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Abstract: Obesity is a global pandemic and it is well evident that obesity is associated with the
development of many disorders including many cancer types. Breast cancer is one of that associated
with a high mortality rate. Adipocytes, a major cellular component in adipose tissue, are dysfunctional
during obesity and also known to promote breast cancer development both in vitro and in vivo.
Dysfunctional adipocytes can release metabolic substrates, adipokines, and cytokines, which promote
proliferation, progression, invasion, and migration of breast cancer cells. The secretion of adipocytes
can alter gene expression profile, induce inflammation and hypoxia, as well as inhibit apoptosis. It is
known that excessive free fatty acids, cholesterol, triglycerides, hormones, leptin, interleukins, and
chemokines upregulate breast cancer development. Interestingly, adiponectin is the only adipokine
that has anti-tumor properties. Moreover, adipocytes are also related to chemotherapeutic resistance,
resulting in the poorer outcome of treatment and advanced stages in breast cancer. Evaluation of
the adipocyte secretion levels in the circulation can be useful for prognosis and evaluation of the
effectiveness of cancer therapy in the patients. Therefore, understanding about functions of adipocytes
as well as obesity in breast cancer may reveal novel targets that support the development of new
anti-tumor therapy. In this systemic review, we summarize and update the effects of secreted factors
by adipocytes on the regulation of breast cancer in the tumor microenvironment.
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1. Introduction

It is reported that breast cancer is one of the leading cancer types with a high mortality rate,
besides lung and skin cancer [1,2]. Among the 36 most common cancer types, breast cancer accounts for
11.6% of incident cases, followed by 6.6% of cancer death in 2018 [2]. In China, the proportional rate of
breast cancer has been rapidly increasing and associated with socioeconomic status [3]. Incident rates
in urban areas are twice higher than in rural areas, with rates at 0.034% and 0.017%, respectively [3]. In
Brazil, about 0.06% of the female population was newly diagnosed with breast cancer in 2018. Japan
lists the highest rate with about 0.043% (the data was recorded in 2009) [4]. According to U.S. breast
cancer statistics, it was estimated that about 12% of females had a high potency on the development of
breast cancer in their life. The number of incidental breast cancer cases will reach 268,600 and more
than 41,000 people are predicted to die in 2019 [1]. There are approximately 3.1 million people having
breast cancer who are currently being treated, as of January 2019 [2].

Several risk factors have been identified that contribute to the development of breast cancer,
including both genetic as well as non-genetic factors. In most cancer cases, environmental factors
combined with genetic factors play a major impact on the development of breast cancer [5]. Evidently,
obesity has been related to the initiation, development, and mortality of many cancers, especially breast
cancer [6–11]. A large cohort study reported that BMI was linked to 17 out of 22 most common cancers in
UK adults, including uterus, thyroid, gallbladder, kidney, cervix, colon, ovarian, and post-menopausal
cancers [12]. In women, obesity increases the risk of death from breast and reproductive organs
cancer [13–16]. A recent finding suggested that high BMI can reversibly regulate breast cancer in
pre- and post-menopausal women [17]. High BMI induces breast cancer in pre-menopausal women
but inversely in post-menopausal women. Similarly, 34 other studies also confirmed the correlation
between high BMI and the risk of breast cancer in post-menopausal women [18]. Additionally, a
recent cohort study has shown that there is a 52% increase in the development of breast cancer in
post-menopause women by obesity [19]. Moreover, the mortality rate caused by breast cancer is much
higher in obese people compared to lean people [11]. Obesity is linked to a higher cost of hospital
care after chemotherapy and breast surgery [20]. Additionally, several studies have demonstrated
that high weight gain is more important than BMI value for breast cancer development, and weight
loss may reduce the incident rate in post-menopause women [4]. However, 35% of breast cancer
patients reported increasing their body weight from 1.4 to 5.0 kg during and after breast cancer
treatment [11,20–23]. Overall, in addition to the risk of hypertension and cardiovascular diseases,
obesity is of high concern in cancer, especially in breast cancer patients.

