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Candida auris (C. auris) is an emerging fungus associated with high morbidity. It has a
unique transmission ability and is often resistant to multiple drugs. In this study, we
evaluated the ability of different machine learning models to classify the drug resistance
and predicted and ranked the drug resistance mutations of C. auris. Two C. auris strains
were obtained. Combined with other 356 strains collected from the European
Bioinformatics Institute (EBI) databases, the whole genome sequencing (WGS) data
were analyzed by bioinformatics. Machine learning classifiers were used to build drug
resistance models, which were evaluated and compared by various evaluation methods
based on AUC value. Briefly, two strains were assigned to Clade III in the phylogenetic
tree, which was consistent with previous studies; nevertheless, the phylogenetic tree was
not completely consistent with the conclusion of clustering according to the geographical
location discovered earlier. The clustering results of C. auris were related to its drug
resistance. The resistance genes of C. auris were not under additional strong selection
pressure, and the performance of different models varied greatly for different drugs. For
drugs such as azoles and echinocandins, the models performed relatively well. In addition,
two machine learning algorithms, based on the balanced test and imbalanced test, were
designed and evaluated; for most drugs, the evaluation results on the balanced test set
were better than on the imbalanced test set. The mutations strongly be associated with
drug resistance of C. auris were predicted and ranked by Recursive Feature Elimination
with Cross-Validation (RFECV) combined with a machine learning classifier. In addition to
known drug resistance mutations, some new resistance mutations were predicted, such
as Y501H and I466M mutation in the ERG11 gene and R278H mutation in the ERG10
gene, which may be associated with fluconazole (FCZ), micafungin (MCF), and
amphotericin B (AmB) resistance, respectively; these mutations were in the “hot spot”
regions of the ergosterol pathway. To sum up, this study suggested that machine learning
classifiers are a useful and cost-effective method to identify fungal drug resistance-related
mutations, which is of great significance for the research on the resistance mechanism of
C. auris.

Keywords: Candida auris, phylogenetic analysis, drug resistance, whole genome sequencing, machine learning,
antifungal drugs, ergosterol pathway
gy | www.frontiersin.org October 2021 | Volume 11 | Article 7420621

https://www.frontiersin.org/articles/10.3389/fcimb.2021.742062/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.742062/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.742062/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:hanlicdc@163.com
mailto:xchen80@snnu.edu.cn
https://doi.org/10.3389/fcimb.2021.742062
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2021.742062
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2021.742062&domain=pdf&date_stamp=2021-10-15


Li et al. C. auris Drug-Resistance Analysis
INTRODUCTION

Candida auris (C. auris) is an emerging fungal pathogen first
isolated from the external ear canal of a 70-year-old female
inpatient in Tokyo hospital (Satoh et al., 2009). C. auris can
persist for weeks in a nosocomial environment, and survive high-
end disinfections, thus presenting a serious global health threat
(Chaabane et al., 2019; Du et al., 2020). To date, C. auris outbreak
has been reported in more than 30 countries worldwide (Rhodes
et al., 2018; Tian et al., 2018; Escandon et al., 2019; Rhodes and
Fisher, 2019). C. auris, also known as “super fungus”, is a
multidrug-resistant species associated with high mortality
(Wang et al., 2018).

So far, four specific clades of C. auris have been identified by
phylogenetic analysis based on whole-genome sequencing
(WGS): South Asia (Clade I), East Asia (Clade II), South
Africa (Clade III), and South America (Clade IV). A potential
fifth clade of Iranian origin was described by few studies (Chow
et al., 2019; Di Pilato et al., 2021). All clades are characterized by
distinct single nucleotide polymorphisms (SNPs), highlighting
this pathogen’s independent and worldwide emergence
(Lockhart et al., 2017). Except for Clade II, the other three
clusters have been associated with an outbreak of invasive
infection and multiple resistance. Clade II is predominantly an
ear canal infection, and presents either single fluconazole
resistance or susceptible (Kwon et al., 2019; Welsh et al., 2019).

Clinically, invasive fungal infections are usually treated with
three classes of antifungal agents: echinocandins, azoles, and
polyenes (ElBaradei, 2020). Fluconazole (FCZ) resistance is the
most common. Resistance to other azoles like voriconazole
(VCZ), itraconazole (ICZ), and posaconazole (PZ) might vary
(Montoya et al., 2019; ElBaradei, 2020).

