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Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (M.tb), causes highest 
number of deaths globally for any bacterial disease necessitating novel diagnosis and treatment 
strategies. High-throughput sequencing methods generate a large amount of data which could be 
exploited in determining multi-drug resistant (MDR-TB) associated mutations. The present work is a 
computational framework that uses artificial intelligence (AI) based machine learning (ML) approaches 
for predicting resistance in the genes rpoB, inhA, katG, pncA, gyrA and gyrB for the drugs rifampicin, 
isoniazid, pyrazinamide and fluoroquinolones. The single nucleotide variations were represented by 
several sequence and structural features that indicate the influence of mutations on the target protein 
coded by each gene. We used ML algorithms - naïve bayes, k nearest neighbor, support vector machine, 
and artificial neural network, to build the prediction models. The classification models had an average 
accuracy of 85% across all examined genes and were evaluated on an external unseen dataset to 
demonstrate their application. Further, molecular docking and molecular dynamics simulations were 
performed for wild type and predicted resistance causing mutant protein and anti-TB drug complexes to 
study their impact on the conformation of proteins to confirm the observed phenotype.

Tuberculosis (TB) is a contagious disease caused by the bacterium Mycobacterium tuberculosis (M.tb). According 
to the latest World Health Organization Report (WHO 2018), 10 million people were infected and 1.6 million 
died of TB in 2017, which included 0.3 million HIV associated deaths1. TB is curable and the current line of 
treatment includes a combination of four first-line drugs - rifampicin, isoniazid, ethambutol and pyrazinamide. 
However, the problem is intensified due to the development of multi drug resistance (MDR) due to improper 
usage of anti-TB medicines, poor quality drugs, non-compliance of treatment regime by the patient, or trans-
mission of resistant strains of M.tb or simply activation of drug efflux pumps2. MDR-TB is curable by fluoro-
quinolones, however, these are limited, expensive, toxic and require longer treatment duration3. Thus, detection 
of resistance conferring mutations will help in rapid diagnosis of DR/MDR-TB and understanding the mecha-
nism of resistance to develop effective treatment strategies.

The standard technique for M.tb drug susceptibility testing is a culture based method, which compares the 
growth of the bacteria in the presence and absence of an anti-bacterial drug4. The traditional method of pheno-
typic drug susceptibility testing is challenging due to the delayed detection of resistance owing to slow bacterial 
growth and poor reproducibility of results in case of most of the drugs5. As the problem of drug resistance has 
intensified, various high-throughput sequencing methods and genotyping techniques have been developed to 
identify the resistance conferring mutations6–8. The introduction of next-generation sequencing techniques has 
led to an enormous amount of data9. However, the sensitivity of these methods varies depending on the drug 
resulting in misclassifications. Also, majority of these methods only detect frequently occurring mutations2,10.

The extensive data available in the public domain could be exploited for the efficient and accurate identifica-
tion of resistance causing mutations. It has already been well established that the primary cause of M.tb resistance 
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are mutations in genes encoding specific target proteins8,11. Thus, the need of the hour is a rapid method that can 
detect the mutations responsible for drug resistance from the gene sequence.

Machine learning (ML) techniques have been successfully used for building predictive classification mod-
els including the identification of compounds based on their biological activities12,13, side effect predictions14,15, 
novel disease-associated gene prediction16, microarray data analysis17, drug discovery against TB18,19 and many 
more20–22. AI based ML learns from the known features of data and then makes predictions on blind data23. In 
the present study, Artificial Intelligence (AI) and ML algorithms were used to classify single nucleotide variations 
(SNVs) as being resistant or susceptible in TB and predict novel resistance conferring mutations. In this work four 
ML algorithms, naive Bayes (NB), k nearest neighbor (kNN), support vector machine (SVM), and artificial neural 
network (ANN), were used for the prediction task. Several mutations have been identified which may cause drug 
resistance in M.tb. Various sequence and structure based features were used to capture the impact of these muta-
tions for each target gene. Additionally, a feature selection method was used to identify the features having the 
most significant role in classifying a mutation as susceptible or resistant. Molecular docking along with molecular 
dynamics (MD) simulations studies were performed for wild type and mutant, predicted to be resistance causing, 
protein-drug complexes to analyze the effect of the mutations. The present study describes an integrative com-
putational approach to generate AI and ML based models using the various sequence and structural features of 
SNVs in M.tb genes for the prediction of resistance conferring mutations.

Results
Dataset preparation. Single nucleotide variations were obtained for rpoB, inhA, katG, pncA, gyrA, and 
gyrB. Machine learning models were generated only for mutations associated with proteins having an exper-
imental structure available in the protein data bank (PDB). The total number of variations obtained from the 
TBDReaMDB and GMTV databases for each TB drug and the number of mutations obtained after data preproc-
essing have been provided in Table 1. The number of genes/mutations included in the final training dataset and 
testing dataset, and the actual number of resistant and susceptible mutations included in both training and test 
datasets have been provided in Table 2. The final datasets of the variations and descriptors used for model gener-
ation have been provided in Supplementary Tables S1–S6.

