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The gamma-aminobutyric acid type-A (GABAA) receptor plays a major role in inhibitory neurotransmissions. Intronic SNPs and
haplotypes in GABRB2, the gene for GABAA receptor b2 subunit, are associated with schizophrenia and correlated with the
expression of two alternatively spliced b2 isoforms. In the present study, using chimpanzee as an ancestral reference, high
frequencies were observed for the derived (D) alleles of the four SNPs rs6556547, rs187269, rs1816071 and rs1816072 in
GABRB2, suggesting the occurrence of positive selection for these derived alleles. Coalescence-based simulation showed that
the population frequency spectra and the frequencies of H56, the haplotype having all four D alleles, significantly deviated
from neutral-evolution expectation in various demographic models. Haplotypes containing the derived allele of rs1816072
displayed significantly less diversity compared to haplotypes containing its ancestral allele, further supporting positive
selection. The variations in DD-genotype frequencies in five human populations provided a snapshot of the evolutionary
history, which suggested that the positive selections of the D alleles are recent and likely ongoing. The divergence between
the DD-genotype profiles of schizophrenic and control samples pointed to the schizophrenia-relevance of positive selections,
with the schizophrenic samples showing weakened selections compared to the controls. These DD-genotypes were previously
found to increase the expression of b2, especially its long isoform. Electrophysiological analysis showed that this long b2

isoform favored by the positive selections is more sensitive than the short isoform to the inhibition of GABAA receptor
function by energy depletion. These findings represent the first demonstration of positive selection in a schizophrenia-
associated gene.
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INTRODUCTION
Schizophrenia is one of the most debilitating mental disorders,

afflicting peoples of all countries and cultures with about 1%

lifetime risk [1]. Schizophrenics suffer perturbations in thought

processes that manifest as hallucinations, delusions, disordered

thinking, unusual speech or behavior, and social withdrawal.

Schizophrenia tends to run in families with an estimated

inheritability of 60–85% [2]. A feature of the disease is a prominent

impairment in cognitive functions, especially language-related

functions that are unique to mankind. Understanding the etiology

of schizophrenia therefore not only paves the way to effective

therapeutic treatment of the disease, but may also provide

important insight into the nature of human cognition.

Over the past several years, advances in genomics have made

possible an initial delineation of the genetic mechanisms of

schizophrenia. DNA sequence polymorphisms in a number of

genes are found to be associated with the disease [3]. One of the

strongest associations is that discovered by our laboratory in the

single nucleotide polymorphisms (SNPs) and haplotypes in introns

8 and 9 of GABRB2 [4]. GABRB2 codes for the b2 subunit of

GABAA receptor, and is part of a cluster of genes on chromosome

5q34 for the GABAA receptor, the major inhibitory neurotrans-

mitter-gated channel receptor family in the central nervous system

(CNS) [5]. Our initial findings from Han Chinese have since been

validated by additional samples from the Chinese [6], Portuguese

[7], German [7–9] and Japanese [9] populations, although

conflicting results from Japanese [10] and German [11] popula-

tions have also been reported.

As in the case of most other genes underlying complex

disorders, the schizophrenia-associated DNA sequence poly-

morphisms in GABRB2 are located in the non-coding regions,

and therefore not immediately evident in their functional

implications. However, recent studies in our laboratory demon-

strated that the schizophrenia-associated DNA sequence poly-

morphisms in GABRB2 are correlated with under-expression in

schizophrenic brains of two alternatively spliced forms of mRNA

coding for two previously reported isoforms of b2 subunit that

differ in length by 38 amino acid residues including a potential

Ser/Thr phosphorylation site [12]. The longer isoform was also

found to be more prone than the shorter isoform toward current
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run-down induced by repetitive activation. This finding of

a genotype-dependent electrophysiological alteration, establishing

an explicit relationship between genotype and potential neuronal

behavior, represents the first instance of such relationships

identified among the schizophrenia-associated genes.

RESULTS

A human-specific Alu insertion
Based on available genomic sequences of humans and a number of

primates, an evolutionary analysis was conducted in the present

study comparing human and non-human primate sequences in the

schizophrenia-associated GABRB2 region in order to detect any

sequence signatures of human-lineage specific changes that could

be indicative of natural selection and therefore functional

significance. The non-human primate sequences homologous to

the 3,551-bp genomic region of human GABRB2 were either

experimentally obtained or retrieved from the database (see

Methods) (Figure 1A). The comparison revealed a human specific

314-bp insertion within this otherwise highly conserved non-

coding region of GABRB2 (Figure S1).

By sequence homology this human-specific insert belongs to the

Yi6 sub-group of Alu (Figure S2), a primate-specific family of short

interspersed mobile elements with over one million members in

the human genome [13]. This insert, which is not identical to any

known Alu sequence, is named Yi6AH151 in accordance to

Batzer’s Alu nomenclature, thereby adding to the 150 known Alu

Yi6 elements [14]. It is absent from the non-human primates, but

present in all the human subjects analyzed. Therefore it likely

represents an insertion into the human lineage prior to human

population subdivisions, rather than a deletion from the

chimpanzee lineage. That the two SNPs rs34820615 and

rs10060148 in Yi6AH151 were found to be associated with

schizophrenia [9] suggests the involvement of this Alu in

schizophrenia etiology. Possible Alu involvements also have been

reported for other diseases [15].

High sequence diversity in a conserved non-coding

region
Re-sequencing was performed on the 3,551-bp genomic segment

in the neighborhood of Yi6AH151 for a total of 633 unrelated

non-schizophrenic individuals of the four ethnically diverse human

populations African (AF), German Caucasian (GE), USA Cauca-

sian (US), and Japanese (JP). A total of 29 SNPs were identified, 15

in the 314-bp Alu Yi6AH151 and 14 on its flanking sequences.

Using the chimpanzee and the Yi6 subfamily consensus sequences

as references, the two alleles of each of the 29 SNPs could be

determined as being the ancestral (N) or derived (D) allele

(Figure 1A and Table S1). Based on the N or D status defined, four

of the twenty-nine SNPs were found to be exceptionally high in D-

allele frequency (.50%), and designated as high-D SNPs

(Figure 1B and Table S1). Their high D-allele frequencies signaled

the occurrence of positive selection. The four high-D SNPs are in

descending order of D-allele frequencies rs6556547, rs187269,

rs1816071 and rs1816072. Since rs1816072 exhibits the lowest D-

allele frequency among them, it could represent the youngest of

the four.