Adipocytes are the major cellular components of adipose tissue and play an important role in
maintaining the energy balance. Any dysfunction in adipocyte function or the energy balance leads to
overweight and obesity. There are three types of adipocytes classified based on the origin, structure,
and function including white, brown, and brite adipocytes [24–27]. In general, white adipocytes are the
main storage of energy, whereas brite/brown adipocytes with higher expression levels of uncoupling
protein 1, a mitochondrial proton carrier (UCP1), can generate heat by thermogenesis process [24–27].
Dysfunctional adipose tissue can secrete excessive fatty acid, cholesterol, triglycerides, hormones,
and adipokines that are linked to metabolic dysfunction, insulin resistance, and inferior outcome in
cancer treatment [28–31]. There are more than 600 proteins released by adipose tissue, in which about
50 adipokines are produced mainly by adipocytes, which provides a novel pool of biomarkers for the
study of metabolic diseases [32]. Accumulated fatty acids will be up-taken into the tumors and generate
energy for tumor development through β-oxidation. Fatty acids are the major source of ATP in the
tumor. Moreover, insulin resistance and high glucose level in serum can provide nutrients for cancer
cell invasion [29,33]. Additionally, adipocytes can contribute to the resistance of the chemotherapeutic
drug. In co-culture with fibroblast, adipocytes can switch-off anti-cancer drug effects by metabolizing
the drug into a less effective secondary [34]. Adipocytes also release extracellular matrix proteins and
recruit other neighbor cells such as macrophages and other immune cells, mimicking the immune
infiltrates of the tumor [35].
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Thus, fat mass and adipose-tissue mass are strongly correlated with obese status and breast cancer
in post-menopausal women. Adipocytes can regulate the tumor microenvironment via secreting
energy nutrients which contributes to the risk of breast cancer incidence, proliferation, and metastasis.
Beside other obesity-related complications, physical and mental consequences are strongly associated
with cancers incidence and proliferation [6,36]. Therefore, it is necessary to understand how adipose
tissues and adipocytes can contribute to the risk of breast cancer and mortality.

2. Adipocytes Regulate Breast Cancer via Their Metabolic Substrates

Obesity is strongly related to dysfunctional metabolism in adipocytes leading to several chronic
diseases. High levels of free fatty acids, cholesterol, glycerol, and triglycerides get accumulated in serum
to impact on the breast tumor initiation, development, and migration process (Table 1) [9,37–49]. In vitro,
co-culture of mature adipocytes with breast cancer cells increased the breast cancer proliferation, that
strongly supports the notion that adipocytes directly impact cancer cells by their secreted factors [50].

Free fatty acids (FFA) are released from daily meals, which deposit as lipid droplets in the adipose
tissue. Both saturated and unsaturated fatty acids are released from high-fat diet or in original obese
status [51,52]. Inflammation-induced obesity is an essential mechanism in the development and
invasion of breast cancer [28,38,39]. Saturated fatty acids can activate toll-like receptor 4 to amplify
inflammation and contribute to angiogenesis and tumor progression [53]. Inflamed microenvironment
promotes adipocyte cell death, recruits macrophages, and forms a crown-like structure (CLS) [28]. The
number of CLS is nine times higher in cancer patients with obesity or overweight than lean breast
cancer women (70% and 8.3%, respectively) [54]. In addition, the numbers of CLS are related to poor
prognosis and the development of breast tumors [55]. A study demonstrates that induced inflammation
in white adipocyte tissue and increased CLS reduced the survival rate in patients [55]. Furthermore,
saturated fatty acids can activate NF-κB, leading TNF-α production that acts on the breast cancer cell
proliferation, invasion, and metastasis [46,56]. Beside saturated fatty acids, unsaturated fatty acids also
contribute to breast cancer progression and prognosis. Long-chain (n-6) fatty acids (linoleic acid) are
well-known as pro-inflammatory factors, which induce the development of breast cancer [47], whereas
other fatty acids reversely impact on the breast cancer patients [43,45,49]. FFAs induce breast cancer
invasion by activating the epidermal growth factor receptor, GTP-binding protein, and protein kinase
C pathway [57], and by controlling cell proliferation via phosphatidylinositol 3-kinase (PI3K) [58]
and cell migration through free fatty acid receptor 1 and 4 and AKT pathway activation [59]. In vitro,
David et al. stimulated breast cancer cells proliferation by supplement of FFAs on serum-free medium
in a dose-dependent manner, linoleic acid can stimulate breast cancer cell growth at three times higher
concentration than oleic acid (0.75 µg/mL) [47]. In contrast, Basil et al. also demonstrated that FFAs can
induce apoptosis and lipid peroxidation in the human breast cancer cell culture [49]. Thus, supplement
fish oil is proposed for pre-menopausal women to eliminate the risk of breast cancer.

