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Replicated, urban‑driven exposure 
to metallic trace elements in two 
passerines
Marion Chatelain1,2*, Arnaud Da Silva1, Marta Celej1, Eliza Kurek3, Ewa Bulska1,3, 
Michela Corsini1 & Marta Szulkin1

While there are increasing examples of phenotypic and genotypic differences between urban and 
non-urban populations of plants and animals, few studies identified the mechanisms explaining those 
dissimilarities. The characterization of the urban landscape, which can only be achieved by measuring 
variability in relevant environmental factors within and between cities, is a keystone prerequisite to 
understand the effects of urbanization on wildlife. Here, we measured variation in bird exposure to 
metal pollution within 8 replicated urbanization gradients and within 2 flagship bird species in urban 
evolutionary ecology: the blue tit (Cyanistes caeruleus) and the great tit (Parus major). We report on 
a highly significant, positive linear relationship between the magnitude of urbanization—inferred 
as either tree cover, impervious surface cover, or an urbanization score computed from several 
environmental variables, and copper, zinc and lead concentrations in bird feathers. The reverse 
relationship was measured in the case of mercury, while cadmium and arsenic did not vary in response 
to the urbanization level. This result, replicated across multiple cities and two passerine species, 
strongly suggests that copper, zinc, lead and mercury pollution is likely to trigger the emergence of 
parallel responses at the phenotypic and/or genotypic level between urban environments worldwide.

There is increasing evidence that urbanization is associated with modifications to plant and animal communities 
and populations1–9. For instance, birds inhabiting urbanized environments tend to suffer from lower reproductive 
outputs4 and higher physiological costs (e.g., higher oxidative stress10 and shorter telomeres11). While chemical, 
light and noise pollution, as well as human presence and altered food availability and quality are often suggested 
as the main potential drivers of those phenotypic changes in urban areas12–14, few studies actually identified the 
environmental factors responsible for such modifications15,16. One of the reasons is that the majority of studies 
focussing on wildlife ecology and biology in the urban space uses an extremely simplified urban ecology frame-
work that often lacks (i) adequate replication stemming from a comparison of multiple cities and (ii) knowledge 
stemming from multiple and contrasted urban habitats contributing to the urban mosaic. While awareness of 
these limitations is recently growing17,18, all too often urban ecology inference focuses on the phenotypes of 
individuals caught within one location in a city (often urban parks) and outside of this same city (usually in 
forests adjacent to the city)19. Thus, such study design ignores the diversity of environments within and between 
urbanized areas20, which prevents from (i) establishing firm conclusions about the effects of urbanization per 
se on wildlife, (ii) disentangling the effect of the different abiotic and biotic environmental factors that vary in 
response to urbanization21, and (iii) drawing universal conclusions about the impact of urbanization on the 
biology of wild organisms at a continental or global scale. For this reason, recent reviews in urban ecology urge 
future research to focus on replicated and continuous gradients of disturbance2,3,14,19. Indeed, measuring how 
potential environmental stress factors vary within the urban mosaics across multiple cities is without a doubt a 
prerequisite to further understand the effects of urbanization on wildlife.

Metallic/metalloid trace elements (MTEs; e.g., lead, cadmium, copper) are a major class of pollutants that 
may have lethal and sublethal effects on organisms22. In birds, individuals nesting close to metallurgic smelters 
show reduced reproductive outputs23–25. While less documented, similar trends were measured in bird exposed 
to urban MTE pollution16,26. MTEs are mainly emitted by anthropogenic activities27. In urban environments, 
road traffic, residential heating, coal burning, and industry are the main sources of MTE pollution28. Literature 
on bird exposure to MTEs is abundant, although only a minority of studies focussed on urban MTE pollution29, 
and all of those studies but three15,16,30 compared MTE concentrations in individuals using the coarse dichotomy 
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of urban versus non-urban areas31–40. Those studies measured MTEs in feathers, blood, liver, kidney, bones or 
eggshell. While most studies reported higher levels of lead at urban sites than at non-urban sites, the impact 
of urbanization on other MTEs varied15,16,30–40. All in all, while MTE pollution might be a significant driver of 
phenotypic and/or genotypic changes triggered by urbanization, we currently lack knowledge on MTE pollution 
levels within complex urban–rural gradients.