The evolutionary divergences between species, and the di-

versities within the different human populations were scrutinized

for any departure from neutrality. The 0.82% SNP density in the

region was found to far exceed the genome-wide and locus-specific

densities for the human genome (0.11–0.08%) [16]. Since this

region falls within one of the recombination hotspots identified in

Figure 1. SNP positions and allele frequencies. (A) Positions of all twenty-nine SNPs in a 3551-bp region of schizophrenia-associated GABRB2 from
base 160,689,203 to base 160,692,753 of chromosome 5 contig NT_023133.12 are shown to scale. Solid horizontal lines represent introns flanking
Exon 9 (green box) and the human specific Alu insert Yi6AH151 (yellow box), which spans bases 160,691,468 and 160,691,782. The ID numbers of
SNPs with prefixes ‘‘rs’’ or ‘‘ss’’ are labeled according to the Single Nucleotide Polymorphism database (dbSNP; www.ncbi.nih.gov/SNP). The two
alleles for each SNP are shown in parentheses following the SNP ID number in the format of (ancestral base)/(derived base). (B) Population allele
frequencies of each SNP are represented by pie-charts for the AF, GE, US and JP populations, where the cyanine wedge indicates the frequency of the
ancestral allele (N), and the red wedge the frequency of the derived allele (D). The four SNPs with high derived allele frequencies (high-D SNPs) are
indicated by arrows and red ID Number.
doi:10.1371/journal.pone.0000462.g001
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the HapMap project (Figure S3), the high SNP density observed

might have originated from high recombination activities.

In contrast, the 0.74% sequence mismatch between human and

chimpanzee in the region is lower than the human genome

average of 1.23% nucleotide divergence [17]. This cross-species

conservation was suggestive of purifying selection, which is not

unexpected for an exon-proximal genic region. This combination

of low human-chimpanzee divergence and high intra-human

diversity departs from the expectations of neutral evolution

(P = 0.0013 in the Hudson, Kreitman and Aguadé’s test [18]),

and points to the occurrence of human-specific events in this

otherwise evolutionarily conserved non-coding region [19,20],

resulting in accelerated evolution within the human lineage.

Ancestral and derived haplotype groups
Frequency spectrum summary statistics were employed to test for

any departure from neutral evolution in the region. Based on

either the datasets pooled from all four populations, or the datasets

of individual populations, positive selection was indicated by some

demographic models in the Fay and Wu’s H test, which takes the

ancestral status of polymorphism sites into consideration and is

sensitive to an excess of derived alleles. However, neither Tajima’s

D nor Fu and Li’s D and F tests detected significant positive

selection in the region (Table S2).

Accordingly, further investigations of potential positive selection

were conducted on separate haplotype groups in accordance to

Evans et al [21]. Using the allelic state of rs1816072, the youngest

of the four high-D SNPs, as defining criterion, all the haplotypes

containing its N allele were assigned to haplotype group-N (HG-N;

42.9%), and all those containing its D allele were assigned to

haplotype group-D (HG-D; 57.1%) (Figure 2 and Table S3).

These HG-N and HG-D haplotype groups were sufficiently similar

in size to allow statistically acceptable comparisons. HG-N and

HG-D were vastly dissimilar with respect to sequence diversity.

The haplotype (Hd) and nucleotide (p) diversities of HG-D were

much lower than those of HG-N (Table S2). HG-N displayed

a highly diversified membership of fifty different haplotypes (H1 to

H50), all of relatively low frequencies (Figure 2 and Table S3). H6,

the most abundant member of this group, amounted to a frequency

of only 8.5%. In contrast, HG-D contained only twenty-five member

haplotypes (H51–H75). H56, its highest-frequency member com-

prising the D alleles of the four high-D SNPs together with the

ancestral alleles of the other 25 SNP sites (Table S3), was present in

51.7% of total N+D copies, or 90.5% of the D copies. This

extraordinary predominance by a single haplotype confirmed to the

occurrence of exceptionally strong positive selection for H56 and its

four constituent D alleles. The differences between HG-N and HG-

D in the Fay and Wu’s H value populations were non-random for all

three non-AF populations (Table S2: GE and JP P,0.00001; US

P = 0.07). The mutational spectra in the genealogies of these two

classes of haplotypes are therefore sharply different (Figure 3 and

Figure S4).

Demographic evidence against neutral evolution
To distinguish further whether the very high H56 frequency is the

outcome of positive selection or demographic effects, coalescence-

based simulations were performed. The null hypothesis that

a haplotype carrying four or more D alleles could achieve

a frequency equal to or higher than the observed H56 frequency in

each of the AF, GE, US and JP populations under neutral

evolution was tested (Table S4). For this purpose, thirty-three

different demographic models embodying population growth [21],

population bottlenecks [21,22], population substructure [21],

Figure 2. Haplotype frequency distribution in the four populations
(refer to Figure 1 legend for abbreviations). Each haplotype is
assigned into either the ancestral (HG-N; cyanine) or derived (HG-D; red)
group according to its allelic status at rs1816072, likely the youngest
high-D SNP. Details of the compositions and frequencies of different
haplotypes are shown in Table S3.
doi:10.1371/journal.pone.0000462.g002

Figure 3. Fay and Wu’s H values for both HG-N and HG-D haplotypes
are plotted for AF, GE, US and JP in thermal scale. Similar plots for
Tajima’s D and Fu and Li’s D are presented in Figure S4.
doi:10.1371/journal.pone.0000462.g003
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population growth plus substructure [23], and structured ancestral

population with subsequent bottlenecks and expansion [24], were

employed. For the AF samples, this null hypothesis was rejected

with the Garrigan and Hammers’ low-migration model (P =

0.00380–0.00420) and Voight’s models with most severe bottle-

neck (P = 0.00118–0.00052). As well, it was marginally rejected

with the ancient population expansion model (P = 0.06153), the

extended growth core model with mild bottleneck (P = 0.06780)

and Voight’s bottleneck with modest bottleneck (P = 0.06143),

although it could not be rejected with the other models. For all

three non-AF populations the null hypothesis was rejected for all of

the demographic models analyzed except for JP in the case of

Model 10 incorporating the most severe bottleneck. These results

provided compelling evidence for positive selection acting on H56.