In obesity, cholesterol is significantly induced and released into the bloodstream. However,
whether the total cholesterol or high-density lipoprotein (HDL) and low-density lipoprotein (LDL)
influence breast cancer growth remains elusive. A meta-analysis study has shown the inverse correlation
between total cholesterol and HDL to the risk of breast cancer [60]. Both LDL and very-low-density
lipoprotein (VLDL) exposure stimulates the development, migration, and invasion of breast cancer cell
through activation PIK3/AKT pathway, especially VLDL promotes lung metastasis and angiogenic
activity on the breast cancer cells [44]. Furthermore, hyperlipidemia positively associated with breast
cancer risk and total survival rate regardless of BMI [61]. An analysis with over 664,000 women
revealed that women above the age of 40 with high serum cholesterol have a 45% higher risk of
development of new breast cancer and 40% lower the survival rate and treatment outcome of developed
breast cancer [62]. Co-treatment with statins to lower cholesterol level showed the improvement in
total survival rate and cancer-specific survival in cancer patients [63]. However, the protective effects
of statin are still being considered. A recent meta-analysis study, which collected health data from
over 823,000 post-menopausal volunteers, showed a similar invasive rate between former, current,
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and non-users of statin during treatment of breast cancer [64]. Oxysterol 27-hydroxycholesterol
(27-OHC) is known as the metabolite substrate of cholesterol by Cytochrome P450 Family 27 Subfamily
A Member 1 (CYP27A1) enzymes. High level of serum cholesterol corresponds to a high level of
serum 27-OHC [42,65]. 27-OHC plays as a liver X factor [37] (LXR) and estrogen receptor (ER)
agonist [66]. LXR activation lowers cholesterol accumulation and suppresses cell growth in both
normal and breast cancer cells [53,67]. Whereas ER activation promotes breast cell proliferation in
estrogen receptor-positive breast cancer (ER+) cells but not in negative cell types [41]. Considering
the impacts of 27-OHC on ER+ breast cancer cells, Lu et al. conducted a case-control study and
demonstrated that treatment 27-OHC on breast cancer differs by menopausal status. The opposite
effects are seen in the pre-menopausal and post-menopausal status [68]. Thus, it is necessary to conduct
additional studies on the effect of 27-OHC on breast cancer.

Additionally, adipose tissue also releases exosomes. Adipocyte exosome contains proteins
related to fatty acid oxidation (FAO) [48]. Obesity induces exosomes modulating FAO and further
contributes to tumor migration [48,69]. Other investigations also demonstrated that microRNAs that are
released from adipose exosomes can support breast cancer tumor growth and invasive capacity [50,70].
Among 98 secreted miRNAs, miR-3184-5p is the most upregulated, whereas miR-181c-3p is the
most downregulated one in breast cancer. Both target on FOXP4 and PPARα [50]. There are eight
miRNAs associated with BMI value, where miR-191-5p, miR-17-5p were identified involving in tumor
progression. In detail, miR-191-5p upregulated by 17β-estradiol protected ERα-positive tumors against
apoptosis. miR-17-5p was inversely the impact of inflammatory cytokines, resulting in suppress tumor
growth [71]. A recent paper has reported miR-144 and miR-126 secreted by adipocytes induced brown
differentiation and tumor progression [72].

Matrix metalloproteinases (MMPs) family is known to play vital roles in the invasion and
metastasis of tumor cells. MMP-9 is highly expressed in breast tumors compared to normal tissue.
A high level of MMP-9 has been reported to have a positive correlation to brain metastases in breast
cancer patients [73–75]. MMP-11 and MMP13 expression were also promising markers linked to the
poor outcome of breast cancer which may be a novel target for the treatment of breast cancer [76].

