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Detecting time-evolving phenotypic components
of adverse reactions against BNT162b2
SARS-CoV-2 vaccine via non-negative tensor
factorization

Kei Ikeda,1,18 Taka-Aki Nakada,2,18 Takahiro Kageyama,1,18 Shigeru Tanaka,1 Naoki Yoshida,3 Tetsuo Ishikawa,4

Yuki Goshima,4 Natsuko Otaki,3 Shingo Iwami,5,6,7,8,9,10 Teppei Shimamura,11 Toshibumi Taniguchi,12

Hidetoshi Igari,12,13 Hideki Hanaoka,14 Koutaro Yokote,15 Koki Tsuyuzaki,16 Hiroshi Nakajima,1,13,*

and Eiryo Kawakami3,4,9,17,19,*

SUMMARY

Symptoms of adverse reactions to vaccines evolve over time, but traditional
studies have focused only on the frequency and intensity of symptoms. Here,
we attempt to extract the dynamic changes in vaccine adverse reaction symp-
toms as a small number of interpretable components by using non-negative
tensor factorization. We recruited healthcare workers who received two doses
of the BNT162b2 mRNA COVID-19 vaccine at Chiba University Hospital and
collected information on adverse reactions using a smartphone/web-based plat-
form. We analyzed the adverse-reaction data after each dose obtained for 1,516
participants who received two doses of vaccine. The non-negative tensor factor-
ization revealed four time-evolving components that represent typical temporal
patterns of adverse reactions for both doses. These components were differently
associated with background factors and post-vaccine antibody titers. These re-
sults demonstrate that complex adverse reactions against vaccines can be ex-
plained by a limited number of time-evolving components identified by tensor
factorization.

INTRODUCTION

While no definitive post-onset treatment for COVID-19 has yet been established, vaccination against SARS-

CoV-2 is themost promising strategy to prevent the spread of COVID-19. Several trials, including the phase

3 trials that provided the basis for emergency use authorization, have shown that the SARS-CoV-2 vaccines

reduce the infection, severe disease, and death of COVID-19 (Baden et al., 2021; Dagan et al., 2021; Frenck

et al., 2021; Haas et al., 2021; Polack et al., 2020; Voysey et al., 2021). On the other hand, the SARS-CoV-2

vaccines cause a wide range of adverse reactions including injection site events and systemic responses

(Baden et al., 2021; Polack et al., 2020; Sadoff et al., 2021; Voysey et al., 2021). Although the incidence of

life-threatening serious adverse events was low, systemic reactions such as headache and fever have

been reported to occur with a frequency of 60%-80% (Baden et al., 2021; Polack et al., 2020; Sadoff

et al., 2021). As booster and/or routine vaccinations are being considered for long-term protection and

response to mutant viruses, the adverse reactions that affect daily life are a matter of social concern. A pre-

cise characterization of adverse reactions may facilitate the development of safer vaccines and the estab-

lishment of safer vaccination schemes.

A data-driven approach to characterize complex phenotypes such as adverse reactions is to break them

down into a small number of patterns. Topic modeling approaches, such as non-negative matrix factoriza-

tion (NMF) and Latent Dirichlet Allocation (LDA), have been applied to identify latent symptom patterns

(i.e., subphenotypes) from electronic health record (EHR) data (Huang et al., 2015; Lu et al., 2016; Pivovarov

et al., 2015; Zhao et al., 2019a). Describing disease as an ensemble of subphenotypes helps us to investi-

gate associations with clinical outcomes and to generate testable hypotheses about the underlying

mechanisms.
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In identifying the subphenotypes of vaccine adverse reactions, it is important to note that symptoms evolve

and progress over time as a series of immune responses. However, conventional studies on vaccine adverse

reactions have focusedmainly on the frequency and intensity of symptoms and the temporal progression of

symptoms is only presented as a population average. Different timing of occurrence of the same symptom

may reflect different immune responses, but information on frequency and intensity does not allow us to

distinguish the difference.

In this study, we extract time-evolving subphenotypes of vaccine adverse reactions by using non-negative

tensor factorization (NTF), one of the topic modeling approaches (Luo et al., 2017). Tensor decomposition

has been shown to be useful in integrating information from different modalities and interpreting complex

information, such as analyzing gene expression patterns considering 3D anatomical structures (Ji, 2011)

and extracting relationships between genes and regulatory transcription factors (Roy et al., 2014). Tensor

decomposition has also been applied to Electroencephalogram (EEG) data to analyze epileptic seizures

(Acar et al., 2007) and to fMRI data to classify cognitive states (Batmanghelich et al., 2011). In recent years,

tensor decomposition has been applied to longitudinal EHR data to extract time-evolving phenotypes of

diseases (Perros et al., 2019; Zhao et al., 2019b). We collected information on adverse reactions against