While any positive selection acting on the region surrounding

Yi6AH151 would preclude a reliable dating of the SNPs in the

region, the fact that the four high-D SNPs achieved high-D status

in all four of the human populations examined (Figure 1B) suggests

that these high-D SNPs appeared before the divergence of the

human populations. Coalescence-based dating was carried out for

the four high-D SNPs based on two different mutation rates (see

Methods). The mutation rate estimated from human-chimpanzee

divergence based on a constant molecular clock [25] yielded age

estimates for these SNPs (Table S6A) far older than the generally

accepted time of human speciation, further testifying to the process

of positive selection acting on the region. On the other hand, an

accelerated mutation rate equal to that of fast-evolving human

mitochondrial DNA [26] yielded age estimates of 139.916

10.09 Kya for rs6556547, 113.31618.35 Kya for rs187269,

92.82619.06 Kya for rs1816071, and 69.44620.14 Kya for

rs1816072 in coalescence-based calculations with the Rho index

[27] (Table S6; Figure 4). These age estimates, within the time

frame between the origin of the anatomically modern human

around 150 Kya [28] and migrations out of Africa around 60 Kya

[29], gave evidence to a fast rate of evolutionary change, driven by

the positive selection, comparable to that of mitochondrial DNA.

Population variations in allelic and haplotype

frequencies
Pronounced population variations were observed with respect to the

frequencies of alleles (Figure 1 and Table S1) and haplotypes

(Figure 2 and Table S3) among the Yi6AH151 SNPs. The D-allele

frequency of the youngest high-D SNP rs1816072 was considerably

lower in AF (31.2%) than in the three non-AF populations (57.1–

63.9%). This was even more the case with H56, which displayed

a frequency of 18.1% for AF compared to 53.4–63.6% for the three

non-AF populations. These findings suggest that the accumulation of

the D-alleles and HG-D began not long prior to the migrations of the

non-AF populations from Africa approximately 60 Kya [30], and

continued after the separation of the different populations.

The evolutionary history of the region surrounding Yi6AH151

could be reconstructed from the male genotype frequencies from

the AF and the three non-AF populations together with the

Chinese cohort (CH) employed in the initial report on GABRB2-

schizophrenia association [4] (Table S5). In Figure 5, the

homozygous D-allele genotype (DD) frequencies of from left to

right the oldest rs6556547, the second oldest rs187269, the third

oldest rs1816071 and the youngest rs1816072 in the male control

samples from these five populations are plotted in the order of AF-

GE-US-JP-CH in accordance with the order of ascending DD

frequencies for the three younger SNPs. This ascending order

coincided largely with the order of genetic distances of these non-

AF populations from AF, which placed the East Asia-Africa

distances much greater than the Europe-Africa distances [31]. The

similarity of the monotonic ascending DD-frequency gradients for

the three younger SNPs is consistent with the identified positive

selection being a recent and possibly ongoing process. Comparable

Figure 4. Proposed molecular evolution events in relation to time frame of modern human origins and dispersal from Africa. The age estimates
of the four high-D SNPs are shown on the left of this figure. Relevant human evolution milestones, including divergence from chimpanzee and
modern human evolution events delineated in Mellars’ model [29], are represented on the right. Yi6AH151 is represented as Alu.
doi:10.1371/journal.pone.0000462.g004
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DD frequency gradients were not demonstrated for the female

samples which were more limited in sample size. The rs6556547

SNP did not exhibit a monotonic ascending DD-frequency gradient,

owing at least in part to the high DD frequency of 66.7% (Table S5)

even in the AF population, which is keeping with the D-allele of this

SNP being the oldest among the four high-D SNPs.

In contrast to the controls, the 436 male schizophrenic samples

did not conform to a monotonic ascending DD-genotype frequency

gradient for any of the four high-D SNPs (Figure 5 and Table S5). In

fact, a modest monotonic descending gradient was displayed by

rs1816072, and a flat-top descending gradient by rs6556547. The

divergent behavior of the control and schizophrenic DD-frequencies

becomes particularly pronounced in the schizophrenia/control plot,

which yielded a monotonic descending gradient for all four high-D

SNPs. It indicates a relationship between DD-frequencies and

schizophrenia that diverges from that between DD-frequencies and

the controls, in accord with the association of the SNPs in this

genomic region with schizophrenia observed at the genotype level or

haplotype level or both [4,9].

ATP-dependences of receptors containing the two

b2-isoforms
Functionally, it has been demonstrated in a separate Caucasian

cohort that the presence of the derived alleles of the three younger

high-D SNPs rs187269, rs1816071 and rs1816072 in either

homozygote or heterozygote forms significantly increased both the

total b2 mRNA expression of the combined alternatively-spliced long

and short b2 isoforms, and the long/short b2 isoform ratio, relative to

the homozygote forms of the ancestral alleles (the fourth high-D SNP

rs6556547 was not included in the analysis) [12]. An increase in total

b2 subunit expression would enhance GABAA receptor functions

and therefore the level of inhibitory transmissions in the CNS, the

majority of which are mediated by b2-containing GABAA receptors.

On the other hand, an increase in the long/short b2 isoform ratio

would bring about a greater run-down of GABAA-mediated

electrophysiological current upon repetitive GABA stimulation in

the absence of externally added ATP [12].

The pivotal role of energy status in the current run-down

induced by repetitive GABA stimulation was confirmed in the

present study by the results in Figure 6, where raising the

intracellularly infused ATP from 1 mM to 4 mM was found to

reduce the amplitude of the run-down. Since this reduction was

much greater with the long b2 isoform (b2L)-containing receptors

compared to the short b2 isoform (b2S)-containing receptors, the

difference in current run-down between the two kinds of receptors

became narrowed at 2 mM compared to 1 mM ATP, and

practically eliminated at 4 mM ATP. Thus the long/short b2

isoform ratio was confirmed as an important determinant in the

energy regulation of GABAA receptor function. Such energy

Figure 5. Homozygous D-allele genotype (DD) frequencies for the four high-D SNPs in controls (top) and schizophrenics (bottom) (Table S5).
These DD frequencies are plotted for AF, GE, US, JP and Han Chinese from Shanghai (CH) with the four high-D SNPs arranged from left to right in
a descending order of their estimated ages. To avoid the potential influence from any gender effect, only male samples were employed in this
controls-schizophrenics comparison. The absence of schizophrenic samples of AF origin is indicated by ‘‘#’’.
doi:10.1371/journal.pone.0000462.g005
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regulation of GABAA receptor function could contribute for

example to the well-known heightening of alertness by hunger in

contrast to the relative lethargy induced by satiety: hunger cuts

down ATP supply, thereby inducing GABA-current rundown and

decreasing inhibitory CNS neurotransmissions mediated by long

b2 isoform-containing GABAA receptors. It follows that enhance-

ment of the long/short b2 isoform ratio by the derived alleles of the

high-D SNPs would reduce such inhibitory CNS neurotransmis-

sions under normal conditions, but much less so under conditions

of energy deprivation.