Ergosterol is a key component of the fungal cell membrane. In
Candida, ergosterol is mediated by lanosterol 14-alpha-
demethylase (ERG11), which is involved in an important step
in the biosynthesis of ergosterol. Antifungal agents effectively
inhibit ergosterol biosynthesis by inhibiting the enzyme’s
function, thereby compromising membrane integrity (Sanglard
et al., 1998). Different mechanisms, including mutations in the
ERG11 gene, overexpression of the ATP-binding Cassette (ABC)
exogenous pump transporter, which is encoded by the CDR1
gene, and duplication and overexpression of the ERG11 gene,
contribute to the reduction of the sensitivity of C. auris to azole
drugs (Puri et al., 1999; de Micheli et al., 2002; Coste et al., 2004;
Cannon et al., 2009; Noel, 2012; Spampinato and Leonardi, 2013;
Medici and Del Poeta, 2015; Nami et al., 2019; Bing et al., 2020).
Point mutations in the ERG11 gene, associated with FCZ
resistance in Candida albicans, are also one of the mechanisms
of FCZ resistance in C. auris. Point mutations in ERG11 can
reduce the azole sensitivity of Candida, particularly in the “hot
spots” located between 105-165, 266-287, and 405-488 (Lamb
et al., 1995; Sanglard et al., 1998; Mellado et al., 2004; Vandeputte
et al., 2012). Moreover, Lockhart et al. described three major
mutations in ERG11 that influence FCZ resistance, namely,
F126T, Y132F, and K143R (Lockhart et al . , 2017).
Furthermore, Healey et al. found that Y132F mutations
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significantly reduce the sensitivity of C. auris to azole drugs.
Also, it has been reported that these mutations are associated
with geographic cues, with mutations leading to Y132F and
K143R associated with isolates belonging to South Asian and
South American groups (Healey et al., 2018). In addition, Rybak
et al. reported new mutations on the zinc-cluster transcription
factor-encoding gene (TAC1B) associated with FCZ resistance
(Rybak et al., 2020). This study showed that mutations on
TAC1B could be produced rapidly in vitro after exposure to
FCZ. Most FCZ-resistant isolates have many drug-related
TAC1B mutations in a specific global lineage or group of C.
auris, and the identification of new resistance determinants has
significantly increased the understanding of clinical antifungal
resistance in C. auris (Rybak et al., 2020).

C. auris resistance to echinocandins is less common.
Caspofungin (CSF), micafungin (MCF), and anidulafungin
(AND) are often recommended as first-line treatments for
candidemia (ElBaradei, 2020). In vitro studies have
demonstrated that CSF and AND have a certain inhibitory
effect on the growth of C. auris (Dudiuk et al., 2019).
Interestingly, one study reported that among all echinocandins,
micafungin has the highest inhibitory effect against C. auris
(Kordalewska et al., 2018).

Echinocandins inhibit the 1, 3-beta-D-glucan synthetase
required for cell wall synthesis, encoded by the genes FKS1 and
FKS2. Several mutations (“hot spots 1 and 2”) in the FKS1 and
FKS2 genes in Candida albicans and other non-auris Candida
species have been associated with the echinocandins resistance.
In the FKS1 gene of C. albicans, these “hot spots” lie between the
amino acids 641-649 and 1,345-1,365 (Park et al., 2005).
Resistance to the echinocandins involves mutations in the
FKS1 gene, with changes in the hot spot 1 region leading to
amino acid substitution from serine to proline at 639 (S639P)
(Biagi et al., 2019). Moreover, a multicenter study in India
reported another mutation in the same position 639 of the
FKS1 gene, involving a change from serine to phenylalanine
(S639F or S639Y) (Chowdhary et al., 2018). Sharma et al. also
found FKS2 in a single copy of the C. auris genome; yet, no
mutation associated with echinocandins resistance has been
found in this gene (Sharma et al., 2016; Chaabane et al., 2019).

Among polyenes, C. auris and C. lusitaniae have shown high
resistance to amphotericin B (AmB). However, the molecular
mechanism of polyene drug resistance is not clear (ElBaradei,
2020) and more research may be needed to reveal how non-
synonymous mutations promote resistance to AmB in C. auris
(Escandon et al., 2019). Kordalewska and Perlin suggested that
resistance to AmB is regulated at the transcriptional level rather
than mutations (Kordalewska and Perlin, 2019).

Predictive models based on machine learning can explore
multiple associations between genetic variations. Machine
learning is the scientific discipline that focuses on how
computers learn from data (Deo, 2015). As an essential
component in artificial intelligence (AI), it has been integrated
into many fields, such as data generation, analytics and
knowledge mining (Handelman et al., 2018; Patel et al., 2020).
Several previous studies have used machine learning algorithms
October 2021 | Volume 11 | Article 742062
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to predict microbial resistance. For example, Zhang et al.
collected 161 strains of Mycobacterium tuberculosis (MTB)
from China and used logistic regression and random forest to
find and predict new genes associated with drug resistance of
seven drugs (Zhang et al., 2013). Furthermore, using a more
geographically diverse data set, Farhat et al. studied the
performance of the random forest algorithm based 1,397
isolates (Farhat et al., 2016). Her et al. proposed a pan-
genome-based method to characterize antibiotic-resistant
microbial strains; the method was tested on Escherichia coli.
The drug resistance gene was predicted by identifying the core
and accessory gene clusters on Escherichia coli pan-genomic
(Her and Wu, 2018). In addition, Yang et al. considered 1,839
bacterial isolates from the UK and compared the performance of
more machine learning classifiers, including Logistic Regression,
Support Vector Classifier (based on linear and Gaussian kernel
functions), product-of-marginals model (PM), Random Forest,
gradient tree boosting (GBT), and Adaboost. Finally, mutations
associated with drug resistance of MTB ranked and were
predicted (Yang et al., 2018; Kouchaki et al., 2019). However,
most of the microbes studied were bacteria, while only a few
studies applied this method to study fungi. Moreover, currently,
there are no studies on the classification of fungi drug resistance
and the evaluation of drug resistance mutations by
mathematical models.

In this study, we collected C. auris isolates from different
countries or regions, analyzed their whole genome sequencing
data, constructed the phylogenetic relationship, evaluated the
ability of different machine learning models to classify the drug
resistance, and predicted and ranked the drug resistance
mutations of C. auris.
MATERIALS AND METHODS

WGS and Pre-processing
As of April 2020, the whole genome sequencing (WGS) data of C.
auris published by the European Bioinformatics Institute (EBI,
https://www.ebi.ac.uk/) has 796 isolates in total. Among them,
356 strains have undergone antifungal susceptibility testing.
According to these results, resistant or susceptible strains were
determined according to the Clinical and Laboratory Standards
Institute (CLSI) guidelines.