BNT162b2 mRNA COVID-19 vaccine every day from day 1 to day 7 after each dose of vaccination using

a smartphone/web-based platform (Yamada et al., 2019), which is represented as a third-order tensor con-

sisting of three axes: symptoms, time, and subjects. A tensor-factorization model can identify the co-occur-

ring symptoms as subphenotypes, describe their temporal progression, and obtain individual intensities of

subphenotypes.We demonstrate that diverse and complex adverse reactions to the BNT162b2 vaccine can

be decomposed into four time-evolving components. We also show that these components are differently

associated with post-vaccine antibody titers and other external information such as immediate reactions

and background factors.

RESULTS

Uncovering time-evolving subphenotypes of adverse reactions by negative tensor

factorization

We applied NTF to the adverse-reaction data to extract time-evolving subphenotypes. The data on

adverse reactions are represented as a 3-way array consisting of three axes: symptoms, time, and subjects

(S columns, T rows, and N slices in Figure 1, respectively). NTF aims to decompose such apparently com-

plex data into a sum of a small number of latent components. Each latent component is expressed as the

outer product of symptommodule ak , temporal module bk , and subject module ck , indicating what types of

symptoms occur at what times and in what populations (Figure 1). To select the optimal number of the

latent components (r in Figure 1), we repeatedly decomposed the original data, each with a random

20% of elements deleted, into a different number of components and calculated reconstruction loss (Lin

and Boutros, 2020). The median reconstruction error was the smallest when we decomposed the data

into four components (Figure S2).

Thus, we extracted four components, consisting of symptom modules, temporal modules, and subject

modules (Figure 2A). Component 1 showed diverse systemic symptoms almost exclusively on day 1 after

the second dose. Components 2 and 3 shared a similar time course over the two doses, but component

2 was a local event characterized by local pain at the inoculation site, while the main symptom of compo-

nent 3 was whole-body muscle ache, a systemic response. Similar to component 1, component 4 was char-

acterized by a wide range of systemic symptoms but peaked on day 2 after the second dose.

As shown in the subject module (Figure 2A), component 2 was the most frequent, with more than half of the

subjects showing the pattern (1,029 subjects with a c1 score >1.0). Components 1 and 3 were present in

about one-third of subjects (746 and 603 subjects with a score >1.0, respectively), and component 4 was

the least frequent, with 407 subjects showing a c4 score >1.0.

The study subjects were divided into threemajor groups when stratified by hierarchical clustering based on

these four component scores for subjects (Figure 2B). Group 1 had high component 1 and 4 scores together

with the other scores and was considered to represent subjects with severe adverse reactions. Group 2 had

high component 1 scores but low component 4 scores and can be interpreted as a group with moderate

adverse reactions. Group 3 was mostly mild cases that showed few symptoms except for local pain at

the inoculation site or whole-body muscle ache represented by components 2 and 3.
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Validation of negative tensor factorization

To evaluate whether the components extracted by NTF reflect the characteristics of the original data, we

compared the data reconstructed from the components with the original data. The reconstruction error for

the whole data evaluated byMSEwas 0.060 and the coefficient of determination R2 was 0.53, indicating that

most of the data were well explained by the sum of the components obtained from the NTF.

To investigate the impact of considering time dependence on decomposition, we then applied NMF, as a

comparative method of NTF, to the adverse-reaction data at each time point independently. The optimal

number of latent components of NMF determined by the masking approach was one except for day 5 after

the second dose, which had two components (Figure S3). The NMF components represent the most typical

phenotypic pattern of the day, but they do not capture the heterogeneity of phenotypes or the association

of components between time points. The reconstruction error evaluated by MSE was 0.093 and R2 was 0.31

for the NMF model, showing that the NTF model fits better with the data. Thus, the NTF could precisely

extract the dynamic changes in phenotypes as a small number of interpretable components, which are diffi-

cult to extract by independent analysis of each time slice.

We further examined how the pattern of adverse reactions was represented by the tensor components for

each subject. Four representative subjects are shown in Figure 3A. Subject #27was a verymild case, present-

ing with whole-body muscle ache on day 1 after both the first and second inoculations, and fatigue, chill,

headache, and use of acetaminophen/NSAID after the second dose only. This pattern is represented by

the sum of components 1 and 3. Subject #521 had similar symptoms but also showed local pain at the inoc-

ulation site after both inoculations. In this case, the symptoms aremainly represented as the sum of compo-

nents 1 and 2. Subject #79 was a case with missing values, who did not respond on day 5 after the second

inoculation. TheNTF could accommodatemissing datawithmask property and reconstruct the data by esti-

mating the values that would have been there. Subject #329 was a rather unique case, with severe and wide-

spread symptoms that persisted for seven days after both the first and second doses. In this case, compo-

nent 4 showed a very high value. Taken together, although the original symptom patterns were accurately

reconstructed based on the tensor components in most subjects, there were some exceptions.