Model evaluation and comparison of machine learning algorithms. The performance of the classi-
fication models on the training data set using 10-fold cross validation is summarized in Table 3. All AI/ML mod-
els for the genes had good overall accuracy of approximately 70%. ANN performed the best with the highest 
accuracy models for most genes in the 10-fold cross validation. In the non-redundant testing data, we were able 
to categorize mutations as susceptible or resistant with an accuracy ranging between 66.66–100%. (Table 4). The 
ANN models had the overall best performance for testing data, followed by the kNN models with high accuracies 
and AUC values. The ROC plots for all the models are shown in Fig. 1.

The ANN models gave the best predictions in the case of four genes, katG, pncA, gyrA, and gyrB. The kNN 
models performed the best for four genes, rpoB, inhA, pncA, and gyrB, amongst the six genes for which models  
were built. The NB classifier had the best accuracy for inhA and katG genes. The AI/ML algorithms in the 

Drug Gene TBDReaMDB GMTV
Final 
variations

Rifampin rpoB 134 198 114

Isoniazid
InhA 13 30 27

katG 273 83 250

Pyrazinamide pncA 278 137 241

Fluoroquinolones
gyrA 17 112 73

gyrB 18 72 49

Table 1. Total number of variations obtained from TBDReaMDB and GMTV database for each TB drug and 
the number of mutations obtained after data preprocessing.

Drug Gene

Training set Testing set

Resistant Susceptible Total Resistant Susceptible Total

Rifampin rpoB 40 52 92 10 12 22

Isoniazid
InhA 8 14 22 2 3 5

katG 108 92 201 27 23 50

Pyrazinamide pncA 112 81 193 27 21 48

Fluoroquinolones
gyrA 25 33 58 6 8 14

gyrB 23 17 40 5 4 9

Table 2. Number of genes/mutations included in the final training dataset and testing dataset, and the actual 
number of resistant and susceptible mutations included in both training and test dataset.
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present study have successfully been used for predicting the effect of mutations on the stability of protein24–26. 
Supplementary Dataset 1 provides the AI/ML models generated in the present study.

Predictions on non-redundant blind testing data and descriptor selection. The non-redundant 
blind dataset consisted of the mutations not present in the 80% training dataset. This was the 20% of data not 
used to train the models and kept separate to evaluate the performance of the predictive models. Feature selec-
tion techniques have commonly been used to find important features and remove features of less importance 
which contribute less to classification. In the present study eight feature selection techniques were used to 
identify the features contributing to the prediction task: symmetrical uncertainty based selection, relief attrib-
ute evaluation, oneR classifier algorithm, gain ratio and info gain based feature selection, bestfirst attribute 
evaluation, classifier algorithm based selection using zeroR classification algorithm, and correlation based 
feature selection.

Rifampicin (rpoB gene). Rifampicin is a first-line antibiotic used for the treatment of TB. The drug binds 
to the β-subunit of bacterial RNA polymerase coded by the rpoB gene. In rpoB, the binding site for rifampicin is 
the region between amino acids 424–456, which is also known as the rifampicin resistance determining region 
(RRDR) as the majority of mutations occur here8,27. Our models predicted the mutations to be susceptible or 
resistant with very high accuracy, 95.45% for the kNN model and 90.90% for the NB and ANN models. The 
mutations outside the RRDR region, which were part of the testing dataset Val490Leu, Phe511Leu and Thr514Ser, 
were predicted to be resistance conferring by our models. For feature selection, ΔΔG was ranked highest by 
four of the seven feature selection techniques, thus indicating its important role in the classification of mutations 
as benign or susceptible. The other top ranked features included residue type (wt), residue type (mutant), and 
hydrophobicity.

Isoniazid (inhA and katG genes). Resistance to the drug isoniazid is primarily due to mutations in the 
katG and inhA genes28. In katG, isoniazid binds to the amino acid residues in the range 104–381, which consti-
tutes the heme-binding channel of the protein29. The NB and ANN models performed the best with 98% accuracy 
for katG gene. The mutations in the blind test set predicted to be resistance associated were Ala61Thr, Val68Gly, 

Gene
Measure/
Methods NB SVM ANN kNN

rpoB
Accuracy 88.04% 84.78% 95.65% 86.95%

AUC 0.92 0.83 0.99 0.87

InhA
Accuracy 90.90% 63.63% 95.45% 90.90%

AUC 0.75 0.5 1 0.9

katG
Accuracy 84% 78.50% 98.50% 92%

AUC 0.94 0.77 0.99 0.91

pncA
Accuracy 83.93% 75.12% 99.48% 90.67%

AUC 0.96 0.76 1 0.9

gyrA
Accuracy 75.86% 72.41% 86.20% 81.03%

AUC 0.86 0.71 0.95 0.82

gyrB
Accuracy 82.50% 70% 97.50% 97.50%

AUC 0.91 0.68 0.96 0.97

Table 3. The performance of the classification models on the training data set using 10-folds cross validation.