Table 1. Adipocytes regulate breast cancer via their metabolic substrates.

Metabolic Substrates
Released by

White/Brite/Brown
Adipocytes

Effect on BC
Development

Effect on BC
Cell

Proliferation

Effect on BC
Cell

Invasion
References

Free fatty
acids

Saturated; (n-6)
fatty acids White Increase Increase Increase [46,47,53,57–59]

(n-3) fatty acids White Decrease Decrease Decrease [43,45,49]

Lipids, Triglycerides White Increase Increase Increase [61]

Cholesterol

Total White Increase Increase Increase [60,62,63]

HDL White Decrease Decrease Decrease [44]

LDL White Increase Increase [44]

VLDL White Increase Increase Increase [44]

27-OHC White Decrease Decrease [41,53]

Exosome
mir-

3184-5p White - Increase Increase [50]

mir-
184c-3p White - Decrease Decrease [50]

Proteases (MMP-9, MMP-11) White Increase Increase Increase [74–76]

Note: 27-Hydroxycholesterol, 27-OHC; matrix metalloproteinase-9, MMP-9; high-density lipoprotein, HDL;
low-density lipoprotein, LDL; very-low-density lipoprotein, VLDL; breast cancer, BC.
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3. Adipocytes Regulate Breast Cancer via Their Released Hormones

Obesity also affects breast cancer in women by secretion of some adipokines, which are also
called as “released hormones”, especially estrogen, adiponectin, leptin, and insulin (Table 2) [77–79].
Estrogen and estrogen derivatives are significantly induced in post-menopausal obese women with
increased BMI [80–82]. A random evaluation of post-menopausal women reported that there was a 35%
higher estrogen level and 130% higher estradiol level in obese people compared to the low BMI/athletic
ones [81]. Estrogen is mostly produced in the ovary in pre-menopausal women, but in adipose tissues
in post-menopausal women [83]. Cytochrome P450 aromatase, catalyzed to biosynthesized estrogen
by converting androgens to estrogens, is highly expressed in adipose tissue [84]. Therefore, estrogen
levels in breast tumors associated with adipose tissue are 10 times higher than in the blood [85]. In
addition, cytokines produced in adipose tissues can also promote cytochrome P450 aromatase secretion
to induce estrogen biosynthesis [86–88]. Estrogen receptors (ERs) are important for estrogen function,
ERα is linked to tumor cell proliferation whereas ERβ contributes to a favorable prognosis [89]. ERα
positivity is related to obesity-induced breast cancer especially in post-menopausal women [90,91].
Estrogen-ERs complex, stabilized with a co-activator protein, interacts with estrogen response element
site on DNA, leading to the regulation gene expression related to growth, differentiation, and other
dysfunctions [92]. This complex can also bind to the promoter region to modify that gene expression [93].
Furthermore, estrogen can act by mediating the ER-membrane pathway including GPCR-like protein,
G proteins, MAPK/ERK, and PI3K/AKT pathway [94–96]. These signaling pathways contribute to the
proliferation and survival of breast cancer via increasing Bcl-2, cyclin D1, number of G0/G1 cells [97–99].
Lastly, estrogens promote breast cancer invasion and migration. In vitro, estrogen treatment remodels
cytoskeleton and acts on GPCR-like protein and estrogen receptor signaling pathway to induce
metastatic on breast cell [100,101].