When we sorted the 1,516 subjects by reconstruction error, only nine subjects, including subject #329, had

very high reconstruction errors with MSE>0.4 (Figure 3B). All these nine subjects had persistent severe

symptoms, which would be difficult to be adequately represented by the four tensor components because

all these components had a peak on day 2 or earlier. Component 4 score for subjects was significantly
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Figure 1. Schematic of tensor factorization of adverse reactions against two doses of BNT162b vaccine

The time-series data for vaccine adverse reactions can be represented as a 3D tensor consisting of three indices: symptoms (S), time (T), and subjects (N).

Tensor factorization aims to approximate the 3D tensor by a sum of a small number of latent components. Each component is represented by the outer

products of the symptom, time, and subject modules. The symptom module indicates what symptoms are included in the component, the time module

indicates at what timing the component appears, and the subject module indicates in which subjects the component appears.
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associated with reconstruction errors (Table S3), suggesting that atypically severe, widespread, and persis-

tent adverse reactions could not be solely explained by the four components.

Association of tensor components with immediate reactions

Next, we investigated how the tensor components were associated with immediate reactions on day 0.

Immediate reactions rarely occurred after the first dose, and the correlation coefficient could not be

calculated for some symptoms (gray area in Figure 4A), and no significant correlations were detected

for the first dose (Figure 4A, left panel). In contrast, some immediate reactions after the second dose

were strongly associated with the tensor components of adverse reactions: redness at the inoculation

site was strongly correlated with components 1 and 4; itching with component 4; and nausea with com-

ponents 1 and 4 (Figure 4A, right panel). Components 2 and 3 showed no significant association with

immediate reactions.

Association of tensor components with background factors

We then examined the relationships of the tensor components with background factors (Figures 4B-4E). A

history of adverse reactions to other vaccines was positively associated with component 4 score for sub-

jects. A history of contact with patients with COVID-19 was also significantly associated with adverse reac-

tions; no contact with patients with COVID-19 at all was negatively associated with component 3 score for

subjects. A history of flu symptoms within a year had a positive association with component 4 score for sub-

jects. Regarding habits, no drinking had a positive association with component 4 score for subjects. Occu-

pations were also significantly associated with adverse reactions with doctors negatively associated with

components 1, 3, and 4 scores for subjects, and nurses positively associated with components 1, 2, and

4 scores for subjects. We should note that occupation is strongly confounded with sex. Doctors had about

three times as many males as females, and conversely, nurses had only about one-10th as many males as

females (Table S4).

Regarding comorbidities and current medications, malignancy was positively associated with compo-

nent 4 score for subjects. Autoimmune diseases showed positive associations with component 4 score

for subjects. Inhaled and oral corticosteroid and anti-allergic drug were positively associated with

component 4 score for subjects, and thyroid drug was also positively associated with component 1

score for subjects.
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Figure 2. Four tensor components identified and corresponding modules

(A) The tensor factorization yielded four components corresponding to the major patterns of adverse reactions. Each component is represented by the outer

product of the modules in a horizontal row. For example, component 1 consists of a1 as the symptom module, b1 as the temporal module and c1 as the

subject module. The y axis for symptom and temporal modules represents the weights of modules normalized so that their L2-norms are equal to 1.

(B) Stratification of subjects based on subject module scores (c1, c2, c3, and c4). Subjects are clustered into three major groups by hierarchical clustering using

Euclidean distance based on the subject module scores. Clusters based on maximum module scores are also in the side bar.
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Women scored significantly higher on all components than men (Figure 4E and Table S5). The association be-

tween age and the tensor component was different for each component. For component 3, the 40 and 50s sub-

jects scored significantly lower. Components 1, 2, and 4 scores for subjects were not significantly related to age.

Association of tensor components with antibody titers

Wehavepreviously reported that post-vaccination anti-SARS-CoV-2S antibody titers were affected by the time

from second dose to the antibody test, age, sex, the interval between the first and second inoculation, drinking

habits, and comorbidities and their medications (Kageyama et al., 2021). Using a generalized additive model

that considers the influence of these factors as covariates, we assessed the impact of the tensor components

on the post-vaccination antibody titer. We found a strong positive correlation between component 1 score for

subjects and the post-vaccination antibody titer, which was similar for both women and men (Figure 4F and

Table 1). However, no significant associations were found for the other three components.