Gene
Measure/
Methods NB SVM ANN kNN

rpoB
Accuracy 90.90% 86.36% 90.90% 95.45%

AUC 0.97 0.85 1 0.95

InhA
Accuracy 100% 60% 81.81% 100%

AUC 1 0.5 0.92 1

katG
Accuracy 98% 70% 98% 96%

AUC 0.98 0.69 1 0.97

pncA
Accuracy 93.75% 81.25% 97.91% 97.91%

AUC 0.97 0.82 1 0.98

gyrA
Accuracy 92.85% 78.57% 100% 85.71%

AUC 0.97 0.77 1 0.86

gyrB
Accuracy 66.66% 77.77% 88.88% 88.88%

AUC 0.75 0.8 1 0.92

Table 4. The performance of the classification models on the non-redundant testing data set.

https://doi.org/10.1038/s41598-020-62368-2


4Scientific RepoRtS |         (2020) 10:5487  | https://doi.org/10.1038/s41598-020-62368-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Ala109Thr, Ala122Val, Phe129Leu, Leu148Arg, Thr180Lys, Trp191Arg, Glu195Lys, Gln224Glu, Val230Ala, 
Gly234Arg, Thr275Ser, Gly299Ala, Gly299Ser, Pro280His, Tyr304Ser, Gly307Glu, Gly309Cys, Glu318Lys, 
Trp321Cys, and Ala350Ser. The novel resistance conferring mutations included Asn238Lys, Leu587Ile, 
Leu619Pro, and Leu634Phe.

In the case of inhA, the drug binds to the amino acid residues in the range 14–19730 and three of the four 
models predicted the test set mutations Ile16Thr and Ala124Glu as resistance conferring. The NB model had the 
highest accuracy and AUC value with 100% accuracy and 1.00, respectively.

For both katG and inhA genes, ΔΔG was ranked highest by most of the feature selection algorithms. In 
the case of katG, polarity, residue type (wt), residue type (mutant), and hydrophobicity were among the other 
significant contributing features. Accessible surface area (ASA) also played an important role and was ranked 
fourth by four feature selection algorithms, uncertainty based attribute evaluation, relief attribute evaluation, 
oneR algorithm, and the classifier algorithm using the zeroR classifier. In the case of inhA, ΔΔG again ranked 
highest followed by residue type (mutant) as features primarily contributing to the mutation prediction task. 
Hydrophobicity and polarity are the other top ranked features along with the secondary structure feature, which 
was ranked fifth among the top five by uncertainty based, gain ratio and info gain algorithms, and correlation 
based feature selection algorithms.

Pyrazinamide (pncA gene). Mutations in the pncA gene, which alter the binding of the drug pyrazina-
mide, are considered the major cause of resistance in M.tb. The mutations in this case are reported to be scattered 
throughout the pncA gene27. The models kNN and ANN had the best accuracy, 97.91% and an AUC value of 0.97 
and 1.00, respectively. The novel mutations predicted to confer resistance to the drug by the models included 
Cys96Glu and Val155Met. The top ranked feature having the greatest impact on the prediction task was ΔΔG, 
followed by residue type (mutant), residue type (wt), polarity, and hydrophobicity.

Fluoroquinolones (gyrA and gyrB genes). Fluoroquinolones are a group of antibiotics used to treat 
bacterial infections and have been an attractive treatment strategy in case of MDR-TB31. The target genes for fluo-
roquinolones (gyrA and gyrB) and mutations in the quinolone resistance determining regions (QRDR) of these 
genes are strongly related to drug resistance32. The ANN models performed best for both genes, gyrA and gyrB, 
with accuracies of 100% and 88.88% individually and AUC values of 1.00. The novel mutations predicted to cause 
resistance by the models included Gln431Glu and Leu711Met in case of gyrA and Asn499Thr in case of gyrB.

For gyrA, ΔΔG had the highest correlation and was ranked as the topmost contributing feature followed by 
residue type (wt), residue type (mutant), polarity, and ASA. Molecular weight was identified as an important 
feature for classification by correlation based feature selection, and also ranking highest using the best first fea-
ture selection method. In the case of gyrB, ΔΔG was again the feature with greatest influence on the prediction 
task. Other features included residue type (wt), isoelectric point, hydrophobicity, and volume. Supplementary 
Tables S7–S12 provides the ranking of features selected by various feature selection techniques for all the genes, 
rpoB, pncA, inhA, katG, gyrA, and gyrB.