To fill in this gap, we measured 6 of the most common MTE pollutants (i.e. copper, zinc, lead, cadmium, 
arsenic and mercury) in the feathers of 179 males of blue tits (Cyanistes caeruleus) and great tits (Parus major). 
Importantly, feathers are one of the often used non-invasive material for the biomonitoring of MTE exposure 
in birds16,29,41. Birds have been sampled in a continuous gradient of urbanization replicated across 8 cities (i.e. 
densely populated areas with more than 50,000 inhabitants42) in Poland. Here, we define urbanization using 
high-resolution environmental data. This quantitative approach was compared with a qualitative approach where 
sampling sites were sorted into 5 habitat categories. Thanks to this unique study design, we address whether 
bird exposure to MTEs, assessed in two passerine species, varies consistently, linearly and in a replicated fashion 
along multiple urbanization gradients.

Methods
Bird sampling.  Two passerine bird species, the Blue Tit (Cyanistes caeruleus) and the Great Tit (Parus 
major) were caught using mist-nets in 8 cities (i.e. Warsaw, Łódż, Wrocław, Poznań, Lublin, Białystok, Katowice 
and Toruń), 8 suburban forests (adjacent to the 8 cities listed above) and 4 large complexes of protected forests 
(i.e. Bialowieza, Kozienicki, Dolina Baryczy, Wdecki) across Poland in March and April 2017 (Fig. 1). Within 
each city, individuals were sampled in 3 distinct urban environments, namely the city centre, a residential area, 
and an urban park. For the city of Warsaw, those 3 habitats and the suburban forest have been additionally 
replicated three times. Birds were attracted to a mist-net using a loud-speaker playing calls from the two focal 
species as well as a dummy of a great tit. The birds were aged (1-year-old or older) and sexed based on their 
plumage features43,44. Additionally, from each bird, the second tail feather from the left side was plucked and 
stored in individual paper bags until MTE analyses. The protocol was performed in accordance with the Direc-
tive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of 
animals used for scientific purposes. Moreover, this study was approved by the Local Ethical Committee nr I for 
Animal Experimentation in Warsaw (I Lokalna Komisja Etyczna ds. Doświadczeń na Zwierzętach w Warszawie; 
permit no. 220/2016).

The feathers of 179 males (97 blue tits and 82 great tits) were analysed for their MTE content (see “MTE 
quantitative analysis” section), out of a larger dataset of 350 individuals (140 male and 56 female blue tits, and 
111 male and 43 female great tits). Feather selection was based on two criteria: first, due to contrasted dispersal 
strategies (males disperse shorter distances from their natal or previous breeding site than females45–48) and 
because the sample size for females was too small to accurately test the link between MTE concentrations and 
urbanization level, we standardized our data set by selecting only males; those represented over 70% of the indi-
viduals that were sampled. The number of males caught varied substantially between habitats. Therefore, out of 
251 males, a sub-sample of feathers from 179 males were selected in a way to maximise dataset balance in order 
to generate comparable sample sizes between species per habitat category (X2 = 1.44, df = 4, P = 0.838; Table D1) 
and age class per habitat category (X2 = 6.51, df = 4, P = 0.164); the samples were randomly selected before analysis.

MTE quantitative analysis.  Feathers were prepared for metallic/metalloid trace element (MTE) analyses 
using the protocol from our previous study16. The following MTEs were quantified: lead, zinc, copper, cadmium, 
arsenic, mercury. Briefly, feathers were washed alternatively with 0.25 M NaOH solution and ultrapure water 