Adiponectin is secreted from white adipocyte tissue before binding to specific receptors to act on
insulin resistance, glucose uptake, and FFA oxidation. However, obese people have a lower expression
of adiponectin receptors, that can cause adiponectin resistance [102]. In the report published in 2004,
breast cancer women who have low serum adiponectin may have a higher risk of angiogenesis and
metastasis [103]. In contrast, high adiponectin level can lower the incident rate of breast cancer in
women [104]. However, a recent stratified case-control study revealed that adiponectin levels are not
associated with breast cancer in pre-menopausal women but negatively affected post-menopausal
women [105]. Adiponectin reduces insulin resistance and inflammation properties in obesity, which
can improve breast tumor microenvironment [106,107]. In contrast to leptin, adiponectin decrease
proliferation and stimulate the cell death program in breast cancer cells by several pathways including
AMP-activated protein kinase, mTOR, and NF-κB pathways [108–110]. Morad et al. conducted an
in vivo test in human breast tissue showing estrogen treatment increased leptin secretion, whereas
tamoxifen treatment increased adiponectin and adiponectin/leptin ratio after six weeks treatment [111].
Adiponectin treatment reduces tumor size in ER-negative breast cancer but induces in ER-positive
breast cancer because of the strong effects of estrogen on breast cells [112]. In summary, adiponectin
can be considered for breast cancer therapy in combination with other drugs.

The adipokine, leptin is strongly accumulated in obesity and promotes the development of breast
tumors [113,114]. Leptin acts directly on the leptin receptors, leading to inflammation in adipocyte
microenvironment and increases the risk of metastatic potential [115]. Thus, the impact of leptin
depends on site of leptin receptors expression. Distant leptin-derived metastatic in breast cancer is
associated with 34% in the leptin receptor-positive patients, but none in the leptin receptor-negative
patients [116]. Leptin activates ERα to stimulate estrogen-related breast cancer pathway, resulting
in the proliferation and migration [117]. Furthermore, leptin can increase aromatase activity at high
concentration and induce estradiol and estrogen in obese women [118]. Mechanically, activation of
leptin receptor stimulates downstream ERK1/2, AP1, STAT3, PI3K, and MAPK pathways [117,119].
Additionally, leptin also promotes tumor growth/migration via VEGF signaling (endothelial growth
factor signaling), HIF-1α stabilization, which induces hypoxia condition in tumors [119]. The authors
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also reported that leptin can promote pancreatic cancer burden by inducing MMP-13 production in
human [119].

Insulin resistance is most common in obesity and results in hyperinsulinemia. High serum insulin
level increases breast cancer growth and invasion [40,120,121] via activation of the PI3K pathway [122],
and improved insulin resistance can reduce metastasis in mice [121]. High fasting insulin reduces
survival rate, results in poor outcome to anticancer therapy [123], and induces a 2.4 times higher
incident rate in post-menopausal women (the results were evaluated by random selection) [40]. In
addition, insulin itself induces aromatase activity, which is important to estrogen synthesis in adipose
tissue [124]. On the other hand, hyperinsulinemia is highly associated with the amount of insulin-like
growth factor 1 (IGF-1) locally, thus, excess IGF-1 in tumor cells [122]. IGF-1 binds to selected receptors
(IGF-1R) and upregulates MAPK signaling pathway, resulting in proliferation, development, and
progression [125,126]. In the outcome of tamoxifen treatment, IGF-1R is considered to evaluate the
effectiveness of therapy. Higher expression of IGF-1R implies poorer outcome and survival rate in
breast cancer patients [127].

In addition, other hormones such as visfatin, plasminogen activator inhibitor-1(PAI-1), and resistin
slightly contribute to breast cancer initiation and progression. High levels of serum resistin and visfatin
were found in post-menopausal women with breast cancer, which correlated with tumor size and a
high risk of lymph node metastasis [128]. Resistin promotes breast cancer development via enhanced
toll-like receptor 4-mediated transition and NF-κB activation [129]. Secreted PAI-1 by adipose tissue
contributes to increase proliferation, angiogenesis, cell migration, and decrease apoptosis, which
supports tumor invasion in the breast [130].

Overall, the adipokines significantly contribute to tumor cell proliferation, progression, and
migration, which influence the outcome of prognosis in breast cancer patients. Leptin/adiponectin ratio
is highly induced in breast cancer, and more interestingly, the ratio correlated to the level of obesity.
People with high BMI together with high leptin/adiponectin ratio have a significantly higher risk of
breast cancer incidence and metastasis [131].

Table 2. Adipocytes regulate breast cancer via their released hormones.