DISCUSSION
Within the schizophrenia-associated 3,551-bp region of human

GABRB2, the human lineage displayed accelerated evolutionary

adaptation. The high DD-frequencies of the oldest high-D SNP

rs6556547 in the control samples, ranging between 70.5–87.1%

for the five human populations (Table S1 and Table 1 in [4])

signaled strong positive selection of the derived allele of this SNP

over the ancestral allele found in the chimpanzee. For the three

younger high-D SNPs rs187269, rs1816071 and rs1816072, the

DD-frequencies were not as high, but the positive selections of

derived over ancestral alleles were just as evident. These positive

selections are striking in view of the low sequence divergence

among primates in this region. They were shown to be statistically

significant upon testing by stringent criteria (Table S4), and found

confirmation in the lower diversity of the haplotypes containing

the D-allele of rs1816072 (Figure 2, Figure 3 and Table S2). They

might be facilitated by the human-specific Alu Yi6AH151

insertion in the region; insertions of this type are known to

increase homologous recombinations and mutations, on which

selection could act [32,33]. The dissimilar enrichments of the

derived alleles displayed by the different populations suggest that

the positive selections of these alleles, especially the younger ones,

are recent and likely ongoing. Based on the age estimates of the

four derived alleles obtained using the mitochondrial DNA

mutation rate as a proximate, the time-span of these selection

processes overlapped with the time frame of Mellars’ proposed

history of modern human evolution [29], with the emergence of

the four high-D SNPs broadly coinciding with human population

expansion in, and dispersal from, Africa (Figure 4).

Since the four high-D SNPs occur in the intronic regions of

GABRB2, the impact of their allelic status may be expected to be

regulatory in nature. In keeping with this expectation, their

derived alleles were found to increase total b2-expression and to

enhance inhibition of GABAA function upon ATP depletion [[12];

Figure 6]. These two opposing effects of the derived alleles could

be fundamental to the differences between populations. Because

b2-containing GABAA receptors mediate the majority of CNS

inhibitory neurotransmissions, the derived alleles would increase

the overall activities of CNS inhibition by increasing total b2-

expression. At the same time, however, they would also accentuate

the inhibition of GABAA function under conditions of energy

deprivation as occasioned by food shortages. Accordingly the

strength of the positive derived-allele selections in any population

would depend on the level of GABAA-mediated CNS inhibitions

required by the population, as well as the historical pattern of

famines and severe food shortages in the course of its evolution.

Various environmental, social and other population-specific

factors could affect the required level of GABAA-mediated CNS

inhibitions. In baboons, negative modulation of GABAA receptor

produced effects that varied with the social status of the subject

[34]. Among humans as well, evidence suggests that social

organization could influence behavior pertinent to survival and

evolution [35,36]. The distance of the migrations out-of-Africa,

Figure 6. Variations of GABA-potentiated current rundowns with infused ATP. Currents were measured upon 30 successive additions of GABA at 1-
minute intervals as described in Methods. Electrophysiological currents, expressed as a percentage of the peak current (n) measured upon initial
response to stimulation by 100 mM (top row) or 300 mM (bottom row) GABA, were measured for a1b2Lc2L (&) and a1b2Sc2L (#) receptors with
intracellular infusion of 1 mM, 2 mM or 4 mM ATP. Each data point represents average6standard error recorded from 7–10 cells from at least six
independent transfections. Responses that were significantly different between the a1b2Lc2L and a1b2Sc2L receptors based on the two-tailed Student’s
t-test are marked by asterisks (*, P,0.05; **, P,0.01).
doi:10.1371/journal.pone.0000462.g006
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the size of the populations participating in these migrations, and

impact of agriculture [37] are other determinants that could favor

the evolution of dissimilar GABAA activity profiles in different

populations. Consequently, the evolved frequencies of the derived

alleles of the high-D SNPs can not be expected to be the same for

different populations.

The schizophrenia-relevance of the positive selection of the

derived genotypes is suggested by the drastic differences between

schizophrenia and control in their DD-frequency profiles

(Figure 5). The control samples showed an indefinite trend for

the oldest high-D SNP, but an upward gradient for the three

younger high-D SNPs, in the DD-frequency plots over the AF,

GE, US, JP and CH populations, providing a useful evolutionary

snapshot of the selection process. In contrast, an indefinite trend

(rs187269 and rs1816071) or downward trend (rs6556547 and

rs1816072) was observed over these five populations for the

schizophrenic samples; the reasons for the two downward

gradients yet remain to be understood, but it is not ruled out

that assortative mating, which has been observed in schizophrenia

[38], might be a contributing factor. The schizophrenia/control

ratio in DD-frequency thus decreased monotonically for all four

high-D SNPs over these five populations, clearly establishing that

the positive selection manifested by the controls was substantially

weakened among the schizophrenics. Although the ratio exceeded

unity in the GE samples, was close to unity in the US samples, but

less than unity in the JP and CH samples, the schizophrenic/

control ratios for all four SNPs conformed to a similar descending

gradient over the GE-US-JP-CH populations. This uniformity

shown by the four high-D SNPs suggests that the nature of the

difference between control and schizophrenic samples was

basically comparable for the four individual high-D SNPs.

