or ANOVA, as appropriate (P < 0.05).
Variant calling and filtering

The Genome Analysis Toolkit (GATK 3.5.0) 
variant calling pipeline [58] and the ANNOVAR tool 
(2016.05.11) were used to identify and annotate genetic 
variants, e.g. SNPs and indels, in individual samples with 
the SplitNCigarReads, BaseRecalibrator (with dbSNP 
Build 138 hg19), HaplotypeCaller, and VariantFiltration 
(Fisher Strand (FS > 30.0) and Qual By Depth values 
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(QD < 2.0)) tools, respectively. Common genetic variants 
found in the human population were removed with 
ANNOVAR using the dbSNP (hg19_snp138), 1000 
Genomes Project (1000g2015aug) with a minor allele 
frequency (MAF) threshold of 0.01, SweGen dataset 
[59], and NHLBI GO Exome Sequencing Project (hg19_
esp6500siv2_al) databases. Genetic variants not found 
in the COSMIC database version 70 (cosmic70) were 
denoted as “novel” genetic variants. Sequence Ontology 
analysis was performed to identify a conservative set of 
potential deleterious genetic variants resulting in amino 
acid changes, i.e. frameshift insertion (SO:0001909), 
frameshift deletion (SO:0001910), frameshift block 
substitution (SO:0001589), stopgain (SO:0001587), or 
stoploss (SO:0001578) [60]. To determine whether the 
deleterious genetic variants were associated with 8p11-p12 
amplification, the mutation frequency was also evaluated 
in mRNA-seq data for 10 primary breast carcinomas 
sequenced by The Cancer Genome Atlas (TCGA) that 
lacked 8p11-p12 amplification (SNP segmented mean < 
0.4) [61, 62]. BAM files for the 10 TCGA samples were 
downloaded from the Genomic Data Commons (GDC) 
Portal, converted to FASTQ format with BEDTools 
BAMTOFASTQ (2.25.0), and compressed with Gzip 
before running the GATK variant calling pipeline with 
RNA-seq reads aligned to the hg19 build 37 reference 
assembly.

Genome-wide SNP genotyping analysis

Genome-wide SNP genotyping analysis was 
processed for the 23 amplified samples with Illumina 
Infinium HumanOmni 2.5-8 v1.3 Beadchips at the 
SCIBLU Genomics DNA Microarray Resource Center 
(SCIBLU), Department of Oncology, Lund University. 
The beadchips were scanned on an iScan (Illumina) 
and data processed using the Illumina GenomeStudio 
Genotyping Module software (V2011.1) and hg19 build 
37 reference assembly of the human genome to calculate 
B-allele frequencies (BAF) and logR ratios (LRR). 
Genome-wide allele-specific copy number profiles 
were generated in R/Bioconductor (version 3.3.2) using 
the ASCAT (allele-specific copy number analysis of 
tumors, version 2.5) algorithm and the germline genotype 
prediction function for Illumina 2.5M SNP arrays, as 
previously described [63]. ASCAT profiles illustrate the 
copy number for the minor allele (least frequent allele) and 
the estimated overall copy number (sum of the minor and 
major allele counts).

Fluorescence in situ hybridization (FISH)

Probe labeling and hybridization were done 
using locus-specific bacterial artificial chromosome 
(BAC; BACPAC Resources Center) probes to verify 
gene amplification and fusion genes. Touchprint 

preparations were prepared with fresh-frozen tumor 
samples on Superfrost Plus microscope slides (Erie 
Scientific Company). Dual-color FISH was performed 
using co-hybridized biotin-16-dUTP and dioxigenin-
11-dUTP labeled probes (Supplementary Table 3). The 
slides were analyzed using a Leica DMRA2 fluorescent 
microscope (Leica) equipped with an ORCA Hamamatsu 
CCD (charged-couple devices) camera and filter cubes 
specific for green fluorescein isothiocyanate (FITC), red 
rhodamine, and UV for DAPI visualization. Digitalized 
black and white images were acquired using the Leica 
CW4000 software package.

Ingenuity pathway analysis (IPA)

Ingenuity Pathway analysis (Ingenuity Systems, 
Redwood City, USA) was performed to assess the 
functional relevance of the differentially expressed 
transcripts, deleterious genetic variants (identified in 
≥ 20% of samples), and fusion genes with oncogenic 
potential. Canonical pathways, diseases and bio functions, 
and upstream regulator analyses were generated using 
Fisher’s exact test (P < 0.05). The activation state of the 
upstream regulators was determined with the z-score, 
where z > 2 and z < −2 were denoted as activation and 
inhibition, respectively.

Statistical analyses

Statistical analyses were performed using a 0.05 
p-value cutoff in R/Bioconductor (version 3.3.2). All 
p-values are two-sided. The difference in mutation 
frequency and gene expression patterns between 8p11-p12 
amplified and non-amplified samples were determined 
using Wilcoxon Rank Sum test or Pairwise Wilcoxon 
Rank Sum Test.

Data availability

The data reported in this study have been 
deposited in the NCBI Gene Expression Omnibus and 
are accessible through GEO Series accession number 
GSE97293 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE97293).
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