Hormone
Released by

White/Brite/Brown
Adipocytes

Effect on BC
Development

Effect on BC
Cell

Proliferation

Effect on BC
Cell Invasion Reference

Estrogen White Increase Increase Increase [97–101]

Adiponectin White Decrease Decrease Decrease [108–112,128]

Leptin White Increase Increase Increase [111–114,118,119,128,132]

Insulin White Increase Increase Increase [40,120,121,125,126]

Visfatin White Increase Increase Increase [128]

PAI-1 White Increase Increase Increase [130,133]

Resistin
White Increase Increase Increase [128,129,134]

White Decrease Decrease Decrease [135]

Note: Plasminogen activator inhibitor-1, PAI-1; breast cancer, BC.

4. Adipocytes Regulate Breast Cancer via Released Cytokines

Cytokines, generally produced by immune cells, play a vital role in pro-inflammation,
anti-infection, and other cellular signaling. Along with white adipocyte, there are immunocytes,
vascular, and stromal cells which exist in the adipose tissue, which are involved in the cytokines
production (Table 3) [136]. In addition, adipocytes can also secrete several cytokines to regulate the
surrounding cells and itself. In vitro co-culture of adipocytes and breast cancer cells results in the
secretion of cytokines into the culture supernatant. The findings showed five (IL6, IL8, IFNγ-inducible
protein 10, CCL2, and CCL5) out of 200 cytokines which were significantly increased after one-week
culture, with immature adipocytes having higher cytokine secretion potential than mature adipocytes.
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Cytokines, produced by immature adipocytes, were reported to increase tumor initiation and metastasis
burden in breast cancer [137]. A follow-up study with 534 patients demonstrated IL6, IL8, and IL10 may
consider as indicators for poor prognosis and metastatic of breast cancer [138]. Several investigations
also emphasized IL6, IL8, CCL2, and CCL5 as stimulators of the survival, proliferation, and invasion
of breast cancer cells [139–142]. Moreover, serum IL6, IL8, and TNFα are related to an advanced stage
and metastatic status of breast cancers, whereas IL6 and IL8 are most favorable for prognosis [143].

High levels of TNFα causes chronic inflammation and insulin resistance, that in turn provides positive
effects on the development of cancers [144,145]. TNFα functions by interacting with TNF receptors,
including TNFRI and TNFRII [146]. Several studies were conducted to determine the effects of TNFα
both in vitro and in vivo experiments and in clinical trials. In vitro, TNFα promotes cell development
in both ER-positive and ER-negative breast cancer cell lines [147,148]. In ER-positive cell lines, TNFα
inhibits apoptosis, but not in ER-negative cell lines [148]. The authors showed that TNFα can activate
NF-κB, ERK, AKT, and JNK pathways which are necessary for cell proliferation [145,147,149,150] and
positively modulate estrogen metabolic pathway, leading to high amounts of estrogen in tumors [151].
Furthermore, TNFα also promotes tumor migration by inducing cytokines such as MMP-9 [149] and
chemokines receptors CCR9 and CCR5 [152]. In vivo, mice treated with TNFα developed tumors
compared to control mice group with PBS treatment [147,150]. Blocking TNFα significantly reduces
breast tumor size [153]. In addition, TNFα regulates interleukin synthesis, adiponectin secretion, and
aromatase expression in adipose tissue [154–156].