Figure 1.   Sampling points—(a) Map of Poland highlighting the 8 cities (in black) and 4 protected forests 
(in green) where blue tits and great tits were sampled. (b) For the 8 cities, we detail human population size, 
population density and urban area size as defined by administrative borders (data as of 2019 from Central 
Statistics Poland—GUS).
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(Milli-Q purified, Merck KGaA, Darmstadt, Germany) to remove external contamination, then dried 12 h at 
50 °C to dry mass. Feathers were digested in 1 mL of HNO3 30% for 24 h at 80 °C. The product of digestion 
was transferred into plastic tubes and ultrapure water was added to reach a final 1% acid concentration. Total 
content of lead (Pb; average of Pb 206, Pb 207 and Pb 208 isotope concentrations), zinc (Zn; average of Zn 66 
and Zn 68 isotope concentrations), copper (Cu; average of Cu 63 and Cu 65 isotope concentrations), cadmium 
(Cd; Cd 111 concentrations), arsenic (As; As 75 concentrations) and mercury (Hg; average of Hg 200 and Hg 
202 isotope concentrations) were determined using an inductively coupled plasma mass spectrometer (NexION 
300D ICP Mass Spectrometer, Perkin Elmer SCIEX, USA). A conventional Mainhardt nebulizer and a quartz 
cyclonic spray chamber were used for sample introduction. Each isotope was measured three times and each 
sample was analysed two times. Relative standard deviation between the three measurement per isotope and 
between the two measurements per sample were all below 10%; no measurement was excluded. Quantification 
limits were as follows: Pb: 0.31 ppm, Zn: 1.32 ppb, Cu: 0.72 ppb, Cd: 0.045 ppb, As: 0.077 ppb and Hg: 0.065 ppb. 
The ICP-MS was calibrated before performing measurements with the use of multi standard solutions (ICP Cali-
bration Standard from Merck). During the measurements, the parameters of calibration were checked using the 
standard containing mercury at the concentration of 1 µg/L in 1% nitric acid. The blanks and Certified Reference 
Materials (CRMs; trace elements in water 1643f from LGC Standards and SPS-SW1 batch 112 from SpectraPure 
Standards) were prepared and analysed using the same methods as the samples. The recovery of the CRMs 
ranged from 90 to 110%. Concentrations measured in the blank were extremely low: they were 1.401 ppb for 
zinc, 0.508 ppb for arsenic and below quantification limits for copper, lead, cadmium and mercury. All measure-
ments were performed at the Biological and Chemical Research Centre (NCBCh, University of Warsaw, Poland). 
Correlations between each pair of MTEs are presented in Fig. A1.

Quantifying urbanization.  Impervious surface cover and tree cover in a 100 m radius around each mist-
net sampling point was extrapolated via satellite imagery following the method described in Ref.19. Briefly, tree 
cover (i.e. the percentage of trees) and impervious surface cover (i.e. the percentage of soil sealing and built-up 
areas) were downloaded from Copernicus Land Monitoring Services; the basic maps referred to 2015 and are 
of 20 m pixel resolution. Distance to the closest local road and to the city centre were calculated using GIS 2.8.2 
and Google maps, respectively. For each city, the coordinates of the city centres were extracted from Wikipedia. 
Urbanization was quantified as (i) tree cover, (ii) impervious surface cover and (iii) an urbanization score com-
puted from a Principal Component Analysis on the four environmental variables that were measured in this 
study: tree cover, impervious surface cover, distance to the closest road and distance to the city centre. Those 
three quantitative indexes of urbanization are commonly used in urban ecology19,49,50. Tree cover, distance to 
the closest road and distance to the city centre were all positively correlated, while impervious surface cover 
was negatively correlated with the other environmental variables (Fig. A2). Based on the Kaiser-Guttman crite-
rion, one component, hereafter named “Urbanization score”, was retained in the PCA. It accounts for 61.4% of 
the variance in the data set; it is positively correlated to the impervious surface cover (r = 0.85) and negatively 
correlated to tree cover (r =  − 0.80), the distance to the closest road (r =  − 0.69) and the distance to the city 
centre (r =  − 0.68). While a composite multivariate metric (here urbanization score) is the most accurate index 
of urbanization, univariate metrics that are highly correlated to such multivariate metric (here tree cover and 
imperviousness surface cover) are preferred as they are unambiguous and readily comparable between studies19. 
In addition to the three quantitative indexes of urbanization listed above, we also categorized the environment 
where the birds have been caught into 5 habitats with contrasted environmental features and land use; when 
arranged from the lowest to the highest urbanization level, the habitats are ordered as follows: protected forest, 
suburban forest, urban park, residential area and city centre (Fig. 2).