In this study, WGS data of 356 strains containing drug
resistance information on the EBI website were collected, and
two strains named C1921 and C1922, which showed FCZ
resistance from the Chinese PLA Center for Disease Control &
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Prevention were combined (Chen et al., 2018). This study
involved WGS data of 358 C. auris strains (see Supplementary
Materials File), all of which were sequenced using Illumina
sequencing technology platform; the sequencing data obtained
were double-ended WGS data in FASTQ data format. The drug
resistance of 358 strains above was collected, including
fluconazole, itraconazole, voriconazole, posaconazole,
amphotericin B, micafungin, anifenqine and caspofunqine. The
statistics of drug resistance of the strains are shown in Table 1.

WGS data of 358 C. auris strains were collected and analyzed
using the following steps: FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) checked the data quality of
each strain’s sequence and divided the data according to
different types of sequencing adapters for quality control
[Trimmomatic (Bolger et al., 2014)]. All data were aligned and
sorted with the reference strain B8441 using Bwa-0.7.17 (Munoz
et al., 2018). Duplicates in the file were marked using
MarkDuplicates module in GATK (DePristo et al., 2011)
v4.1.4.1, and were ignored during the mutation detection. In
BaseRecalibrator, 246,258 sites were jointly detected by GATK
HaplotypeCaller and Bcftools (Li et al., 2009) mpileup, which
were finally used as SNP reference sets.

The recalibration of base mass values mainly involved two
steps: GATK BaseRecalibrator and GATK ApplyBQSR. Then, the
mutation detection was performed by GATK HaplotypeCaller.
Finally, VCFtools (Danecek et al., 2011) software was used to filter
the samples and detection sites, respectively. Two samples with
high deletion rates (max-missing ≥ 50%) (SRR10461133 and
SRR10461145) were removed from the filtering of the samples.
The sites with minQ ≤ 30, max-missing ≥ 0.5, mac ≤ 3, and
minDP ≤ 3 were deleted, respectively, using VCFtools, and
the number of sites after filtering was 229,262. The filtered
files were annotated using SNPEff (Cingolani et al., 2012), and
the annotated files were used for phylogenetic analysis and
machine learning resistance analysis. Three antifungals (FCZ,
MCF and AmB) and point mutations (Y132F, K143R and
F126L in ERG11, S639Y/S639F and S639P in FKS1) was also
depicted in the phylogenetic NJ tree. This process is shown in
Figure S1 and Table S1.
Selection and Extraction of Gene Sets
A total of 229,262 SNP mutation sites were found in 358 C. auris
isolates. Candidate genes that may have a strong correlation with
drug resistance of C. auris in previous studies were selected; this
was performed in order to reduce its dimension, facilitate
machine learning classification, eliminate redundant sites, and
improve the accuracy of the analysis for the complex dimension.
TABLE 1 | Classification of all C. auris strains’ drug-resistant phenotypes.

Drugs FCZ AmB MCF VCZ ICZ PZ AND CSF

Resistant 254 80 24 19 10 39 3 3
Susceptible 104 273 321 104 108 70 113 119
Missing 0 5 13 235 240 249 242 236
O
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In addition, only missense mutations were extracted for further
analysis since they accounted for only a small part of the original
mutations, but affected the type of amino acids, i.e., the function
of proteins.

Three candidate gene sets were selected in this study
(Lockhart et al., 2017; Munoz et al., 2018; Chaabane et al.,
2019; Rybak et al., 2020) (Table S2). F3 set included genes that
were previously reported to be associated with drug resistance
and may contain determinants of drug resistance information in
C. auris; F2 set was a list of seven genes specific in C. auris, which
have been associated with drug resistance in C. albicans, but are
highly conserved in C. auris (Munoz et al., 2018). F1 set
combined the F2 and F3 genes. All the missense mutations
were extracted in the three gene sets and filtered. The samples
and sites with too many missing values for each set were deleted,
and the dimension of the data set after processing the missing
values (samples × mutations) was respectively: F1: 350 x 579; F2:
353 x 202; F3: 352 x 377.

Machine Learning Algorithms
Two algorithms were designed by using Python 3.8.4 (https://
www.python.org/downloads/): the classifier on the balanced
test set and on the imbalanced test set (Figures S2, S3). The F1,
F2, and F3 sets were used as the classification feature sets, and the
drug resistance of C. auris was taken as the classification target.
Ten machine learning classifiers (Table S3), Logistic Regression
(LR), Support Vector Classifier (SVC, including SVC RBF and
SVC linear), K-Nearest Neighbors (KNN), Decision Tree (DT),
Ensemble Learning (including RandomForest, AdaBoost and
GradientBoosting), and Naive Bayes (including BernoulliNB
and GaussianNB) were used to build the model (Breiman, 1996;
Breiman, 2001) by using Python 3.8.4. For AdaBoost, the
Decision Tree Classifier was the base estimator whose number
was 200 and the max depth was 1. There were 100 trees set
in the random forest classifier. The neighbor was 5 (the value
of K) for the KNN classifier. In both algorithms, principal
component analysis (PCA) was used to reduce dimensionality
based on retaining 99% of the original information. The number
of principal components after dimension reduction with PCA
method when 99% of the variance is retained is in supplementary
material Table S4. Upsampling and downsampling were mainly
adopted to balance the data set and repeated sampling 100 times.
Downsampling means, for a dataset from the majority
classification, creating a new subset with the same sample
number as the minority classification from the original set by
random sampling. Upsampling means, for a dataset from the
minority classification, creating a new dataset with the same
sample number as the majority classification from the original
set by random sampling. The data were divided into test set
and training set according to 5-fold cross-validation (5-CV),
which accounted for 20% and 80%, respectively. The model
parameters were adjusted on a training set, and the model
was retrained using 5-CV. Finally, the model was evaluated on
the test set. The area under the ROC (the Receiver operating
characteristic curve) curve (AUC), was used as evaluation
standard of a model’s performance. A classifier with a larger
AUC (closer to 1.0) performed better.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Recursive Feature Elimination With
Cross-Validation
The Recursive Feature Elimination with Cross-validation
(RFECV) functions in Python’s Scikit-Learn established in
mutation sequencing were based on the F1 data set, which
contained all candidate genes selected before machine learning
modeling. All features were standardized before ranking, and the
training model was the classifier above. The standardized
method used was StandardScaler() function in Python. The
number of features discarded in each iteration was 1,
indicating elimination one by one, and the model was built
repeatedly through 5-CV.
RESULTS