Predictability of adverse reactions and antibody titers

Several significant associations between background factors and tensor components of adverse reactions

led us to predict adverse reactions based on background factors. To account for nonlinearities and inter-

actions among background factors, we used a random forest (RF) classifier to predict whether each compo-

nent score for subjects would exceed a threshold of 1.0. For components 1 and 4 scores for subjects, the

area under the receiver operating characteristics curve (AUC), a measure of predictive accuracy, was

around 0.65, indicating partial predictability (Figure 5A). On the other hand, the AUC for the scores of com-

ponents 2 and 3 scores for subjects was low, especially for component 2, AUC = 0.504, indicating almost no

predictability. We then assessed the contribution of each background factor to prediction using permuta-

tion importance. Factors that have shown significant associations in statistical association analyses

(Figures 4A–4E), including age and sex, were identified as important predictors (Figure 5B).

Finally, we predicted antibody titers from background factors and tensor component scores for subjects.

Because of the nonlinearity of the antibody titer, it was difficult to predict the value of antibody titer as a

regression problem. Therefore, we set six thresholds of antibody titer (108, 109, 1010, 1011, 1012, and

1013) and predicted antibody titers as a binary classification problem with RF, whether the antibody titer

exceeds each threshold (Figure 5C). The AUCs were 0.645-0.867 for the respective antibody titer thresh-

olds, suggesting the partial predictability of antibody titer (Figure 5D). When the contribution of each var-

iable to prediction was examined by permutation importance, subject scores of the tensor component

were extracted as important predictors, in addition to time from second dose to antibody test, interval be-

tween the first and second inoculation, acetaminophen/NSAID-intake, and age (Figure 5E). The c1 subject

score was important for prediction using 1010, 1011, and 1012 threshold, consistent with c1 score being

significantly associated with antibody titers.

DISCUSSION

In this study, we decomposed longitudinal data on adverse reactions after two doses of the SARS-CoV-2 vac-

cine into four time-evolving components by NTF. Of these four components, one represents inoculation site

events and other three represent systemic responses, suggesting that the systemic adverse reactions, which

have been treated collectively, consist of different immunological elements. Each component was associated

differentlywith responses immediately after vaccinationandwithbackground information suchas age, sex, and

comorbidities. Furthermore, we found that only component 1, which corresponds to the diverse systemic re-

sponses on day 1 after the second inoculation, was positively correlated with post-vaccination antibody titer.

One of the main technical challenges in this study is the rank optimization in the NTF. In unsupervised

learning, the number of elements to be decomposed (i.e., rank) must be specified in advance. Several

methods using coherence, which means whether a decomposed component represents a meaningful

Figure 3. Representative cases and validation of tensor components

(A) Four representative cases illustrating how actual symptoms are approximated by the sum of the four tensor components. In each case, the score of the

subject module is shown as a number with a red circle representing the amplitude of the score. The symptoms reconstructed by the sum of the components

are shown as a green heatmap to the right of the original score.

(B) Subjects sorted by reconstruction error (MSE) and corresponding subject module scores. The tensor component scores for the 1,516 subjects are sorted

in the same order as the MSE graph, with a vertical column representing the MSE and tensor component scores for the same subject. The four representative

subjects appearing in (A) are indicated by dotted lines and open circles.
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concept, as a metric for factorization have been proposed in topic modeling (Chang et al., 2009; Lau et al.,

2014; Newman et al., 2010; Stevens et al., 2012; Zhao et al., 2019b). However, as this study dealt with ordinal

measures of symptom severity rather than binary topics, it was difficult to use the coherence within topics as

a metric. There are some ad hoc approaches for the rank optimization in NTF and NMF including the elbow

method and similar techniques (Fanaee-T and Gama, 2016; Gaujoux and Seoighe, 2010; Lin and Boutros,

2020) but suchmethods should subjectively select the optimal rank. When we calculated the reconstruction

error for all elements, not just the masked elements, the reconstruction error decreased monotonically as

the rank increased (Figure S4). The decrease was gradual, and it was difficult to determine the elbow.

Instead, we introduced a masking approach that finds a suitable rank to remove noise and restore the orig-

inal data. An optimal rank that properly captures the dependencies among elements is expected to give

the smallest error rate in imputing the missing values introduced as noise. The noise required for this

approach is as simple as randomly masking elements, and there is no need to assume a noise distribution.