Figure 2.   Mean ± se urbanization level, either percent tree cover, percent impervious surface cover or 
urbanization score (i.e. computed from imperviousness, tree cover, distance to the closest road and distance to 
the city centre) per habitat category. Significant differences of urbanization level between habitats are indicated 
by different letters.
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Statistical analyses.  Statistical analyses were performed using R software (version 4.0.3)51. The percentage 
of data above the MTE quantification limit were similar between blue tits and great tits. Overall, they were 100% 
for Zn, 99% for Cu, 92% for Pb, 91% for As, 59% for Cd and 21% for Hg. Data below the quantification limits 
were given a value using a regression on order statistic (‘ROS’ function of the ‘NADA’ package); this estimation 
was done separately in blue tits and great tits52. To minimize the influence of possible spurious outliers on the 
distribution of MTE concentrations, values more than 1.5 times the interquartile range from the quartiles (i.e. 
either below Q1 − 1.5IQR, or above Q3 + 1.5IQR) were removed53; the procedure was done separately for blue 
tits and great tits on log-transformed values. In total, 16 values (ca. 1.5% of the values) were identified as outliers. 
Note that, although the output of the models slightly changed, the results are the same whether outliers were 
removed or not (see Table B1).

MTE concentrations in blue tit and great tit feathers were compared using linear mixed-effects models with 
MTE concentrations (i.e. Cu, Zn, Pb, As, Cd or Hg after log transformation) as the response variable and urbani-
zation level (computed as either impervious surface cover, tree cover, urbanization score or habitat category) as 
the explanatory variable. MTE concentrations may vary differently in response to bird moulting pattern, forag-
ing behaviour, seasonal movements and/or MTE metabolism. Those are known to differ between species and 
age43,44,54–56. Therefore, species, age, their interaction as well as their interactions with the urbanization level were 
added as explanatory variables and the single terms “species” and “age” were considered as categorical control 
variable. The location (i.e. either the city or the protected forest) was added as random intercept. Lmer were fitted 
with restricted maximum likelihood (REML) method using the ‘lme4’ package. Normality of model residuals 
was validated using quantile–quantile plots. For each model, we performed a backward stepwise selection using 
the AIC57. A Type III Wald Chi-square test Anova was used to determine the significance of retained variables 
in the final models. When discrete explanatory variables were retained in the models, contrasts among groups 
were tested using least-square mean pairwise comparisons (contrast function of the ‘lsmeans’ package)58.

The proportion of variance in MTE concentrations that is explained by urbanization level (computed either 
from tree cover, impervious surface cover or urbanization score) was calculated using the ‘r2_nakagawa’ func-
tion of the ‘performance’ package. It was calculated using two metrics of relative importance: (i) the difference 
between the conditional r-squared of the full model and the conditional r-squared of the model without the 
urbanization index as explanatory variable (defined as the “last” metric in the ‘relaimpo’ package) and (ii) the 
marginal r-squared of the model including the urbanization index only as explanatory variable (defined as the 
“first” metric in the ‘relaimpo’ package)59. The “last” and the “first” metrics tend to underestimate and overes-
timate, respectively, the variance explained by the variable of interest (here the urbanization index), meaning 
that the exact variance explained by the urbanization index falls between the two values computed from those 
two metrics59. To further investigate what environmental variable(s) better explain(s) the variation in MTE 
concentrations, the two metrics were also computed for the distance to the closest road and the distance to the 
city centre (Table D2).

Results
Variation in MTEs concentrations along continuous urbanization gradients.  We measured a 
consistent association between urbanization level and the concentrations of several MTEs within the 8 repli-
cated cities: whatever the species and age of the individuals, Cu, Zn and Pb increased while Hg decreased with 
increasing urbanization (i.e. with decreasing tree cover but with increasing impervious surface cover or urbani-
zation score); Cd and As did not vary in response to urbanization (see Table 1, Fig. 3 for results on tree cover; 
the results of the models using impervious surface cover and urbanization score as a proxy of urbanization level 
are presented in Table D1). Urbanization level explained a maximum of 12% of Pb variation (Table 1) and 16%, 
30%, and 8% of Cu, Zn and Hg variation, respectively (Table D1). Models including “distance to centre” or “dis-
tance to road” systematically fitted worse than the models including one of the urbanization indexes (Table C1). 
Moreover, MTE concentration in feathers are species- and age-specific: Cu, Pb and As were higher in the feathers 
of blue tits than of great tits (Table 1, Supplementary Table D1, Fig. C1). Pb and Zn were higher in the feathers 

Table 1.   Results of the best fitting statistical models testing the link between MTE concentrations (Cu, Zn, 
Pb, Cd, As and Hg) and urbanization level (here tree cover) while taking into account the species, the age 
and the location, tested in 8 cities and 4 protected forests. Degrees of freedom were 1 for all the variables. 
The proportion of the variance in MTE concentrations that is explained by the urbanization level—r2—is 
comprised between two values computed from the metrics “first” and “last”57. For Hg, the random effect “city” 
had a zero variance, preventing to calculate the coefficient of determination—R2—of the model; for this reason, 
we report for Hg the adjusted coefficient of determination from the linear model. Significant effects (P < 0.05) 
are highlighted in bold. Results are strikingly similar when using impervious surface cover and urbanization 
score as metric for urbanization quantification; these are reported in Table D1.