Phylogenetic Analysis of Candida auris
Phylogenetic NJ-tree was constructed using MEGA-X (Kumar
et al., 2018), and boostrap test was repeated 500 times. Then, the
phylogenetic tree was annotated using the iTOL online tool
(https://itol.embl.de/). The phylogenetic NJ tree was divided
into four clades starting from the root (Figure 1): Clade I
(orange), Clade II (blue), Clade III (purple), and Clade IV
(green), which was consistent with the conclusions reported in
previous literatures (Lockhart et al., 2017). The clustering results
are shown in Table S5. However, strain B16401 (SRR10852068,
Kenya) was assigned to Clade I in this study; in a previous
study, strain B16401 was assigned to Clade III (Chow et al.,
2020). In the NJ tree, C1921 and C1922 from our laboratory were
in Clade III, which was consistent with the phylogenetic tree
constructed using Internal Transcribed Spacer (ITS) and D1/D2
Large Ribosomal Subunit Region previously (Chen et al., 2018).
In addition, the mutations associated with azoles and
echinocandins resistance detected were consistent with the
previous conclusions (Chow et al., 2020). According to these
results, F126L mutation in lanosterol 14-alpha-demethylase
ERG11 occurred in C1921 and C1922 strains, which is closely
related to their FCZ resistance observed in clinical practice. It
was also shown that the phylogenetic tree constructed by the
drug-resistant gene set F3 was very similar to the phylogenetic
tree constructed by the WGS of C. auris, and there was no
difference in the clustering results of the strains (Figure S4),
indicating that the evolution of C. auris resistance genes was
consistent with the overall evolution of the strains (at the level
of the whole genome). It was speculated that the resistance
genes of C. auris were not under additional strong selection
pressure, which may be related to the clinical use of drugs.
Evaluation of Classification Models
The performances of machine learning classifiers, constructed by
the two algorithms described above on F1, F2, and F3, were
evaluated and compared by several evaluation methods. The best
model for each set and drug was listed in Table 2. For most
drugs, the evaluation results on the balanced test set were better
than on the imbalanced test set. The classifiers established using
two algorithms achieved better results for azoles, like FCZ, ICZ
October 2021 | Volume 11 | Article 742062
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FIGURE 1 | Phylogenetic NJ tree based on WGS of C. auris. The tree describes the phylogeny of 356 strains of C. auris from different regions, divided into four
clades. The 1st to 9th indicates a concentric circle from the inner-most to the outer-most, respectively. It also shows the correlation between the resistance of these
strains to FCZ, AmB, and MCF and the reported point mutations with Y132F, K143R, and F126L in ERG11, S639Y/S639F, and S639P in FKS1.
TABLE 2 | Model evaluation results under two different algorithms: on the balanced test set (the upper table) and on the imbalanced test set (the lower table).

The best model AUC value Sensitivity Specificity Accuracy Recall F1 score Threshold