Impact of predicted resistance associated mutations on drug binding. The binding free energy of 
mutant and wild type drug bound proteins was calculated using Schrodinger Glide docking. It was observed that 

Figure 1. ROC plots for all the models generated for genes (A) rpoB, (B) pncA, (C) inhA, (D) katG, (E) gyrA 
and (F) gyrB.
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the energy for mutant proteins was quite less than wild-type. Table 5 provides the docking scores of wild type and 
mutant protein-drug complexes along with their pre-MD interactions. To study the diverse impact of mutations 
on protein, MD simulations studies were performed on the docked conformations of protein-drug complexes. 
RMSD was calculated to ensure the stability of the system over the entire simulation run. The RMSD plots for all 
the proteins during the entire simulation run indicated the stability of the protein and that they can be considered 
for further analyses. The RMSD for wild type and mutant catalase-peroxidase (katG), pyrazinamidase (pncA), 
gyrase A (gyrA) and gyrase B (gyrB) proteins, was found to fluctuate between 0.1–0.4 Å. The radius of gyra-
tion (Rg) is the degree of compactness of the protein, and solvent accessible surface area (SASA) is the measure of 
the residues exposed to the surface. In the case of the katG and pncA genes, the Rg and SASA for mutant models 
was remarkably higher in comparison to wild type proteins, which are clearly visible in Figs. 2 and 3, respectively. 
This indicated that the wild type proteins were more stable, compactly packed and buried inside the core than the 
mutants (Table 6). The interaction patterns between wild type and mutant protein-drugs complexes were also in 
line with MD trajectory analysis as is evident from Figs. 4 (katG) and 5 (pncA). No hydrogen bonding interactions 
were observed in protein-isoniazid complex for both wild type and mutants suggesting that the hydrophobic 
interactions were the main stabilizing interactions in both the cases, however strong binding was observed in wild 
type protein. The number of residues forming hydrogen bonds was two in case of wild type protein-pyrazinamide 
complex and L96E mutation and one for V155M mutations. Fewer interacting residues were observed in case of 
mutants in comparison to wild type pointing towards more binding affinity in the latter case.

Talking about the complex of proteins with fluoroquinolones, similar RMSD, Rg, and SASA plots were 
obtained for wild type and L711M mutant in gyrase A N-terminal. The RMSD and Rg values were marginally 
higher in mutant, Q431E as compared to wild type gyrase A C-terminal. RMSD, Rg and SASA plots for the 
wild type and mutants in gyrase A N- and C-terminal are shown in Figs. 6 and 7. All the three fluoroquinolo-
nes formed hydrogen bonds, ofloxacin (one), moxifloxacin (two) and ciprofloxacin (one), however no hydrogen 

Gene Drug
Wild type 
and mutants

Glide docking 
score (kcal/mol)

katG Isoniazid wild type −4.41

L587I −4.29

N238K −4.09

L634F −4.30

L619P −4.17

pncA Pyrazinamide wild type −4.20

L96E −3.55

V155M −3.48

Fluoroquinolones

gyrA (N-terminal) wild type

Ofloxacin −3.18

Moxifloxacin −2.17

Ciprofloxacin −2.86

L711M

Ofloxacin −1.14

Moxifloxacin −0.09

Ciprofloxacin −2.39

gyrA (C-terminal) wild type

Ofloxacin −2.72

Moxifloxacin −3.00

Ciprofloxacin −3.52

Q431E

Ofloxacin −2.34

Moxifloxacin −2.24

Ciprofloxacin −2.85

gyrB wild type

Ofloxacin −4.48

Moxifloxacin −4.15

Ciprofloxacin −4.07

N499T

Ofloxacin −3.86

Moxifloxacin −3.79

Ciprofloxacin −2.05

Table 5. Docking scores of wild-type and mutant drug bound proteins.
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bonds were seen for mutation, L711M, except for moxifloxacin (one) occurring in gyrase A N-terminal (Fig. 8). 
Talking about C-terminal of gyrase A (Fig. 9), the wild type protein formed one hydrogen bond with ofloxa-
cin whereas the wild type protein with moxifloxacin and ciprofloxacin was bounded to ligand by hydrophobic 
interactions. For the mutation Q431E, falling in C-terminal, hydrophobic interactions were observed but less in 
number in comparison to wild type suggesting more stable complex for latter. As evident in Fig. 10, the RMSD of 
wild type was less in gyrase B (except in case of ciprofloxacin) than the mutant models, however the Rg and SASA 
values were almost similar. The hydrogen bonding and hydrophobic interactions between wild type and mutant 
protein and drugs in case of gyrase B have been illustrated in Fig. 11, respectively. The wild type gyrase B protein 
formed one hydrogen bond with each drug which was lost in N499T mutation and only weak hydrophobic inter-
actions were seen. All these results revealed that the resistance conferring mutations destabilized the protein in 
case of gyrase A and B but to a less extent (Table 6).