An inhibition demand hypothesis may be proposed to address the

biological basis of the overall positive selection of derived

genotypes in GABRB2, and its potential significance to the etiology

of schizophrenia and possibly also other psychiatric disorders

involving GABAA. The proposal consists of: (a) a balance between

CNS excitations and inhibitions is essential to mental health; (b)

since there is only one inhibitory neurotransmitter, GABA, in

contrast to several excitatory neurotransmitters in the brain, the

GABAergic system is among the systems that are stringently

subjected to evolutionary adjustment; (c) in general, human

genetic evolution is slow relative to a rapidly changing environ-

ment that imposes increasing demand on CNS inhibitory

functions; (d) the derived genotypes, which influence the regulation

of the GABAergic system, tend to be reduced in schizophrenics;

and (e) such and other alterations affecting the GABAergic system

could contribute to schizophrenia etiology.

While purifying selections are often encountered eliminating the

rare, deleterious mutations responsible for mendelian diseases,

positive selections of protective derived alleles are increasingly

observed in common disorders. For example, there are indications

of positive derived-allele selection in the AGT gene for angiotensi-

nogen [39] and CYP3A5 gene for cytochrome P450 [40] protecting

against hypertension, and similarly positive derived-allele selection

in the CAPN10 gene for calpain 10 [41] and PPARgamma gene [42–

44] protecting against type-II diabetes. These positive selections,

consistent with the sodium-retention hypothesis for hypertension [45]

and thrifty-gene hypothesis for diabetes [46], respectively, may be

interpreted in terms of an ancestral-susceptibility model for

common diseases [44] which proposes that, on account of shifts

of environment and lifestyle from ancient to modern times,

originally harmless or even beneficial ancestral alleles could

enhance disease susceptibility in the modern populations, such that

protective derived alleles providing improved adaptation to the

altered circumstances are positively selected. In this regard, it is

noteworthy that because common diseases are usually multigenic

in nature, the divergence between modern and ancestral

circumstances that is beneficially addressed by the protective

derived alleles of a disease-susceptibility gene could arise not only

from shifts of environment and lifestyle. It could also arise within

the body from alterations in the allelic status of other interacting,

co-evolving genes, causing the ancestral alleles to interact

suboptimally with other genes in the modern population. For

common diseases not expressly related to diet or lifestyle, such

internal alterations in the genomic context of a susceptibility gene

could be as important as, or even more important than, external

shifts of environment and lifestyle.

In conclusion, because of changes between ancient and modern

populations with respect to the genomic context in which GABRB2

is embedded, and with respect to environment and lifestyle, the

ancestral alleles of the high-D SNPs rs6556547, rs187269,

rs1816071 and rs1816072 in GABRB2 have become functionally

inadequate in the modern populations. This inadequacy has

brought about recent and possibly ongoing positive selections for

their cognate derived alleles. Because of the dissimilar evolutionary

paths undergone by different human populations, each population

has acquired through evolution its own optimized capacity of

GABAergic receptors and response of these receptors to energy

regulation, as determined by among other factors the derived

alleles of the high-D SNPs. The occurrence of positive selection,

observed for the first time for any schizophrenia susceptibility

genes, in GABRB2 points to a fundamental role of GABAA

function in schizophrenia etiology, as well as the potential

usefulness of searching for positive selection among various

susceptibility genes for schizophrenia and other complex disorders.

METHODS

Human subjects
A total of 1,179 individuals (Female 345; Male 834), including 743

unrelated non-schizophrenia subjects (Female 345; Male 398) and

436 schizophrenic male patients but not including relatives in trios,

from four different ethnic populations, African (AF), German

Caucasians (GE), Caucasians of USA (US) and Japanese (JP) were

studied.

For the JP and GE samples, details of sample source and

diagnostic procedure were described in Lo et al. [9]. In brief, the JP

samples consisted of 207 unrelated control subjects (Female 105;

Male 102) and 210 unrelated schizophrenia male patients. The

GE samples consisted of 190 unrelated control subjects (Female

76; Male 114) and 119 unrelated male schizophrenics of

systematic subtype. All schizophrenia patients were in-patients

and fulfilled the diagnostic criteria for schizophrenia according to

the fourth edition of Diagnostic and Statistical Manual of Mental

Disorders [47]. The GE patients belonged to the systematic

schizophrenia subtype, the most severe form of schizophrenia, on

the basis of Leonhard’s classification of endogenous psychoses

[48]. Written informed consent was obtained from each subject.

Approval for the study was obtained from the ethnical committees

of Kurume University for the JP samples and of University of

Würzburg for the GE samples.

A total of 370 US samples consisted of 263 unrelated control

subjects (Female 127; Male 136) and 107 schizophrenia male

patients. Recruitment of the samples was as described [49]. Briefly,

the patients were evaluated using the semi-structured diagnostic

interview scale called the Diagnostic Interview for Genetic Studies

[50]. This information was combined with medical records and

available information from relatives. Consensus diagnoses were
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made using DMS-IV criteria. The controls were drawn un-

screened from neonates from a local hospital without any

demographic details apart from gender and reported maternal

ethnicity. The study was approved by the University of Pittsburgh

Institutional Review Board. Written informed consent was

obtained from all participants except for the neonate controls in

accordance with IRB guidelines.

For the AF population, DNA samples of 25 unrelated

individuals and 30 parent-offspring trios were obtained from

Coriell Cell Repositories (Camden, NJ). The 25 unrelated

individuals (Female 9; Male 16) included eight from North of

Sahara (Female 2; Male 6; Panel ID HD12), seven from South of

Sahara (Female 2; Male 5; Panel ID: HD11), five Biaka African-

Pygmy from Bagandu in the Central African Republic (Female 3,

Male 2; Repository Number NA10469–NA10473), and five Mbuti

African-Pygmy from Ituri Forest in northeast Zaire (Female 2;

Male 3; Repository Number NA10492–NA10496). All members

of each of the 30 parent-offspring trios from Yoruba in Ibadan,

Nigeria (Female offspring 7; Male offspring 23; Panel ID:

HAPMAPPT03) were genotyped and yielded successful genotyp-

ing percentage greater than 90% except for two mother samples

(Repository Numbers GM19209 and GM19099), which accord-

ingly were not included in present study. The accuracy in phase

estimation of haplotypes for parents was confirmed by genotype

data from the offspring. Only data of unrelated parents (Mother

28; Father 30) were used in the statistical analysis.

Genomic DNA of non-human primates
Non-human primate genomic DNA samples obtained from Coriell

Cell Repositories (Camden, NJ) included (with Coriell Repository

Numbers): Macaca arctoides (stumptail macaque, NA03443), Macaca

nemestrina (pigtailed macaque, NG07921), Macaca nigra (celebes

crested macaque, NG07101), Macaca fascicularis (crab-eating ma-

caque, NA03446) and Erythrocebus patas (patas monkey, NG06254).