Cu Zn Pb Cd As Hg

Tree cover Χ2 = 24.79, P < 0.001, β = − 
0.006, 0.095 < r2 < 0.117

Χ2 = 70.53, P < 0.001, β = − 
0.009, 0.260 < r2 < 0.260

Χ2 = 40.06, P < 0.001, β = − 
0.012, 0.120 > r2 > 0.103

Χ2 = 11.55, P < 0.001, 
β = 0.009, 0.052 < r2 < 0.057

Species Χ2 = 28.53, P < 0.001 Χ2 = 2.80, P = 0.094 Χ2 = 7.55, P = 0.006 Χ2 = 3.26, P = 0.071 Χ2 = 20.15, P < 0.001 Χ2 = 0.21, P = 0.644

Age Χ2 = 0.41, P = 0.52 Χ2 = 2.70, P = 0.100 Χ2 = 11.69, P < 0.001 Χ2 = 1.50, P = 0.220 Χ2 = 2.34, P = 0.126 Χ2 = 1.78, P = 0.181

R2 0.351 0.410 0.584 0.353 0.108 0.052
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of 1-year-old birds than of older birds, although the relationship was only marginally non-significant for Zn 
when considering urbanization score as proxy of urbanization level (Table 1, Supplementary Table D1, Fig. C2).

Variation in MTE concentrations between habitat categories.  Cu, Zn and Pb exhibited consider-
able variation from one habitat to another, and between urban and rural sites: overall, they were higher in city 
centres and residential areas than in urban parks, suburban forests, and protected forests (Table 2, Fig. 4). For 
instance, Cu (19.2 ppm), Zn (750.8 ppm) and Pb (28.1 ppm) in urban centres were ca. 74%, 82% and 135% 
higher than Cu (11.6 ppm), Zn (407.9 ppm) and Pb (7.1 ppm) in adjacent suburban forests, respectively (data 
between brackets are mean values). Similar to the previous models, Cu, Pb and As were higher in the feathers of 
blue tits than of great tits (Table 2) and Pb and Zn were higher in the feathers of 1-year-old birds than of older 
birds (Table 2). Raw MTE concentrations per species and per habitat are detailed in Table E1.

Figure 3.   Relationship between MTE concentrations (i.e. Cu, Zn, Pb, Cd, As or Hg after log-transformation; in 
ppm) and the urbanization level (here tree cover). For the x axis to positively correlates with the urbanization 
level, we highlight the percent of non-tree cover (100—percent of tree cover). We highlight the concentration 
for each single individual (grey dots), the concentrations that were considered as outliers (in red), the mean ± se 
concentration per percent of non-tree cover (in black) and the regression line (in blue) and its confidence 
interval (in grey). The statistical significance of the relationship is highlighted with asterisks. Species-specific and 
age-specific relationships between MTE concentrations and the urbanization level are displayed in Figs. C1 and 
C2, respectively.

Table 2.   Results of the best fitting statistical models testing the link between MTE concentrations (Cu, Zn, 
Pb, Cd, As and Hg) and the habitat category while taking into account the species, the age and the location. 
Degrees of freedom were 4, 1 and 1 for habitat, species and age, respectively. Significant effects (P < 0.05) are 
highlighted in bold.