Numerous reviews have also reported the strong association between interleukins and breast
cancers, notably IL1β, IL6, and IL8 [142]. Firstly, IL1β activates inflammatory NF-κB signaling pathway
in the tumor cells to promote the development of breast cancer [157,158]. More importantly, IL1β
strongly linked to migration in breast cancer. IL1β increases the phosphorylation of focal adhesion
kinases and expression of MMP9 which are related to the adhesion and migration of cancer cells [159].
IL1β also induces cyclooxygenase-2, hypoxia-inducible factor 1α which promotes angiogenesis,
inflammation, and metastasis in cancer [158,160]. Secondly, together with TNFα, IL6 is a major
inflammation inducer which activates STAT3, resulting in cancer progression [161]. Interestingly,
abrogation of STAT3 signaling by knocking out the STAT3 gene did not influence the tumor formation
but greatly suppressed the lung metastasis in mice [162]. A recent study reports that IL6 triggers the
expression of VEGF promoted cancer cell multiplication [142]. Thus, it is strongly evident that STAT3
regulates metastasis. High circulating IL6 correlated with poorer prognosis and high risk of metastatic
burden [163]. In vitro, over-expression IL6 induces genes involved in epithelial-mesenchymal transition
and lowers E-cadherin, supporting that IL6 can regulate adhesion and migration of breast cancer
cells [164]. Together with other cytokines, IL8 is angiogenic in cancers [139]. IL6 and IL8 promote
oncogene Ras transformation, and then actively induce cell development by many signal pathway [137].
IL6, IL8, IL1β, IP10, CCL2, and CCL5 contribute to the activation of Src kinases and signal to NF-κB
pathway [137,165]. The patients with better treatment outcome had significantly low levels of IL8
compared to that of pre-treated patients [138].

Chemokines are small protein molecules that regulate leucocyte transportation in response to
inflammation and/or homeostatic conditions. Chemokines such as CCL2, CCL5, CCL4, and CXCL8
are also involved in the incidence and development of breast cancer [166,167]. CCL2 and CCL5
induce tumor-associated macrophages (TAMs), thereby inhibiting T-cell activation and promoting
angiogenesis in breast tumors [140]. In addition, CXCL18 is highly accumulated in TAMs in breast
tumors [168]. CXCL18 induces IL4, IL13, and IL10 in TAMs promoting initiation and invasion of
breast carcinoma cells [169,170] via NF-κB and AP-1 pathways [166]. Both CCL2 and CCL4 suppress
infiltration of macrophages and immune cells to the tumor site and are related to an advanced stage
and poor prognosis [171–173]. CXCl10, also called IP10, stimulates the release of other chemokines,
tumor progression, and metastasis via CRXR3 and activation of NF-κB signaling pathway [174,175].
Chemokines directly bind to chemokine receptors, alters the expression and/or function of secondary
messengers to stimulate angiogenesis, suppress anti-tumor immune cells’ infiltration [166]. Chemokine
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receptors CXCR1, CXCR2, CXCR4, CXCR5, and CX3CR1 are critical in the recruitment of macrophage
in the breast tumor microenvironment. Therefore, anti-chemokine receptors can bring the therapeutic
potential for the treatment of breast cancer. In fact, CXCR1 and CXCR2 antagonists are widely
researched on the treatment of autoimmune diseases and prevention metastasis cancer. The clinical
trials for breast cancer therapy still need further investigations in individual therapy or combination
with chemotherapy or immunotherapy [176]. Moreover, tumor microenvironment in breast cancer
continuously produces chemokines that may develop to a higher stage of disease and metastasis [166].

Furthermore, adipocytes also impact on the surrounding cells in the breast tumor
microenvironment including immune cells, cancer-associated fibroblasts, endothelial cells, and
mesenchymal stem cells [177]. Adipocytes can act as immune regulatory cells. Adipocytes release
minimal amounts of cytokines that enhance cytokines/chemokines production in immune cells at
different levels in the tumor [178,179]. Damage-associated chemicals released by dead and dying
adipocytes stimulate recruitment of macrophages and other immune cells, which can be observed
by the presence of crown-like structure within adipocytes [31]. In addition, the secreted cytokines
can stimulate differentiation of breast cancer mesenchymal stem cells into adipocytes as well as
cancer-associated fibroblasts that amplifies the impacts of adipocytes in the tumor microenvironment.
Cancer-associated fibroblasts, an important IL-6 source, strongly related to tumor growth and therapy
resistance which can be targeted for the development of potential drugs on treatment and prevention
of breast cancer [180,181]. CXCL12 secreted by cancer-associated fibroblasts promotes the proliferation
of breast tumor cells. The level of serum CXCL12 is associated with a high mortality rate in cancer
patients [182–184]. Adipocytes surrounding tumor cells exhibit phenotypical changes termed as
adipocyte-derived fibroblasts (ADFs). ADFs enhance release fibronectin and collagen I, increase gene
expression of adipokines and adipocytokines (TNF-α, IL-6 and IL-1β) which induce invasive abilities
of breast tumor cells [185,186]. Among tumor microenvironment, endothelial cells are converted
to fibroblast-like cells in the presence of TNF-α. These cells enhance the production of chemokines
CXCL1/2 that promote tumor cells survival and metastasis as well as contribute to chemotherapeutic
resistance [187]. It was reported that exosomes secreted by preadipocytes regulated early-stage breast
cancer via miR140/Sox2/Sox9 pathway which is critical in stem cell renewal, differentiation, and cell
migration in the tumor microenvironment [188].