Polymerase chain reaction and sequencing
To fully sequence the 3,551 base pairs (bp) genomic region flanked

by the two schizophrenia-associated SNPs rs6556547 and

rs187269 in GABRB2 [4,9], a 7.4-Kb genomic region starting

from 2,148 bp upstream of Exon 9 to 519 bp downstream of Exon

10 was generated by polymerase chain reaction (PCR) and served

as first PCR template for amplification of two nested-PCR

products. List of potential primers for PCR and resequencing

were designed using the Primer 3 program [51]. The sequences of

primers, designed based on chromosome 5 contig NT_023133.12,

are listed in Table S7. Specificity of each potential primer was

checked with BLASTN, an alignment tool of the National Center

for Biotechnology Information (www.ncbi.nlm.nih.gov/BLAST/).

Only specific pairs of primers, with less than 5 hits to the human

genome and none of them in GABAA receptor genes other than

GABRB2, were accepted. Together with the relatively long length

(7.4 Kb) of the first PCR product and the employment of nested-

PCR, this level of primer specificity reduced the probability of

amplifying paralogous sequences in the genome.

PCR amplification of the 7.4-Kb region was performed in

a 20 ml mixture containing 70 ng of genomic DNA, 2 ml of 106
PCR buffer for KOD Hot-Start DNA Polymerase, 20 mM of each

dNTP, 0.4 mM of MgSO4, 0.12 mM of each primer and 0.5 U of

KOD Hot-Start DNA Polymerase (Novagen, Madison WI). PCR

conditions were optimized using gradient PCR to ensure

homogeneity of the amplified products. PCR consisted of initial

polymerase activation at 95uC for 3 min, followed by 36 cycles

each of 30 sec at 95uC, 30 sec at 62uC and 5 min and 30 sec at

68uC, and a final extension step at 68uC for 5 min and 30 sec.

Post-PCR product was immediately purified by ethanol pre-

cipitation and recovered in 16 Tris-Cl (USB, Cleveland, Ohio)

and ethylene-diamine-tetra-acetic acid (EDTA) (Invitrogen Cor-

poration, Grand Island, NY) buffer, as described in Lo et al. [4].

Two nested-PCR fragments, one from 2,148 bp upstream to

498 bp downstream (fragment A), and the other from 342 bp

upstream to 2,039 bp downstream (fragment B), of exon 9 were

amplified using the 7.4-Kb purified PCR product as template.

Each nested PCR reaction contained 0.6 ml of the 7.4-Kb purified

PCR product, 75 nM of each primer, 50 nM of each dNTP,

2.5 mM of MgCl2 and 1 U of Taq DNA polymerase (Amersham

Bioscience, Uppsala, Sweden) in a final volume of 20 ml. The

nested-PCR reaction consisted of an initial denaturation at 94uC
for 2 min, followed by 35 cycles each of 30 sec at 95uC, 30 sec at

58uC, 90 sec at 72uC, plus a final extension step at 72uC for

5 min. After nested PCR, the product in each instance was

resolved on 1.2% agarose gel, stained with 0.5 mg/ml of ethidium

bromide, and examined under UV to confirm the presence of

PCR product of expected size and absence of non-specific

products. The stringency of nested-PCR amplification exceeded

that for normal PCR, further eliminating non-specific products.

The nested-PCR products were purified and recovered as for the

first PCR product.

SNP discovery and genotyping
Both SNP discovery and genotyping were carried out by

resequencing the nested-PCR products. For each of the nested

PCR Fragment A and B, four sequencing primers were employed

(Table S7). Each sequencing reaction contained 3 ml of sequencing

buffer, 0.5 ml of BigByeH Terminator version 3.1 (Applied

Biosystems Inc., Foster City, California), ,100 ng purified nested

PCR products and 1 mM sequencing primer. Each cycle of

sequencing reaction consisted of initial denaturation at 96uC for

1 min, followed by 25 cycles each of 10 s at 96uC, 5 s at 50uC, and

4 min at 60uC. Ethanol precipitation was used to clean-up the

post-sequencing products as for the PCR products. Each air-dried

sequencing sample was dissolved in 10 ml Hi-Deionized Formam-

ide (Applied Biosystems Inc., Foster City, California), denatured at

95uC for 1 min and immediately held at 4uC prior to sequencing

with a Model 3100 Genetic Analyzer (Applied Biosystems Inc.,

Foster City, California).

Sequence chromatogram alignment-based SNP discovery and

genotype calling were carried out using the software package

PolyPhred version 4.2 [52]. All genotyping results were manually

confirmed by at least two independent researchers. All analyzed

SNPs were located within the high-quality region (Quality Value

$20), and occasional low-quality passes were re-sequenced.

Inference of haplotype phase
Inference of haplotypes from the genotype data was performed

using PHASE version 2.1 as described [53]. The haplotype phases

of both parents in AF and US family-trios were estimated based on

the genotype data of the corresponding offspring using the P1

option of the program. The inferred haplotypes of AF and US

parents were used as phase-known samples in the haplotype phase

estimation of population-based genotype data in order to increase

the accuracy of haplotype reconstruction. Input of genotype data

of unrelated individuals was then placed into the program to infer

haplotype phase under the default settings for five independent

runs, except that the final iteration was carried out with a 10-fold

longer running time. Thus the inferred haplotypes were obtained

from five independent runs giving the best average goodness of fit.
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Construction of hypothetical human ancestral

sequence
Alignment of human and non-human primate sequences for

a ,1.8-Kb region upstream of Exon 9 of GABRB2 was performed

using ClustalW [54]. This revealed a human-specific Alu insertion

in Intron 8 of GABRB2. Similarity between sequences was

visualized using VISTA [55].

To characterize the sub-family identity of the human-specific

Alu insertion in Intron 8 of GABRB2, its sequence was searched

against the repetitive elements library RepBase using the program

RepeatMasker [56]. Consensus sequences of Alu subfamilies and

the sequence of the inserted Alu were aligned using ClustalW [54].

To obtain the consensus phylogenetic tree, the SEQBOOT,

DNAPARS and CONSENSE programs in the PHYLIP software

package [57] were employed. The consensus phylogenetic tree was

displayed using TreeView version 1.6.6 [58].