F1AmB_AdaBoost_Upsampling 0.9507 ± 0.0082 0.9504 ± 0.0178 0.8554 ± 0.0096 0.9019 ± 0.0140 0.9502 ± 0.0179 0.9066 ± 0.0138 0.5012 ± 0.0002
F2AmB_KNeighbors_Upsampling 0.8719 ± 0.0249 0.8057 ± 0.0671 0.8025 ± 0.0093 0.7992 ± 0.0323 0.8057 ± 0.0671 0.7920 ± 0.0406 0.7187 ± 0.0532
F3AmB_RF_Upsampling 0.9026 ± 0.0285 0.8711 ± 0.0465 0.7818 ± 0.0395 0.8227 ± 0.0435 0.8710 ± 0.0465 0.8303 ± 0.0423 0.5851 ± 0.0316
F1MCF_KNeighbors_Upsampling 0.9971 ± 0.0007 0.9926 ± 0.0060 0.9908 ± 0.0068 0.9865 ± 0.0072 0.9926 ± 0.0060 0.9867 ± 0.0071 0.9561 ± 0.0247
F2MCF_KNeighbors_Upsampling 0.9648 ± 0.0127 0.9691 ± 0.0130 0.8882 ± 0.0345 0.9078 ± 0.0253 0.9691 ± 0.0129 0.9140 ± 0.0228 0.8026 ± 0.0281
F3MCF_RF_Upsampling 0.9914 ± 0.0044 0.9401 ± 0.0365 0.9825 ± 0.0100 0.9604 ± 0.0231 0.9395 ± 0.0370 0.9586 ± 0.0245 0.8755 ± 0.0564
F1FCZ_RF_Upsampling 0.9908 ± 0.0043 0.9542 ± 0.0138 0.9769 ± 0.0173 0.9615 ± 0.0156 0.9483 ± 0.0129 0.9609 ± 0.0155 0.6040 ± 0.0136
F2FCZ_AdaBoost_Upsampling 0.9621 ± 0.0048 0.9129 ± 0.0144 0.9860 ± 0.0061 0.9502 ± 0.0110 0.9120 ± 0.0143 0.9478 ± 0.0118 0.5436 ± 0.0217
F3FCZ_RF_Upsampling 0.9787 ± 0.0076 0.9380 ± 0.0124 0.9703 ± 0.0207 0.9533 ± 0.0171 0.9377 ± 0.0126 0.9527 ± 0.0170 0.7207 ± 0.0567
F1VCZ_KNeighbors_Upsampling 0.9690 ± 0.0094 0.9710 ± 0.0077 0.9089 ± 0.0243 0.9262 ± 0.0157 0.9704 ± 0.0078 0.9306 ± 0.0147 0.8061 ± 0.0567
F2VCZ_LR_Downsampling 0.9381 ± 0.0025 0.8924 ± 0.0030 0.9477 ± 0.0009 0.8753 ± 0.0016 0.8567 ± 0.0023 0.8721 ± 0.0021 0.5064 ± 0.0016
F3VCZ_AdaBoost_Upsampling 0.9485 ± 0.0056 0.9959 ± 0.0048 0.8587 ± 0.0052 0.9272 ± 0.0043 0.9959 ± 0.0048 0.9320 ± 0.0040 0.5016 ± 0.0003
F1PZ_DecisionTree_Upsampling 0.9251 ± 0.0429 0.9099 ± 0.0479 0.8347 ± 0.0577 0.8689 ± 0.0534 0.9087 ± 0.0485 0.8735 ± 0.0522 0.7408 ± 0.0563
F2PZ_RF_Upsampling 0.7872 ± 0.0605 0.7496 ± 0.1100 0.8173 ± 0.0116 0.7822 ± 0.0616 0.7496 ± 0.1100 0.7628 ± 0.0807 0.7732 ± 0.0515
F3PZ_RF_Upsampling 0.8919 ± 0.0472 0.9057 ± 0.0660 0.8010 ± 0.0455 0.8350 ± 0.0571 0.9057 ± 0.0660 0.8442 ± 0.0566 0.7275 ± 0.0626
F1ICZ_KNeighbors_Upsampling 0.9651 ± 0.0099 0.9945 ± 0.0036 0.9220 ± 0.0220 0.9528 ± 0.0106 0.9944 ± 0.0036 0.9563 ± 0.0095 0.8884 ± 0.0332
F2ICZ_AdaBoost_Downsampling 0.9874 ± 0.0032 1.0000 ± 0.0000 0.9749 ± 0.0064 0.9800 ± 0.0048 1.0000 ± 0.0000 0.9840 ± 0.0038 1.0000 ± 0.0000
F3ICZ_BernoulliNB_Downsampling 0.9701 ± 0.0014 1.0000 ± 0.0000 0.9000 ± 0.0000 0.9500 ± 0.0000 1.0000 ± 0.0000 0.9600 ± 0.0000 0.9995 ± 0.0000
The best model AUC value Sensitivity Specificity Accuracy Recall F1 score Threshold
F1AmB_RF_Downsampling 0.9136 ± 0.0144 0.7365 ± 0.0935 0.9024 ± 0.0154 0.8565 ± 0.0116 0.7335 ± 0.0945 0.6908 ± 0.0472 0.6003 ± 0.0018
F2AmB_GB_Downsampling 0.8008 ± 0.0033 0.1980 ± 0.0278 0.9997 ± 0.0005 0.8118 ± 0.0084 0.1980 ± 0.0278 0.3214 ± 0.0410 0.9759 ± 0.0264
F3AmB_RF_Downsampling 0.8116 ± 0.0244 0.4220 ± 0.0278 0.9230 ± 0.0325 0.8009 ± 0.0226 0.4150 ± 0.0300 0.4904 ± 0.0223 0.5949 ± 0.0076
F1MCF_SVC_RBF_Upsampling 0.9807 ± 0.0162 0.9186 ± 0.0764 0.9911 ± 0.0033 0.9825 ± 0.0034 0.9186 ± 0.0764 0.8540 ± 0.0433 0.9516 ± 0.0188
F2MCF_GB_Upsampling 0.7565 ± 0.0179 0.6240 ± 0.0698 0.8086 ± 0.0128 0.7846 ± 0.0086 0.6240 ± 0.0698 0.2615 ± 0.0291 0.6777 ± 0.0155
F3MCF_LRL2_Upsampling 0.9510 ± 0.0089 0.8121 ± 0.0485 0.9750 ± 0.0065 0.9010 ± 0.0064 0.8121 ± 0.0485 0.5121 ± 0.0215 0.9735 ± 0.0136
F1FCZ_RF_Downsampling 0.9593 ± 0.0043 0.9707 ± 0.0029 0.8700 ± 0.0213 0.9312 ± 0.0112 0.9695 ± 0.0030 0.9527 ± 0.0075 0.5901 ± 0.0097
F2FCZ_RF_Upsampling 0.9314 ± 0.0095 0.9053 ± 0.0065 0.9294 ± 0.0154 0.9076 ± 0.0087 0.9026 ± 0.0077 0.9328 ± 0.0065 0.6716 ± 0.0356
F3FCZ_RF_Downsampling 0.9531 ± 0.0090 0.2122 ± 0.0792 0.8966 ± 0.0412 0.9049 ± 0.0080 0.9225 ± 0.0101 0.9321 ± 0.0050 0.5903 ± 0.0207
F1VCZ_RF_Downsampling 0.9341 ± 0.0441 0.8222 ± 0.0628 0.9270 ± 0.0462 0.8921 ± 0.0340 0.8218 ± 0.0631 0.7092 ± 0.0693 0.7420 ± 0.0211
F2VCZ_LRL2_Upsampling 0.9136 ± 0.0498 0.9204 ± 0.0699 0.8978 ± 0.0377 0.8731 ± 0.0509 0.9202 ± 0.0702 0.7159 ± 0.1058 0.5389 ± 0.0053
F3VCZ_SVC_Linear_Upsampling 0.9434 ± 0.0300 0.9211 ± 0.0693 0.9247 ± 0.0198 0.8594 ± 0.0211 0.8775 ± 0.0760 0.6554 ± 0.0550 0.7265 ± 0.0689
F1PZ_RF_Downsampling 0.7846 ± 0.0270 0.5016 ± 0.0285 0.8447 ± 0.0156 0.7090 ± 0.0117 0.4967 ± 0.0285 0.5429 ± 0.0211 0.5986 ± 0.0088
F2PZ_LRL2_Downsampling 0.6595 ± 0.0296 0.3707 ± 0.0148 0.8793 ± 0.0290 0.6950 ± 0.0201 0.3707 ± 0.0148 0.4596 ± 0.0312 0.5617 ± 0.0386
F3PZ_RF_Downsampling 0.6737 ± 0.0346 0.4131 ± 0.0409 0.8787 ± 0.0279 0.6831 ± 0.0045 0.4068 ± 0.0366 0.4712 ± 0.0172 0.6173 ± 0.0275
F1ICZ_KNeighbors_Upsampling 0.9696 ± 0.0168 0.9585 ± 0.0261 0.9388 ± 0.0224 0.9404 ± 0.0204 0.9585 ± 0.0261 0.7479 ± 0.0457 0.7861 ± 0.0461
F2ICZ_LRL2_Upsampling 0.9375 ± 0.0112 1.0000 ± 0.0000 0.8750 ± 0.0224 0.8838 ± 0.0231 1.0000 ± 0.0000 0.6040 ± 0.0382 0.8403 ± 0.0281
F3ICZ_BernoulliNB_Upsampling 0.9657 ± 0.0144 1.0000 ± 0.0000 0.9276 ± 0.0226 0.9323 ± 0.0207 1.0000 ± 0.0000 0.7310 ± 0.0477 0.9997 ± 0.0000
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and VCZ, since their AUC values were above 0.9. However,
compared with other drug models, the evaluation results of AmB
needed to be improved; we speculated that this might be closely
related to the selection of candidate genes. For well-studied drugs
(azoles and echinocandins), the selected three gene sets contained
more information about determinants associated with drug
resistance, but there were few determinants of polyenes resistance.