External dataset validation. To demonstrate the real applications of the predictive classification models 
generated in the present study, the models were evaluated on a blind testing dataset. This testing dataset contained 
mutations obtained from the MUBII-TB-DB33 database, which includes a set of M.tb mutations associated with 
rpoB, pncA, inhA, katG, gyrA, gyrB, and rrs. The database contains the resistance data from the TBDReaMDB 
database as well as studies published before 2013. A total of 130, 237, 11, 263, 17, and 16 variations were obtained 
for rpoB, pncA, inhA, katG, gyrA, and gyrB, respectively. Prior to testing, the dataset was made non-redundant by 
removing the mutations that were part of the training or testing dataset used for model generation and validation, 
respectively. Post-processing the number of final mutations for which predictions were made were 97 for rpoB, 
38 for pncA, 11 for inhA, 197 for katG, 17 for gyrA, and 16 for gyrB, respectively. The mutations were considered 
resistance causing if they were predicted to be resistant by all four methods (NB, ANN, SVM, and kNN), or by at 
least three of the four methods. A total of 21, 10, 5, 89, 2 and 4 mutations each for rpoB, pncA, inhA, katG, gyrA 
and gyrB were predicted to be resistance conferring as listed in Table 7.

Figure 2. RMSD, Rg and SASA plot for pncA gene. The RMSD, Rg and SASA were less in case of wild type 
indicating that the mutations destabilized the protein.
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Discussion
The present study proposes an AI/ML method to classify resistant and susceptible mutations in TB and predict 
novel resistance conferring mutations. The impact of the reported mutations was captured in the form of changes 
in the amino acid residues, and the consequent change in properties vis-a-vis wild-type and mutant proteins 
and represented as features used to train the models. The classification model was generated for each gene and 
predictions were made for SNVs linked with each gene for each drug. Four ML algorithms, NB, kNN, SVM, and 
ANN were used to generate learned model systems for genes associated with the first-line TB drugs rifampicin 
(rpoB), isoniazid (katG and inhA), pyrazinamide (pncA) and fluoroquinolones (gyrA and gyrB). The models were 
highly precise with average accuracies of 88.86%, 85.22%, 88.0%, 87.30%, 78.88%, and 86.88% for rpoB, inhA, 
katG, pncA, gyrA, and gyrB, respectively. Additionally, various feature selection algorithms were used to identify 
a subset of features having substantial involvement in the prediction task. We observed that ΔΔG ranked the 
highest among the ten features in classification for all genes except gyrB. This clearly indicated the importance 
of ΔΔG in all the classification models. The residue types also had a high correlation, demonstrating that the 
type of mutant residues significantly influenced the stability of protein. Hydrophobicity and polarity also played 
an important role in most of the prediction models, which is in line with the concept that the increased polarity 
and hydrophobic interactions contribute substantially to thermodynamic stability. The mutations predicted to 
resistance conferring were also analyzed for their impact on the conformation of the proteins upon binding with 
drugs, isoniazid, pyrazinamide, and fluoroquinolones, ofloxacin, moxifloxacin and ciprofloxacin. The interaction 
patterns observed in case of drug bound wild type and mutant proteins clearly indicated the destabilizing effect 
of mutations to a great extent in catalase peroxidase (katG) and pyrazinamidase (pncA) and moderately low in 
gyrase A (gyrA) and gyrase B (gyrB).

Conclusively, in the present work we have utilized the already existing information to train the computa-
tional models to predict the actual resistance-conferring mutations from the huge variation data resulting from 
high-throughput sequencing methods, genotyping techniques, and next-generation sequencing techniques. The 
models generated in the present study will predict any already existing mutation, be it rare or frequently occurring, 
as well as the novel mutations not encountered before. For each variation that is applied to the generated model, the 
model will predict it as resistance causing or susceptible using its previous knowledge, which is the various prop-
erties of the amino acids used in the present study. Thus, we believe that the AI and ML models generated in the 
present study will efficiently predict M.tb drug resistance and identify novel drug-associated mutations.

Figure 3. RMSD, Rg and SASA plot for katG gene. The RMSD, Rg and SASA of mutants were higher that wild 
type demonstrating that the wild type protein was more stable.
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Methods
Dataset preparation. A list of nonsynonymous single nucleotide variations was obtained from the 
TBDReaMDB (Tuberculosis Drug Resistance Mutation Database)34 and GMTV (Genome-wide Mycobacterium 
tuberculosis Variation) Database Project35. TBDReaMDB is a broad spectrum database providing mutations asso-
ciated with drug resistance in TB and their frequency of occurrence. The GMTV database is another wide-rang-
ing database that contains data obtained from different sources related to M.tb, which lists the genetic markers 
associated with TB drug resistance profiles as well as clinical outcomes. The data were preprocessed, during which 
the mutations resulting in stop codon and self-mutated residues were discarded. The residues which were not 
present in the crystal structure of protein and the duplicates were also removed.

Descriptors and labelling. The descriptor set used for the generation of the models included sequence and 
structure based features. The six physicochemical properties of the wild-type (wt) and mutant amino acid (AA) 
residues representing sequence based features included molecular weight, van der Waals volume, charge, isoelec-
tric point, hydrophobicity scale, and residue type. The difference between the AA properties of the mutant and 
wild types were calculated and the resulting values were used as descriptors for the generation of the models. The 
normalized values for the amino acid properties were obtained from Gromiha36. The residue type for the mutant 
and wild type AAs was represented by four binary features (0, 1, 2, and 3) specifying whether the residues are 
charged (Asp, Lys, Glu, Arg), polar (Ser, Thr, Asn, Gln), aromatic (Phe, His, Trp, Tyr), or hydrophobic (Ala, Gly, 
Cys, Ile, Met, Leu, Val, Pro,), respectively.