The only parameter that has to be set is the percentage of elements to bemasked as noise. When we varied

the percentage of masked elements to 5%, 10%, 20%, and 30%, the rank showing the smallest reconstruc-

tion error in the adverse reaction data was always four, confirming that the estimation of the optimal rank is

not affected much by the percentage of masked elements (Figure S5). As shown in Figures S2 and S4, the

reconstruction errors take large values in some decompositions and show a long-tail distribution. There-

fore, we adopted the median rather than the mean of the reconstruction error as the measure of rank opti-

mization. The simple and intuitive masking approach will have broad utility in any unsupervised learning

method with the capability of missing value imputation.
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Figure 4. Associations of tensor components with immediate reactions, background information, and antibody titers

(A–D) Heatmaps of statistically significant associations of tensor component scores for subjects with immediate reactions on the day of vaccination (A),

background factors such as COVID-19 contact, habits, and jobs (B), comorbidities (C), and current medications (D). Associations with the immediate

reactions were assessed using Spearman’s rank correlation and other associations were assessed using the Tweedie generalized linear model. FDR-

corrected p values less than 0.05 were considered significant.

(E) Associations of tensor components scores for subjects with sex and age.

(F) Associations between tensor component scores for subjects and post-vaccination anti-SARS-CoV-2S antibody titers. In this plot, antibody titers

were adjusted to the standard conditions of interval to test (days) = 21, inoculation interval (days) = 21, age (year-old) = 40, alcohol = none,

immunosuppressant = none, glucocorticoid = none, anti-allergic drug = none, and post COVID-19 infection = none by using a generalized additive model.

The shaded area represents the 95% confidence interval of the regression line.
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Although it is beyond the scope of this study, we believe that formalizing biomedical data as a tensor and

performing tensor decomposition are highly expandable and promising in several directions. For example,

the Tucker version of non-negative tensor decomposition (NTD) can be formalized by setting the different

ranks for each module (Cichocki et al., 2009). Although the CP decomposition used in this study has an

advantage in simplified interpretation, the Tucker decomposition may provide a more flexible and realistic

decomposition (Luo et al., 2017). To evaluate reconstruction errors, we can try not only Euclidean distance

assuming the Gaussian distribution, but also Kullback-Leibler (KL)-divergence assuming the Poisson distri-

bution, Itakura-Saito (IS)-divergence assuming the Gamma distribution, and many other divergences (Ci-

chocki et al., 2009). These family divergences are referred to as Alpha-Beta-divergences (AB-divergences)

and are parameterized by the two parameters (Cichocki et al., 2011). As IS-divergence has been reported to

perform well in acoustic data analysis (Févotte et al., 2009), the AB-divergences will allow us to deal with

various types of data obtained in biomedical research. Coupled matrix and tensor factorization (CMTF,

Acar et al., 2013) can decompose matrices and tensors in a coupled manner. In biomedical research, where

incomplete and heterogeneous datasets are obtained, it will become increasingly important to use the

joint analysis as CMTF to clarify relationships between heterogeneous datasets and to compensate for

missing information. Furthermore, the current NTF does not consider the order of time and cannot char-

acterize temporal interactions. Incorporating architectures such as long short-term memory (LSTM) to ac-

count for temporal interactions would be one direction to generalize NTF (Wu et al., 2019).

The four tensor components of adverse reactions provide us with implications of the immune responses against

the SARS-CoV-2 vaccine. Components 2 and 3, which were characterized by local inoculation-site pain and

whole-body muscle ache, respectively, are likely to reflect innate immune responses because they showed

the samedynamics after the first and second dose andwere not associated with antibody responses. The innate

immune response to vaccines has been known to have two routes (Hervé et al., 2019): the first route is called the

neural route, in which immune cells stimulate nociceptors with cytokines and direct contact, causing local pain

(Ren and Dubner, 2010); the second route is called the humoral route, in which cytokines produced by immune

cells leak into the circulatory system and act on the CNS, causing systemic fever, headache, and whole-body

muscle ache (Saper et al., 2012; Vasilache et al., 2015). Component 2 identified in our study includes local

pain at the inoculation site as well as local symptoms such as redness and swelling, suggesting that it corre-

sponds to the neural route. Component 3 includes whole-body muscle ache as well as joint pain and fatigue,

which would correspond to the humoral route. The fact that there was little overlap between the subject pop-

ulations showing components 2 and 3 (Figure 2B), and that only component 3 showed a significant negative cor-

relation with age, suggests that the two innate immune routes are independently regulated.