The model with the highest AUC value was extracted and
compared (Figure 2 and Table S6). Random forest, logistic
regression, and K-nearest neighbors ranked in the top and for
several times. Under two algorithms, the classifier models
performed well on F1 for all drugs, of which the AUC values
were above 0.85. While on F2 and F3, classifiers performed well
only on some drugs; for example, models performed well on F2
for azoles like FCZ, ICZ, and VCZ, and they performed well on
F3 for MCF, but they all had poor classification effect on AmB
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
and PZ. It may be that the correlation between the three sets and
classification targets was not very strong, and the information
collected for these two drugs was insufficient.

Mutation Ranking
Using RFECV, three antifungal drugs, including FCZ, MCF, and
AmB, were ranked and predicted, respectively. The mutation
ranking results are shown in Tables 3–5. Previously reported
mutations (bolded in the table), such as Y132F, K143R, and F126L
on the ERG11, mutations on the TAC1B (Rybak et al., 2020), and
S639Y/S639F and S639P on the FKS1 gene, were detected and
listed as important mutations. In addition, several novel
mutations were detected (marked by an asterisk). Particularly,
mutations in the “hot spot” regions of the ergosterol pathway,
such as I466M, G459S, and Y501H in ERG11, and R278H in
ERG10, were detected. These mutations were frequently and
FIGURE 2 | Comparison of the best AUC values using different machine learning classifiers.The best models on the balanced (the upper three) and imbalanced (the
lower three) test set are shown, respectively. Please see supplementary materials Table S6 for detailed evaluation results.
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highly ranked mutations. FKBP12 has been reported to be
associated with multiple resistance in Candida spp., and the
S4N mutation was detected in this gene. Two frequently
occurring mutations, H771R and G995S, were identified in
CDR1, the gene encoding the ATP-Binding Cassette efflux
pump transporter. Two high-frequency mutations, E49D and
A18P, were also found in a specific gene (PGA7, C. albicans
homolog) of C. Auris. These mutations should be paid special
attention to in the following research.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
DISCUSSION

C. auris strains C1921 and C1922 sequenced in our laboratory
were classified into Clade III from the phylogenetic tree, which
was consistent with the tree constructed using Internal
Transcribed Spacer and D1/D2 Large Ribosomal Subunit
Region in the previous study (Chen et al., 2018). Previous
studies classified C. auris into four clades: South Asia (Clade I),
East Asia (Clade II), South Africa (Clade III), and South America
TABLE 3 | Top 20 mutations ranked by RFECV for FCZ on F1 set.