The hypothetical human ancestral sequence of the 3,551-bp

region of GABRB2 was constructed in two stages. For SNPs on the

sequences flanking the human-specific Yi6AH151, chimpanzee

sequences were used as outgroup to infer their ancestral alleles.

For SNPs within Yi6AH151, consensus sequence of the Alu Yi6

subfamily was used for this purpose.

Summary statistics of mutation parameters
The Hudson, Kreitman and Aguadé’s test [18] is based on the

neutral molecular evolution expectation that DNA sequence

polymorphism within a species and DNA sequence divergence

between species, will be proportional to the neutral mutation rate

[59]. By comparing the number of nucleotide differences between

and within species for the 3,551-bp region against the genome

average estimates using DnaSP, the rate of evolution in this region

could be tested for departure from neutrality.

DNA diversity level among human sequences was measured

using the program DnaSP to yield four mutation parameters:

haplotype diversity Hd [60] equivalent to gene heterozygosity,

nucleotide diversity p [61] measuring the average number of

pairwise differences, Watterson’s h-W [62] based on the number of

segregating sites, and h-H [63] weighting the presence of high-

frequency derived variants. Under the standard neutral model of

a random-mating population of constant size [59], these genetic

mutation parameters would each approach h = 4Nem, where Ne is

the diploid long-term inbreeding effective population size and m is

the mutation rate per generation.

The four summary statistics Tajima’s D [64], Fu and Li’s D and

F [65] and Fay and Wu’s H [63] were evaluated regarding the site-

frequency spectrum for or against an assumption of neutrality.

Departures from the neutral model are usually attributed to

selective or demographic effects. The Tajima’s D test compares

h-W to p. The Fu and Li’s D and F tests compare h-W and p
respectively to the number of derived unique mutations, which

represent the mutations on external branches of the tree. The Fay

and Wu’s H test compares p to h-H, and is sensitive for detecting

an excess of high-frequency-derived alleles, from a hitchhiking

effect under positive directional selection. For the Fu and Li’s D

and F and Fay and Wu’s H tests, an outgroup sequence is required

to define the ancestral status of alleles. The hypothetical human

ancestral sequence was used as the outgroup sequence.

The significance of any difference in Fay and Wu’s H value

between HG-N and HG-D was tested with 105 permutations. In

each permutation, the N and D alleles of SNP rs1816072 were

randomly exchanged between the two groups of haplotypes, and

absolute differences in Fay and Wu’s H value were calculated

between the two groups. The number of permutations out of the

total of 105 permutations yielding a greater difference in value

between HG-N and HG-D were counted to give the probability

value P.

Coalescence-based neutrality test with

demographic models
The simulation method based on the coalescence process was

employed using the mksample program [66]. For each human

population, the observed number of chromosomes and segregating

sites were specified to generate 105 simulation datasets to test the

significance of Fay and Wu’s H and Tajima’s D values and the

probability of positive selection of the major haplotype for each of

the demographic models. Recombination rate and gene conver-

sion were stringently set at the 1028 per generation close to the

genome average, and an average tract length of 100 bp,

respectively, to minimize type I error.

The significance of Fay and Wu’s H and Tajima’s D values in

each population was calculated using simulations of various

demographic models under the assumption of neutral evolution.

For each population, the number of simulation datasets showing

Fay and Wu’s H or Tajima’s D values smaller than the observed D

or H values was counted. On the other hand, in order to access the

statistical probability of a history of positive selection at the major

haplotype H56 in human populations, a null hypothesis of

observing a haplotype containing four derived alleles having the

same or a higher frequency than the observed frequency of H56 in

neutral evolution with various demographic histories was tested.

A total of thirty-three demographic models, namely M1 to M33

were examined. The models of M1 to M9 embodied the effects of

population growth and substructure as described by Evans et al.

[21]. M10 to M25 were models with population growth and

substructure based on Currat et al. [23]. M25 to M29 were

population bottleneck models based on the demographic analysis

of multiloci data by Voight et al. [22]. M30 to M33 were the low-

migration models as described by Garrigan and Hammers [24].

The parameters for Evans’ models [21] M1 to M9 were as

follows: M1, a constant effective population size of 104; M2,

exponential population expansion since 5,000 generations ago

from an initial population size of 104 to a present population size

of 107; M3, exponential population expansion since 1,000

generations ago from an initial population size of 104 to a present

population size of 107; M4, a severe bottleneck starting 5,000

generations ago reduced the population size instantly from 104 to

103, which remained constant until 2,500 generations ago, when

the population expanded exponentially to a present size of 107;

M5, five consecutive bottleneck events started at 7,000 generations

ago, in each instance reducing the population size from 104

instantly to 103, following by constant size for 500 generations and

subsequent recovery by exponential growth back to 104 in the

ensuing 500 generations; starting at the end of the fifth bottleneck

at 2,500 generations ago, the population expanded exponentially

to a present size of 107; M6 to M9, having a population structure

where the total number of chromosomes for each human

population was split equally into two to five subpopulations, with

1 migration per generation between any two populations under

constant population size condition.

In Currat’s models [23], a subpopulation split off from a core

population at 1,000 generations before the present, and grew

exponentially from an initial effective population size (ns) to the

present size of 107 individuals. For each model, a range of ns from

10 to 104 was tested. For the stable core models M10 to M13
among them, the effective population size of the core population

remained constant at 105; bottleneck severities ranged from 0.0001
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for ns = 10 to 0.1 for ns = 104. For the growing core models M14 to
M17, the population core grew from an initial size of 104

individuals at 1,000 generations ago to 107 at present. For the

extended growing core models M18 to M21, the core population

grew from 104 individuals at 5,000 generations ago to the present

107. For the early fission models M22 to M25, a subpopulation

split from a core population of ns at 5,000 generations ago and

remained constant in size until 1,000 generations ago, and grew

thereafter to the present 107, while the core population grew from

104 individuals at 5,000 generations ago to the present 107.

M26 to M29 were population-bottleneck models based on

Voight et al. [22]. For all of these four models, a bottleneck event

occurred at 1,600 generations ago (tstart), when an ancestral

population (NA) of 104 was reduced to a size of 103 for M26

(bottleneck severity, b = 0.1), 46103 for M27 (b = 0.4), and 50 for

both M28 and M29 (b = 0.005). After a period of tdur, the

population grew exponentially back to its original size of 104. The

tdur was 400 generations for M26, zero for M27, 600 for M28, and

300 for M29.