Components 1 and 4 share the common feature that diverse systemic symptoms are boosted only after the

second dose, which may reflect acquired immune responses. It is well known that T cells and B cells

contribute to the formation of immune memory in acquired immunity (Lauvau and Goriely, 2016). A few

Table 1. Generalized additive models to evaluate the association between adverse reaction component scores and

post-vaccination antibody titers

component population coefficient p value FDR

c1 all 0.08 7.2E-7 8.6E-6

female 0.066 0.00015 0.0016

male 0.13 0.00042 0.0042

c2 all 0.025 0.42 1

female 0.024 0.50 1

male 0.031 0.58 1

c3 all 0.037 0.23 1

female 0.033 0.33 1

male 0.055 0.36 1

c4 all 0.052 0.013 0.24

female 0.042 0.084 0.68

male 0.060 0.31 1

bold: significant association (FDR <0.05).
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percent of T cells and B cells sensitized to an antigen differentiate into long-lived memory cells and induce

a rapid and efficient immune response when the same antigen appears again (Cooper and Alder, 2006;

Parish and Kaech, 2009). The response enhanced by acquired immunity is suppressed by CD4 T cells

and regulatory T cells, thus preventing harmful immunopathology (Palm andMedzhitov, 2007). Component

1 of the vaccine adverse reaction represents a rapid and strong immune response boosted by adaptive im-

munity. The fact that only component 1 was strongly and positively associated with post-vaccination anti-

body titers also supports this hypothesis. On the other hand, component 4, compared with component 1,

was characterized by a slower peak and more persistent symptoms (Figure 2A) and occurred in a smaller
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Figure 5. Predictions of tensor components and antibody titers using random forest classifiers

(A) Receiver Operating Characteristic (ROC) curves for the validation dataset in predicting whether each component

score for subjects would exceed a threshold of 1.0.

(B) Contribution of each background factor to prediction using permutation importance. Variables are sorted by the

maximum permutation importance score for the four prediction models, and a heatmap shows the importance of the top

15 variables.

(C) Distribution of post-vaccination anti-SARS-CoV-2S antibody titer. We set six thresholds of antibody titer (108, 109, 1010,

1011, 1012, and 1013) and predicted antibody titers as a binary classification problem.

(D) ROC curves for the validation dataset in predicting antibody titers from background factors and tensor component

scores for subjects.

(E) Contribution of each background factor to antibody titer prediction using permutation importance. Variables are

sorted by the maximum permutation importance score for the six prediction models, and a heatmap shows the

importance of the top 15 variables.
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number of cases, particularly atypical ones (Figures 2 and 3B). Subjects with a strong component 4 were

more likely to have had adverse reactions to other vaccines (Figure 4B), and had a higher rate of malig-

nancies, autoimmune diseases, and steroid administration (Figures 4C and 4D). This suggests that compo-

nent 4 arises in the context of the dysregulation of acquired immunity. One of the directions for the devel-

opment of safer vaccines will be to suppress the innate immune response and dysregulation of acquired

immunity that may lead to harmful immunopathology, while maintaining the activation of memory B cells

that lead to antibody production.

Prediction of adverse reactions based on background factors revealed that adverse reaction components 1

and 4 were partially predictable. The predictability of these systemic adverse reactions may lead to

advance prescription of acetaminophen/NSAIDs for high-risk population. Antibody titers were also

partially predictable from background factors and adverse reactions. As it is not practical to measure anti-

body titers at a fixed time for all vaccinated populations, the antibody titer prediction model developed in

this study can be used to screen populations in which antibody titers may not rise sufficiently and to recom-

mend additional vaccinations.

In conclusion, we demonstrated that tensor factorization was able to summarize complex data on vaccine-

induced adverse reactions into a limited number of time-evolving components that could differentiate un-

derlying immunological processes. These results will inform future studies related to the safety and efficacy

of any vaccines andmay change our way of analyzing vaccine reactogenicity, leading to the development of

safer yet efficacious vaccines and increased adherence to vaccines.

Limitations of the study

First, background information and adverse events were collected through aweb-based questionnaire and a

mobile app, so they have not been confirmed by experts and containmissing values. Compared to the elec-

tronicmedical record obtained through interviewswith physicians, there should be fluctuations and errors in

individual answers. As shown in rank estimation using themasking approach, NTF can compensate for noise

in thedata. Nevertheless, the results obtained in this studywill need to be validated using additional cohorts

in the future to ensure generality and reliability. Secondly, we only assessed the antibody responses and did

not assess other immuneprocesses such as cellular and cytokine responses after vaccination. Antibodies are

a major component of immune defense formed by vaccines, but it is also known that immunity induced by

memory T cells and removal of infected cells by CD8 T cells also contribute to the defense against viral infec-

tion (Cox and Brokstad, 2020). The adverse reaction components that were not associatedwith the antibody

titer in this study may be related to these other protective responses, so it is necessary to investigate the

relationship with immunological parameters other than antibody titer in the future.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Eiryo Kawakami (eiryo.kawakami@chiba-u.jp).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data reported in this paper will be shared by the lead contact upon request. The raw vaccine adverse re-

action datasets and source-code used to perform NTF are publicly available at https://github.com/github.

com/eiryo-kawakami/Vaccine_Tensor_2022_code. Any additional information required to reanalyze the

data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study subjects

We recruited healthcare workers who were receiving the BNT162b2 (Pfizer, Inc., and BioNTech) in the vacci-

nation program of Chiba University Hospital (Kageyama et al., 2021). Out of 2,838 employees in Chiba Uni-

versity Hospital, 2,549 received at least one dose of BNT162b2 mRNA COVID-19 vaccine (30 mg) from

March 3rd to April 9th, 2021. The adverse-reaction information was obtained for 1,774 individuals who

received two doses, whose median age was 38 (interquartile range 30–48) with 1,168 (65.8%) being women.