NO. AdaBoost GradientBoosting DecisionTree SVC_linear

1 FKS1_S639P B9J08_003739_G672S B9J08_003735_K325N ERG11_K143R
2 FKBP12_S4N* B9J08_003902_G126R B9J08_003902_G126R ERG11_Y132F
3 B9J08_000267_Y114D B9J08_003902_S24P CDR1_G995S* ERG11_V125A
4 ERG11_Y501H* CDR1_H771R* ERG11_Y501H* B9J08_004578_A202T
5 ERG11_G459S* ERG11_Y501H* ERG11_K143R TAC1B_K247E
6 ERG11_K143R B9J08_004467_ G22E TAC1B_A651T B9J08_004467_G22E
7 ERG11_Y132F CDR1_G995S* B9J08_004468_F82V ERG11_F126L
8 B9J08_004578_M245V TAC1B_A651T ERG11_Y132F B9J08_001033_L136F
9 TAC1B_E200K ERG11_K143R TAC1B_F214S ERG11_Y501H*
10 TAC1B_F214S B9J08_004468_F82V B9J08_004467_G22E MRR1_N647T
11 TAC1B_K247E TAC1B_F214S PGA7_E49D* B9J08_004468_K506R
12 TAC1B_A583S B9J08_003735_K325N B9J08_000267_Y114D B9J08_004818_D671N
13 TAC1B_A651T ERG11_Y132F UPC2_E229K B9J08_004818_E749K
14 TAC1B_M653V UPC2_E229K TAC1B_K247E B9J08_004578_E289G
15 B9J08_004468_F82V B9J08_001033_L136F B9J08_001033_L136F B9J08_001030_E534K
16 PGA7_A18P* B9J08_000267_Y114D ERG11_I466M* B9J08_000962_H59L
17 PGA7_E49D* TAC1B_K247E ERG10_R278H* CDR1_E709G
18 CDR1_G995S* B9J08_001030_E2Q TAC1B_M653V B9J08_004468_F82V
19 TAC1B_S195C B9J08_003902_T917I FKS1_S639P B9J08_000961_K330N
20 TAC1B_S192N PGA7_E49D* ERG3_Y279H FKS1_M1267I
October 2021 | Volu
Bolded means previously reported mutations.
*Represents drug resistance mutation should be paid special attention to.
TABLE 4 | Top 20 mutations ranked by RFECV for AmB on F1 set.

NO. AdaBoost DecisionTree GradientBoosting SVC_Linear RandomForest

1 ERG10_R278H* ERG10_R278H* ERG10_R278H* ERG10_R278H* ERG10_R278H*
2 ERG3_D283N B9J08_003902_G126R B9J08_003902_G126R B9J08_003902_G126R B9J08_003736_N36H
3 B9J08_003902_G126R MRR1_H417L MRR1_H417L B9J08_005341_K374R B9J08_003902_G126R
4 TAC1B_S195C B9J08_000267_Y114D B9J08_000267_Y114D B9J08_000267_Y114D B9J08_005338_V621F
5 B9J08_005341_A592D ERG11_I466M* ERG11_I466M* ERG11_I466M* B9J08_005341_N279H
6 B9J08_000962_G41E ERG11_G459S* ERG11_G459S* ERG11_G459S* CDR1_H771R*
7 FKS1_S639Y/S639F ERG11_K143R ERG11_K143R ERG11_K143R B9J08_000267_Y114D
8 FKS1_F219V ERG11_Y132F B9J08_004576_L747F ERG11_Y132F B9J08_001445_S430N
9 FKBP12_S4N* B9J08_004818_S745P B9J08_004818_S745P TAC1B_A651T ERG11_I466M*
10 B9J08_001033_L136F TAC1B_A651T B9J08_004818_P67H PGA7_A18P ERG11_G459S*
11 CDR1_G995S* PGA7_A18P* TAC1B_S192N PGA7_E49D ERG11_K143R
12 CDR1_E709G TAC1B_F214S TAC1B_A640V CDR1_G995S* TAC1B_A651T
13 B9J08_000267_Y114D TAC1B_S192N TAC1B_A651T B9J08_005341_K918R TAC1B_A657V
14 UPC2_E229K B9J08_001445_L368F TAC1B_A657V TAC1B_K247E PGA7_A18P*
15 B9J08_001445_L368F TAC1B_A15T PGA7_A18P* TAC1B_F214S PGA7_E49D*
16 B9J08_001445_V317L TAC1B_A583S B9J08_001445_L368F TAC1B_A657V B9J08_000166_V641D
17 ERG11_I466M* B9J08_005341_A592D TAC1B_S195C B9J08_001033_L136F ERG11_Y132F
18 ERG11_G459S* PGA7_E49D* B9J08_000268_I6F B9J08_003735_E275G UPC2_E229K
19 ERG11_K143R ERG3_D283N FKS1_K848R B9J08_001030_E2Q TAC1B_S192N
20 ERG11_Y132F UPC2_E229K ERG11_Y132F CDR1_H771R* B9J08_004818_S745P
Bolded means previously reported mutations.
*Represents drug resistance mutation should be paid special attention to.
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(Clade IV) (potential fifth clade of Iranian origin), and it was
emphasized that each clade has a great relationship with
geographical location. The clustering results from the
phylogenetic tree in this study illustrated that these strains could
be divided into four clades, but the conclusion of clustering
according to geographical location was not very prominent.