The structural descriptors included the accessible surface area to determine the accessibility of the residue to 
the surface, the secondary structure of the residue at the mutation site indicating whether the mutation took place 
in helix, sheet, coil, or turn, and the free energy changes (ΔΔG) due to the mutation. The secondary structural 
features were represented as helix = 1, sheet = 2, coil = 3 and turn = 4. The following values for the accessible 

Gene Drug
Wild type and 
mutants

RMSD 
(nm) Rg (nm) SASA(nm2)

katG Isoniazid wild type 0.25 2.80 316.90

L587I 0.28 2.88 327.19

N238K 0.28 2.88 325.70

L634F 0.27 2.80 309.39

L619P 0.35 2.84 334.17

pncA Pyrazinamide wild type 0.20 1.57 93.10

L96E 0.33 1.61 95.73

V155M 0.35 1.63 95.49

Fluoroquinolones

gyrA (N-terminal) wild type

Ofloxacin 0.18 1.97 157.29

Moxifloxacin 0.18 1.94 155.76

Ciprofloxacin 0.18 1.93 154.25

L711M

Ofloxacin 0.20 1.92 153.61

Moxifloxacin 0.18 1.92 152.33

Ciprofloxacin 0.19 1.92 153.59

gyrA (C-terminal) wild type

Ofloxacin 0.28 2.95 270.43

Moxifloxacin 0.27 2.95 268.73

Ciprofloxacin 0.27 2.96 269.43

Q431E

Ofloxacin 0.29 2.97 267.41

Moxifloxacin 0.24 7.27 259.24

Ciprofloxacin 0.26 2.98 262.34

gyrB wild type

Ofloxacin 0.19 1.96 142.37

Moxifloxacin 0.22 1.93 144.99

Ciprofloxacin 0.26 1.96 144.32

N499T

Ofloxacin 0.23 1.94 144.17

Moxifloxacin 0.28 1.95 144.61

Ciprofloxacin 0.20 1.93 142.66

Table 6. Average values of RMSD, Rg and SASA for wild type and mutant protein-drug complexes over the 
course of entire MD simulations run.
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Figure 4. Interaction patterns between (A) wild type and (B) L587I (C) L619P (D) L634F (E) N238K mutant 
protein-isoniazid complexes. The drug bound to protein through hydrophobic interactions only, however 
strong binding was observed in wild type protein.

Figure 5. Hydrogen bonding and hydrophobic interactions seen in (A) wild type, (B) L96E and (C) V155M 
mutant protein-pyrazinamide complexes. Fewer interacting residues were observed in case of mutants in 
comparison to wild type.
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surface area were used: Ala-110.2; Arg-229.0; Asn-146.4; Asp-144.1; Cys-140.4; Gly-78.7; Gln-178.6; Glu-174.7; 
His-181.9; Ile-185.0; Leu-183.1; Lys-205.7; Met-200.1; Pro-141.9; Phe-200.7; Ser-117.2; Thr-138.7; Trp-240.5; Tyr-
213.7; and Val-153.7 (the units are in Å2)37,38. The values for accessible surface area were normalized to the same 
range [0, 1] as the other features using the following equation

−
−

x min
max min

where x is the value before denormalization, and max and min are the maximum and minimum values, 
respectively.

The normalized ΔΔG values for the residues were retrieved from Gromiha36. The mutations were classified 
as susceptible or resistant as a function of ΔΔG. A positive energy change upon mutation indicates the stability 
of the protein increased, whereas negative energy indicates a decrease in the stability of the protein structure. For 
classification purposes, mutations associated with a positive change in energy and thus stability were labeled as 
positive or susceptible mutations, while the others were labeled as negative or resistant mutations. Table 8 lists the 
type of descriptors used for the generation of the machine learning models.

Machine learning algorithms. Different ML algorithms have different advantages. With this in mind, the 
following four supervised algorithms were used for prediction purposes: naïve Bayes (NB), k nearest neighbor 
(kNN), artificial neural network (ANN) and a support vector machine (SVM) based sequential minimization 
optimization (SMO) algorithm. The java based program Weka (Waikato Environment for Knowledge Analysis)39, 
a suite of ML algorithms for model building, was used.

The naïve Bayes (NB) classifier is a Bayes theorem based simple probabilistic classifier. The classifier assumes 
that each feature contributes independently toward classification and the value of every feature is independent 
of the value of any other feature. The NB classifier is fast, easy to build, and useful for the classification of large 
datasets. The classifier requires only a small quantity of data for training purposes and has worked well in many 
classification tasks out performing other algorithms such as random forest40.