All participants gave written informed consent before undergoing any study procedures.

METHOD DETAILS

Data collection

Background information was collected with web-based questionnaires. Information on adverse reactions

was collected every day using a smartphone/web-based platform (Yamada et al., 2019) from the vaccina-

tion day (day 0) to the 14th day after vaccination (day 14) for both doses. On the day of inoculation (day 0),

subjects were asked to respond to each of the 18 symptoms to assess reactions immediately after inocu-

lation (Table S1). In the questionnaire after day 1, subjects were asked to respond to each of the 12 symp-

toms with a score from 0 (no symptoms) to 3 (severe symptoms), corresponding to the degree of symptoms

(Table S2). We analyzed the adverse-reaction data from day 1 to day 7 after each dose because few adverse

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

R-4.0.2 R Foundation for Statistical Computing https://www.r-project.org/

Python-3.8.5 Python Software Foundation https://www.python.org/

TensorLy-0.6.0 Kossaifi et al., 2016 http://tensorly.org/stable/index.html

scikit-learn-0.23.2 Pedregosa et al., 2011 https://scikit-learn.org/stable/index.html

pROC-1.17.0.1 Robin et al., 2021 https://cran.r-project.org/web/packages/

pROC/index.html

missForest-1.4 Stekhoven and Bühlmann, 2012 https://cran.r-project.org/web/packages/

missForest/index.html

statmod-1.4.35 Smyth et al., 2021 https://cran.r-project.org/web/packages/

statmod/index.html

mgcv-1.8.34 Wood and Wood, 2015 https://cran.r-project.org/web/packages/

mgcv/index.html
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reactions remained and the rates of response to the questionnaires were lower at day 8 or after (Figure S1).

We also focused on 1,516 subjects who had a missing response rate of less than 30%.

Antibody response

Blood samples were obtained 2–5 weeks after the 2nd dose of vaccination. Antibody titers were determined

using Elecsys�Anti-SARS-CoV-2S on Cobas 8000 e801module (Roche Diagnostics, Rotkreuz, Switzerland).

Non-negative tensor factorization (NTF)

The time-series data for adverse reactions can be represented as a third-order tensor,X ˛RS3 T3N, where S

is the number of symptoms, T is the number of observation time points, and N is the number of subjects.

For the adverse-reaction data in this study, S = 12, T = 14, and N = 1; 516 and all the elements of X were

non-negative. We used canonical polyadic (CP) decomposition to represent the third-order tensor as a

product of lower-dimensional elements and reveal the latent structures. Since all values of the original

third-order tensor in this study are greater than or equal to zero, i.e., non-negative, we used non-negative

PARAFAC (Shashua and Hazan, 2005), a type of CP decomposition implemented in a Python library Ten-

sorly (Kossaifi et al., 2016). The non-negative PARAFAC decomposition function non_negative_parafac

aims to obtain r components that approximate the original third-order tensor X as:

min kX � bXk2F ;

with bX =
XR
r = 1

lr ar+br+c

= L3 1A3 2B3 3C

subject to : L; A; B; CR 0;

where L is a third-order diagonal tensor whose r-th diagonal element Lrrr = lr , A = ½a1;a2;.;aR �˛ RS3R
+ ,

B = ½b1;b2;.;bR �˛RT3R
+ , and C = ½c1; c2;.; cR �˛RN3R

+ denote factor matrices. kX � bXk2F is the squared

Frobenius norm to evaluate the reconstruction error between the original tensor X and the reconstructed

tensor bX , + denotes the outer product of two vectors, and3m denote them-mode product of a tensor by a

matrix (m =1, 2, or 3, Cichocki et al., 2009). The initial values of A, B, and C are filled with random values

drawn from the uniform distribution taking values in the range 0 to 1. In each iteration step, X is matricized

(unfolded) in the m-mode and the multiplicative update rule is performed to update A, B, and C. In the

initialization and each iteration step, the column vectors of A, B, and C are normalized so that their L2-

norms are equal to 1. To avoid division by zero or unstable calculation, the small values less than machine

epsilon ðεÞ were replaced by ε in the initialization and the last part of each iteration. The convergence is

evaluated by two stopping criteria: the tolerance for reconstruction error variation and the maximum num-

ber of iterations. If at least one of the criteria is met (the reconstruction error variation is less than tolerance

or the number of iterations exceed themaximum), the calculation is considered to be converged and stops.