The low-migration models M30 to M33, based on Garrigan

and Hammers [24], described a structured ancestral population of

2,000 chromosomes, which admixed with two other demes of the

same size at a low-migration rate (4Nm = 0.5) 32,000 generations

ago (800 Kya); a bottleneck event occurred at 1,600 generations

ago as described in M26 to M29, except that the population size

recovered to 20,000 chromosomes.

Estimation of SNP coalescence age
Two established mutation-based methods were employed to

estimate the coalescence age of SNP: a) using the molecular clock

derived from the divergence between human and chimpanzee to

determine the time to the Most Recent Common Ancestor MRCA

[25]; and b) using the Rho (r) index to define the age in unit of

mutation from MRCA to the descendent haplotypes of SNPs [27],

and the mutation rate of human mitochondria DNA (mtDNA)

[26] to obtain the estimated coalescence age of SNPs. Both

approaches were suggested to be unbiased by demographic history

[25,27].

In the first method, the SNP age was estimated by the mutation-

based method of Thomson et al. [25]. Average number of

mutations per base in lineages from the MRCA to haplotypes

carrying the D allele of SNP (d) for each human population was

calculated using the DnaSP version 4.10 [67]. By comparing

human and chimpanzee sequences in this region, the human-

chimpanzee nucleotide divergence (D) in the region was estimated

for human populations in mutations per base. Assuming a human-

chimpanzee divergence time (Tsplit) of 6 Mya, the estimated

mutation rate per site per year (m) was obtained by the formula

m = D/(2*Tsplit). The time to MRCA (TMRCA) in years was

obtained by the formula TMRCA = d*m.

In the second method, the age of haplotypes carrying derived

alleles of SNPs in terms of the number of mutations was measured

by the Rho (r) index [27] by means of the program NETWORK

version 4.2 (NETWORK website). A phylogenetic tree of inferred

haplotypes was constructed using the median-joining method [68].

By defining a root node, i.e. the hypothetical human ancestral

haplotype, r between the root node and a descendent haplotype or

a group of descendent haplotypes, i.e. a haplotype group, was

calculated. The r statistic represents the average number of

mutational changes between the root node and an individual

haplotype within the phylogeny relating the intra-allelic diversity

of the root node and the haplotypes of interest. Relationship

between r and TMRCA (t) is given by the equation, r = mt where

m is the mutation rate per site per year. To estimate the TMRCA,

the mutation rate m for human mtDNA, which is equal to 1

mutation per 20,180 years [26], was employed for converting r to

t. The age of a descendent haplotype is the same as the minimum

age estimate for the preceding mutation.

Expression and electrophysiology of recombinant

GABAA receptors
Human embryonic kidney (HEK293) cells were transiently co-

transfected with pcDNA3.1-a1, pcDNA3.1-c2L plus either

pcDNA3.1-b2S or pcDNA3.1-b2L, using the Genejuice trans-

fection reagent (Novagen) as described [12]. Whole-cell patch

clamp recordings were carried out on the cells using an EPC9

amplifier (HEKA, Germany) at 36 to 60 hours after transfection.

Cells were voltage-clamped at 260 mV. Pipette-to-bath resistance

was 3.0–6.0 MV when filled with the internal solution containing

140 mM of CsCl, 1 mM of MgCl2, 11 mM of EGTA, 10 mM of

HEPES, and 1, 2 or 4 mM of Mg++-ATP, adjusted to pH 7.3 with

CsOH. The external superfusion solution contained 150 mM of

NaCl, 3 mM of KCl, 1 mM of MgCl2, 1 mM of CaCl2 and

10 mM of HEPES, adjusted to pH 7.2 with NaOH [69]. The cells

were constantly perfused with the external solution at 5 ml/min.

Repetitive applications of GABA (100 or 300 mM, 5-s duration,

60-s interval) to induce current rundown was initiated when the

cells were found to display consistent responses to low concentra-

tion of GABA (10 mM, 3-min interval) [70]. Thirty consecutive

whole-cell responses to the repetitive applications were evaluated

in terms of the observed peak current as percentile initial peak

current. The results obtained from 7–10 cells collected from 6

independent transfections were presented in mean6standard

error. Two-tailed Student’s t-test was employed for calculation of

statistical differences between receptors containing b2L and those

containing b2S.
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Found at: doi:10.1371/journal.pone.0000462.s007 (0.02 MB

XLS)

Figure S1 Sequence similarity between human and 7 non-

human primates displayed by VISTA [55]. The sequences of

chimpanzee and rhesus were obtained from the NCBI database.

The DNA of the five other non-human primates were sequenced

over this 1.8 Kb region in GABRB2.

Found at: doi:10.1371/journal.pone.0000462.s008 (0.82 MB TIF)

Figure S2 An unrooted phylogenetic tree of Alu sequences. (A)

The tree was generated from an alignment of the consensus

sequences of Alu sub-families and the Yi6AH151 using DNA-

PARS in the PHYLIP software package [57]. The consensus tree

generated from 1,000 replications is labeled with bootstrap values

at the nodes and displayed with TreeView [58]. The clade

containing human-specific Alu Yi6AH151 and its closest neighbor

Alu Yi6 is highlighted in grey. (B) Sequence alignment of Alu Yi6

consensus sequence and Yi6AH151. Refer to Salem et al. [14] for

the sequences of all 150 members of Yi6 subfamily.

Found at: doi:10.1371/journal.pone.0000462.s009 (0.98 MB TIF)

Figure S3 Plot of estimated recombination rate and location of

recombination hotspots in GABRB2. The plot is adapted from

Genome Browser (http://genome.ucsc.edu/cgi-bin/hgGateway)

report, which employed the HapMap Phase II data. The red box

indicates the region of GABRB2 studied.

Found at: doi:10.1371/journal.pone.0000462.s010 (0.75 MB TIF)

Figure S4 Summary statistics for all HG-N and HG-D

haplotypes. Tajima’s D and Fu and Li’s D values are plotted for

AF, GE, US and JP.

Found at: doi:10.1371/journal.pone.0000462.s011 (0.97 MB TIF)
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