K nearest neighbor (kNN) is the most basic ML algorithm and is frequently applied in data mining and pat-
tern recognition. It has been successfully used for both classification and regression41. The algorithm chooses the 
k number of the closest objects from the feature space and calculates mainly the Euclidean distance between one 

Figure 6. RMSD, Rg and SASA plot for gyrA gene, N-terminal protein. The plots for RMSD, Rg and SASA were 
similar to wild type in case of mutant, L711M.
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object and its k nearest neighbors in training data. Further, it predicts the output class from the majority vote of 
those k nearest neighbors. KNN takes less calculation time and is easy to interpret as there is only a single param-
eter that needs to be tuned.

Sequential minimization optimization (SMO) is a fast new SVM algorithm, which is simple in concept and 
implementation with better scaling properties than the standard SVM algorithm. The SMO algorithm solves 
the large quadratic programming (QP) algorithm by breaking it into a sequence of smaller QP problems, which 
reduces computation time and enables SMO to handle large training sets instead of using numerical QP optimiza-
tion steps as in the case of SVM42. The SVM algorithm in its simplest linear form uses a hyperplane that separates 
the positive from negative examples in a class by maximizing the margins. The margin is defined by calculating 
the distance between a hyperplane and the closest positive and negative example. In the case of non-linear clas-
sification, the algorithm uses the kernel function to transform the feature space and performs classification by 
projecting the inputs to high-dimensional feature spaces43.

Artificial neural network (ANN) is a computational model that attempts to mimic the structural and func-
tional characteristics of biological neural networks44,45. It is a collection of nodes known as artificial neurons and 
the connection between nodes are the edges. Each artificial neuron and edges are associated with certain weights. 
An artificial neuron receives an input, activates and processes it using certain functions and then transfers it to 
the next neuron. The weights and functions that activate the neuron are modified by learning algorithms, which 
modify the parameters of the neural network to produce the desired output. A multilayer perceptron model was 
used, which is an implementation of the ANN algorithm in Weka.

Predictive modelling. Two groups of features, sequence and structural, were used for model building. 
Default parameters were used to generate the models using NB, kNN, and ANN learning algorithms except in 
the case of SVM, in which a radial basis function kernel was used. Prior to model building the data were divided 
using an in-house Perl script with 80% for a training set and 20% for a testing set.

The internal validation of the models was performed using 10-fold cross validation. The training data were 
divided into 10-folds, of which 9 folds were used for training purposes while the remaining fold was used for 
evaluation of the model. This process was repeated until all the folds were used as test sets at least once. The per-
formance of the models was further measured using the blind test set containing 20% of the data, which was not 
part of the training set used for generating the models.

Statistical evaluation. The predictive performance of the classification models on the testing data was eval-
uated using accuracy and a receiver operating characteristic (ROC) curve from which area under curve (AUC) 

Figure 7. RMSD, Rg and SASA plot for gyrA gene, C-terminal protein. For Q431E mutant, the RMSD and Rg 
were slightly higher than wild type, however SASA was less for mutant protein.
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was also calculated. A ROC curve is a graphical plot created using the true positive rate and false positive rate, 
which demonstrates the predictive ability of the classifier models46.

Descriptor selection. To identify the features having a significant role in the classification of resistant and 
susceptible mutations, feature selection was carried out using eight feature selection algorithms available in Weka. 
The eight feature selection techniques include symmetrical uncertainty based attribute evaluation, relief attrib-
ute evaluation, gain ratio and info gain algorithms, oneR classifier based algorithm, correlation based feature 

Figure 8. Interaction pattern observed between N-terminal of wild type gyrase A and fluoroquinolones; (A) 
ofloxacin; (B) moxifloxacin; (C) ciprofloxacin and mutant, L711M; (D) ofloxacin; (E) moxifloxacin and (F) 
ciprofloxacin. The wild type protein formed hydrogen bonds with the drugs whereas no hydrogen bond was 
present in case of mutant protein-drug complexes.

Figure 9. Interaction pattern observed between C-terminal of wild type gyrase A and fluoroquinolones; (A) 
ofloxacin; (B) moxifloxacin; (C) ciprofloxacin and mutant, Q431E; (D) ofloxacin; (E) moxifloxacin and (F) 
ciprofloxacin. More number of interacting residues were present in wild type protein bound to the drugs than in 
mutant protein-drug complexes.
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selection (CFS) algorithm, and classifier based attribute evaluation. The symmetrical uncertainty based attribute 
evaluation method calculates the significance of a feature by quantifying symmetrical uncertainty with respect 
to the prediction class. It selects the features in accordance with the value of an individual feature in the feature 
subset. The relief attribute evaluation method includes a sampling of instances over and over again until the value 
of the given attribute is same as the neighboring instances. Gain ratio and info gain attribute selection algorithms 
measure gain ratio and the information gain of the particular attribute with respect to the class, respectively47. The 
oneR algorithm selects features using a simple oneR algorithm that generates one rule for each predicting feature, 
then chooses the rule with the lowest total error as its ‘one rule’48. CFS evaluates the subsets of features based on 
the theory that a good feature subgroup contains descriptors with a high correlation to the class, however uncor-
related with each other.