We used the tolerance (tol parameter in non_negative_parafac function) of 10�6 and the maximum number

of iterations (n_iter_max parameter in non_negative_parafac function) of 1,000 for the rank optimization

and 5,000 for the final decomposition. The mask property implemented in non_negative_parafac function

was applied on the missing elements in the original tensor to exclude them from the NTF fitting.

Non-negative matrix factorization (NMF)

The adverse-reaction data at each time point is represented as a two-order matrix, X ˛RN3S , where S is the

number of symptoms and N is the number of subjects. The NMF aims to approximate the matrix X as an

inner product of two matrices W and H as:

min kX � WHk2F ;

subject to : W ; HR0;

whereW ˛RN3K andH˛RK3S . To compare NMF with NTF under the same conditions as possible, we used

non_negative_parafac function implemented in Python library TensorLy. Sincematrix can also be viewed as

a second-order tensor, applying non-negative PARAFAC to matrices is equivalent to NMF. Thus, we
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performed NMF under the same conditions of initialization, normalization, update rule, avoiding division-

by-zero errors, and stopping criteria as for NTF.

Optimal number of tensor components

We adopted a masking approach to determine the optimal number of components in NTF, which has been

previously proposed for rank optimization of NMF (Lin and Boutros, 2020). The masking approach deter-

mines an optimal rank to give the smallest error in imputing the masked elements, which is also known

as ‘‘denoising’’ or ‘‘unsupervised cross validation’’ in machine learning context (Vincent et al., 2008; Perry,

2009). This assumes that the reconstruction performance for the masked elements should be maximized at

the optimal rank that properly captures the latent structure of the data. In the NTF, some non-zero ele-

ments of the original data were randomly masked to obtain the noisy data. The reconstruction error is

calculated as the mean squared error (MSE) only for the masked elements. In this study, the median recon-

struction error, obtained from 50 independent decompositions for each rank, was used as the optimization

metric.

Machine learning classifier

Random forest (RF) classifiers were applied to predict tensor component score for subjects and post-vacci-

nation anti-SARS-CoV-2S antibody titers. To account for the nonlinearity and interactions between explan-

atory and objective variables, we formulated the predictions as binary classification problems, with the

objective variables binarized by thresholds. The RF is an ensemble machine learning method that con-

structs multiple decision trees with randomly selected dataset using bootstrap sampling. We used Ran-

domRorestClassifier function in Python package scikit-learn. GridSearchCV function in the scikit-learn

package was applied to optimize the hyperparameters of the RF classifiers. The performance of each RF

classifier was evaluated using an area under the receiver operating characteristic (ROC) curve using R pack-

age pROC. Permutation importance was used to assess the contribution of explanatory variables to predic-

tion, which randomly permutes a variable across subjects to evaluate the effect on the performance of the

machine learning model, in this case, the AUC. Missing values in the background factors were imputed us-

ing the missForest package in R.

QUANTIFICATION AND STATISTICAL ANALYSIS

The correlations between decomposed components and acute reactions were analyzed using Spearman’s

rank correlation. The associations with background factors were assessed with a generalized linear model

assuming a Tweedie distribution for tensor components to accommodate their zero-inflated nature. We

used the glm() function in the R package stats and tweedie() function in the R package statmod. In the as-

sociation analysis between tensor components and antibody titers, the generalized additive model imple-

mented in R package mgcv (Wood, 2018) was used with covariates including interval to test, age, interval

between the 1st and 2nd inoculation, alcohol, use of immunosuppressant, use of glucocorticoid, use of anti-

allergic drug, and post COVID-19 infection. To account for the nonlinear effects of interval to test and age,

they were added as smooth terms to the model:

Antibody Titer � a + b1 tensor component subject score+ sðinterval to testÞ+ sðageÞ
+ b2 inoculation interval + b3 alcohol + b4 immunosuppressant

+ b5 glucocorticoid + b6 anti allergic drug+ b7 COVID19 infection+ e

Plots in Figure 4F show antibody titers adjusted to the standard conditions of interval to test (days) = 21,

inoculation interval (days) = 21, age (year-old) = 40, alcohol = none, immunosuppressant = none, glucocor-

ticoid = none, anti-allergic drug = none, and post COVID-19 infection = none. A two-sided p-value < 0.05,

false discovery rate (FDR)-corrected, was considered statistically significant.
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