Machine learning technology has great potential in classifying
drug resistance of strains with WGS data and analyzing high-
dimensional data sets, which is very important for predicting
mutations associated with drug resistance. Our model evaluation
results illustrated that the machine learning classifiers performed
quite different when testing different drugs. The classifier model
showed excellent performance for azoles and echinocandins such
as FCZ, ICZ, VCZ, andMCF, but not for others like AmB and PZ.
It was speculated that there might be more information about
determinants associated with azoles and echinocandins resistance
but less for AmB and PZ in the three sets. This was directly
indicative of the fact that the correlation between feature sets and
classification targets was stronger for azoles and echinocandins,
but was weaker for the two drugs. In addition, there were some
deficiencies in model optimization so that only several models
were optimized in the process of constructing classifier models
and adjusting parameters. Therefore, optimizing models through
a large number of experiments and tests should be performed in
future work in order to achieve better performance.

In this study, RFECV combined with a machine learning
classifier was used to predict and rank the mutations of C. auris
related to antifungal drug resistance. In the RFECV process,
different ranked mutation results were obtained by combining
different classifiers. Overall, the results indicated that the RFECV
method could not only rank several known mutations as
important, especially for well-studied drugs but also predict
some new important mutations on the genes closely related to
drug resistance. Some of the predicted mutations were known to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
be important resistance mutations, which to some extent
demonstrated the validity of our classification model. The model
could obtain more reliable conclusions for well-studied drugs,
such as azoles and echinocandins, while for amphotericin B, the
model also predicted some resistance-related mutations. Based on
these results, further research and verification are needed on the
specific mutations and drug resistance mechanisms of C. auris.

Machine learning models can improve the prediction of
important genetic mutation sites related to drug resistance in
fungi, particularly beneficially for less-studied drugs. The amount
of test data, or sample size, is one of the keys to the performance of
machine learning methods. We speculate that 500 to 1,000 fungal
samples may get satisfactory results according to previous studies.
Random forest, logistic regression, and K-nearest neighbors
classifier performed relatively better in this study. While in
another study, PM (product-of-marginal model) and SVC-RBF
ranked as the top two best-performing classifiers on MTB (Yang
et al., 2018). The most common issues in machine learning lie
around overfitting, underfitting, noisy data and inappropriate
validation. Hence, considering all available variants and allowing
machine learning methods to reduce the dimension can improve
the performance. In the future, it is necessary to conduct systematic
verification and related functional studies on these mutations.

This study may help to analyze the drug resistance
mechanism of C. auris, and provide a scientific basis for
developing prevention and control strategies against drug
resistance and the search for possible new drug targets.
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TABLE 5 | Top 20 mutations ranked by RFECV for MCF on F1 set.

NO. AdaBoost DecisionTree GradientBoosting SVC_Linear RandomForest

1 B9J08_003489_D695V FKS1_S639Y/S639F FKS1_S639Y/S639F B9J08_003902_G126R FKS1_S639Y/S639F
2 B9J08_003726_T631S FKS1_S639P FKS1_S639P FKS1_S639Y/S639F FKS1_S639P
3 ABC_T37A B9J08_000274_V248F B9J08_001033_L136F FKS1_S639P B9J08_000274_F180V
4 FKS1_S639Y/S639F B9J08_000274_F180V ERG11_I466M* CDR1_H771R* FKBP12_S4N*
5 FKS1_S639P ERG11_I466M* B9J08_000274_V248F ERG11_I466M* ERG11_Y132F
6 FKS1_F219V B9J08_001033_L136F FKS1_D979N B9J08_000274_V248G B9J08_001033_L136F
7 CDR1_E709D PGA7_E49D* FKS1_K848R FKS1_L972M TAC1B_A657V
8 CDR1_V704L ERG11_F126L B9J08_000274_F180V MRR1_R249K ERG11_I466M*
9 UPC2_E229K CDR1_V704L B9J08_000274_V248G FKBP12_S4N* B9J08_000161_N244K
10 B9J08_000274_F180V TAC1B_A640V B9J08_003735_H8Q B9J08_000162_D109G ERG3_L262I
11 ERG11_I466M* B9J08_003726_G756V PGA7_E49D* B9J08_000162_P110S CDR1_V704L
12 TAC1B_A640V FKS1_F219V FKS1_S846A MRR1_I211V PGA7_E49D*
13 PGA7_E49D* PGA7_A18P* ABC_Y504H B9J08_000274_F180V B9J08_004009_E641K
14 B9J08_003726_G756V B9J08_001445_L368F B9J08_000274_N243K B9J08_003489_D695V FKS1_L972M
15 CDR1_E709G ABC_V3I MRR1_N647T B9J08_000162_E475K PGA7_A131T
16 B9J08_001033_L136F B9J08_003726_N248H B9J08_003726_K299R ERG11_Y132F ERG11_K143R
17 ERG11_Y132F B9J08_000166_V641D B9J08_000274_A245G CDR1_E709D PGA7_A18P*
18 CDR1_H771R* B9J08_003726_S279N TAC1B_A640V B9J08_003726_P586S FKS1_K848R
19 ABC_V3I B9J08_000166_S685N ERG11_F126L B9J08_003622_V132L CDR1_H771R*
20 PGA7_A18P* B9J08_003726_K299R B9J08_000274_A231D B9J08_003622_S249T ERG3_V258I
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