Molecular docking of wild type and predicted resistance causing mutant proteins with 
drugs. The X-ray crystal structures for wild type proteins katG (PDB ID: 1SJ2), pncA (PDB ID: 3PL1), gyrA 
(PDB ID: 4G3N (N-terminal) and 5BS8 (C-terminal)) and gyrB (PDB ID: 5BS8) were obtained from PDB49. The 
mutant models for the resistance causing mutations were generated using Schrodinger software50. The wild type 
and mutant models were then subjected to MD simulations to study the behavior of protein in the presence of 
external salts and solvents. The wild type and mutant proteins were preprocessed using Schrodinger’s Protein 
Preparation Wizard51, during which bond orders were corrected and hydrogen and disulfide bonds were added. 
The proteins were optimized at pH 7 using Propka52. The ligands used in the present study included drugs, isonia-
zid (PubChem CID: 3767), pyrazinamide (PubChem CID: 1046) and fluoroquinolones, ciprofloxacin (PubChem 
CID: 2764), moxifloxacin (PubChem CID: 152946) and ofloxacin (PubChem CID: 4583). LigPrep module was 
used for ligand preparation which generated energy minimized ligands using OPLS3 force field, possible tautom-
ers and ionization states were created and the mistakes in the ligands were removed. The grid was created using 
Receptor Grid Generation module around the already predicted drug binding pocket and extra precision algo-
rithm of Glide module was used to dock the ligands in the active site of the receptor. The docked protein-ligand 
complexes having lowest binding free energy values were taken for further investigation.

Molecular dynamics simulations. In order to delineate the influence of predicted resistance causing muta-
tions on the protein structure, the docked conformations were subjected to MD simulations conducted using 
GROMACS53 software, for which a GROMOS54A7 force field was used. After the initial preparation, the models 
were solvated with a simple point charge (SPC) water model and neutralized with the addition of Na+ and Cl− 
ions to maintain the neutrality of the system. The solvated systems were then subjected to energy minimization 

Figure 10. RMSD, Rg and SASA plot for gyrB gene. The RMSD was higher for mutant while Rg and SASA were 
approximately similar for wild type and mutant showing that mutation did not had much impact on the protein.
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using the steepest descent method, after which equilibration runs were performed in two consecutive steps, NVT 
(number of particles, volume and temperature) equilibration and NPT (number of particles, pressure and tem-
perature) equilibration. Further, 10 ns MD simulation runs were carried out to obtain stable structures and time 
versus RMSD (root-mean square deviation) plots were generated. Rg, SASA and hydrogen bond (H-bond) were 
analyzed for wild type and mutant protein-drug complexes. The interaction images were generated using PyMol 
and UCSF Chimera.

Received: 6 September 2019; Accepted: 13 March 2020;
Published: xx xx xxxx

Figure 11. Hydrogen bonding and hydrophobic interactions between wild type gyrase B and various drugs (A) 
ofloxacin; (B) moxifloxacin; (C) ciprofloxacin and mutant protein, N499T; (D) ofloxacin (E) moxifloxacin and 
(F) ciprofloxacin. In case of mutant proteins, only weak hydrophobic interactions were seen.

Gene Mutations

rpoB
F430S, G432D, G432S, S434R, Q435K, L436R, S437R, Q438K, Q438R, 
D441E, D441N, N444K, L449S, H451D, H451N, H451Q, H451R, H451S, 
H451T, P460S, I486T

InhA I16T, I21T, I47T, I95T, I194T

katG

L48Q, A61T, A65T, A66P, I71N, M84I, Q88R, G99E, A106V, W107R, H108D, 
H108E, H108Q, A109V, A110V, G121V, M126I, A139P, L148R, Y155S, 
A162T, G169A, A172T, A172V, M176I, G186V, W191R, G234E, G234R, 
A243S, M257T, M257I, T262R, A264T, G279D, A281V, G285D, A291P, 
G297V, G299A, W300G, Y304S, G305A, G307R, G307A, G307E, G309S, 
G309D, G316S, G316D, W321R, W321L, W321S, W328G, W328L, W328S, 
I335T, L336R, W341S, A350T, A350S, A361D, A379V, L384R, I393N, A409R, 
A409D, A424E, A424V, P429S, A444T, I462T, G485V, W505S, W505R, 
A550D, F567S, A574E, A574V, P589T, G593D, M609I, G629S, A636E, 
G685R, G699Q, A713P, A716P, A727D

pncA A146T, A171E, A171T, G162D, L159R, L182S, S179R, T142K, T153N, T168N

gyrA A74S, G88A

gyrB G509A, N538K, A543T, A543V

Table 7. Mutations from external blind dataset predicted to be resistance causing by our models.

Sequence properties Structural properties

Molecular weight;
Polarity;
Hydrophobicity;
van der Waals volume;
Residue type;
Isoelectric point

Solvent accessible surface area; 
Secondary structure where 
the mutation is located in 
experimental structure;
ΔΔG

Table 8. The types of descriptors used for the generation of machine learning models.
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