It is true that the number of publications about the effects of brite/brown adipocytes on breast
cancer is limited and the impacts of brite/brown adipocytes on breast cancer remain poorly understood.
In the tumor microenvironment, brown/brite adipocytes impact positively on breast cancer. Enrichment
of those cells in xenograft led to larger tumor size in mice [189]. Brown adipose tissue activity was
reported to be significantly higher in breast cancer group, especially in young women with an increase
of 25.6% compared to non-breast cancer group [190]. On the other hand, breast cancer cells can promote
the differentiation of adipose stem cells in the tumor microenvironment [72].

Table 3. Adipocytes regulate breast cancer via released cytokines.

Hormone
Released by

White/Bright/Brown
Adipocytes

Effect on BC
Development

Effect on BC
Cell

Proliferation

Effect on BC
Cell

Invasion
Reference

TNFα Visceral,
subcutaneous white Increase Increase Increase [132,143–145,147–150]

Interleukins

IL-1b White Increase Increase Increase [142,157–159]

IL-6 White Increase Increase Increase [132,138,141–143,161]

IL-8 Visceral,
subcutaneous white Increase Increase Increase [138,139,141–143]

IL10 White [138]
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Table 3. Cont.

Hormone
Released by

White/Bright/Brown
Adipocytes

Effect on BC
Development

Effect on BC
Cell

Proliferation

Effect on BC
Cell

Invasion
Reference

Chemokines

CCL2 White Increase Increase Increase [140,142]

CCL5 White Increase Increase Increase [140,142]

CXCL18 White [169,170]

CXCL12 White Increase Increase Increase [191,192]

CXCL10/IP-10 White Increase Increase Increase [174,175]

Note: Interleukin, IL; C-X-C motif chemokine 10, CXCL10 or interferon γ-induced protein 10 kDa, IP-10; Tumor
Necrosis Factor-alpha, TNFα; C-C Motif Chemokine Ligand 2, CCL2; breast cancer, BC.

5. Conclusions

Adipocytes are strongly linked to obesity-driven breast cancer through their secreted metabolic
substrates, adipokines, and cytokines (Figure 1). Accumulated FFA, cholesterol, triglycerides, estrogen,
leptin, insulin, interleukins, and chemokines together promote breast cancer initiation, proliferation,
and invasion. In contrast, the adiponectin secreted by adipocytes is anti-tumorigenic in breast cancer.
Evaluation of levels of each soluble factor secreted by adipocytes supports the prediction of the prognosis
and anti-cancer treatment efficiencies in patients. Hyperinsulinemia induces insulin resistance in tumor
and is linked to lower the IGF-1 expression and aromatase activity resulting in poor prognosis. In
addition, obesity induces inflammatory microenvironment by adipocyte-released cytokines to promote
cancer cell progression. Leptin, an adipokine, can de-stable HIF-1α and stimulate hypoxia condition in
breast tumors. White adipose tissue can produce estrogen by aromatase, which is the most important
enzyme for estrogen synthesis in obese post-menopausal women. High levels of estrogen in breast
tissue promote cancer development and metastasis. Moreover, the estrogen-progesterone combination
as a hormone replacement therapy or contraceptive preparation increases the incidence and mortality
rate of breast cancer. Interestingly, tumor cells can regulate lipidation and lipolysis in adipocytes to
provide energy and nutrients for tumor development [193]. Therefore, control of body weight, as well
as weight gain in menopausal women, is necessary to reduce the risk of breast cancer.

Figure 1. Adipocytes regulation of breast cancer.
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