Cu Zn Pb Cd As Hg

Habitat X2 = 39.87, 
P < 0.001

X2 = 92.33, 
P < 0.001

X2 = 50.29, 
P < 0.001

Species X2 = 30.92, 
P < 0.001 X2 = 3.05, P = 0.081 X2 = 8.33, P < 0.001 X2 = 3.26, P = 0.071 X2 = 20.15, 

P < 0.001 X2 = 0.43, P = 0.512

Age X2 = 1.17, P = 0.280 X2 = 3.97, P = 0.046 X2 = 15.40, 
P < 0.001 X2 = 1.50, P = 0.220 X2 = 2.34, P = 0.126 X2 = 0.80, P = 0.370

R2 0.387 0.420 0.590 0.332 0.121 ≈ 0
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Discussion
For the first time, we report on a highly significant and consistent positive linear relationship between the 
magnitude of urbanization—inferred as either impervious surface cover, the non-tree cover or an urbaniza-
tion score computed from several environmental variables—and copper, zinc and lead concentrations in bird 
feathers sampled across 8 replicated urban–rural gradients; the reverse relationship was measured in the case of 
mercury. Importantly, those relationships were similar when quantified in two passerine species, and for both 
1-year-old and older birds. Strikingly, the significant covariation between urbanization and specific metallic trace 
elements (MTEs) in avian feathers were measured across 8 replicated urbanization gradients, which included 
8 cities, 8 suburban forests and 4 protected forests. This result confirms the pervasive impact on urbanization 
on the presence of MTEs in wild organisms, irrespective of the fact that the 8 cities differed in terms of size and 
population density (Fig. 1).

When arranged from the least to the most urbanized site, habitat categories were ordered as follows: protected 
forest, suburban forest, urban park, residential area, and city centre (Fig. 2). Therefore, it is not surprising that 
we measured higher concentrations of copper, zinc and lead in the feathers of the birds sampled at the most 
urbanized habitats than in the feathers from birds caught in the less urbanized habitats. Interestingly, zinc and 
lead concentrations measured in individuals sampled in urban parks were not significantly different from the 
concentrations measured in their conspecifics sampled in suburban or protected forests. This result, as well as 
the fact that urban parks are the least urbanized urban habitats, are a striking demonstration that comparing bird 
populations between urban parks and forests, a still common study design in urban ecology19, is not appropriate 
to study (i) how MTE exposure varies in response to urbanization and (ii) the ecology and evolution of animal 
populations.

Importantly, the strength and direction of the association between MTE concentrations and urbanization level 
varied between MTEs. Indeed, copper, zinc and lead concentrations increased, while mercury concentrations 
decreased along the rural–urban gradient; cadmium and arsenic concentrations did not significantly vary along 
such a gradient. Those results suggest that copper, zinc and lead are mainly emitted by anthropogenic activi-
ties occurring within urban areas. The fact that the concentrations of those three MTEs were highly correlated 
(the correlation coefficient ranged between 0.38 and 0.65) also suggests that those MTEs share common emis-
sion source(s). Therefore, and although this study did not aim at identifying the source of such pollutants, our 
results tend to hold road traffic responsible for most of urban-driven copper, zinc and lead emissions (through 
past leaded gasoline combustion, tire wear and brake pad abrasion and other vehicle emissions)28. On the con-
trary, our results suggest that mercury emissions are higher outside of cities, where they may stem from coal 
burning, caustic soda and/or cement production60. Finally, the activities responsible for cadmium and arsenic 

Figure 4.   Mean ± se MTE concentrations (Cu, Zn, Pb, Cd, As or Hg after log-transformation; in ppm) per 
habitat category (protected forest, suburban forest, urban park, residential area or city centre). Significant 
differences of MTE concentrations between habitat categories are indicated by different letters.
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emissions (e.g. steel, plastic and pigment production, coal combustion28), may be distributed more homogenously 
along the urban–rural gradient, which would explain the lack of linear association between the concentrations 
of those two MTEs and the urbanization level.

It is noteworthy that, in our study, the birds were caught at the beginning of their reproductive season (i.e. 
in March and April). Yet, because feathers were washed to removed most external contamination35, MTE con-
centrations in the feathers mainly reflect the concentrations of those same MTEs in the environment where the 
birds moulted (i.e. between July and September), which is the nest where they hatched (if first-year breeders), 
or their previous breeding ground (for 2nd-year breeders or older) in most bird species with seasonal moulting, 
including the blue tit and the great tit43. Therefore, the associations measured between MTE concentrations and 
urbanization level might have been weakened by some dispersal events along the urban–rural gradient. In other 
words, these associations might have been stronger if the birds were caught at the place where they grew their 
feathers. On the other hand, the fact that we did measure significant associations between copper, zinc, lead and 
mercury concentrations and the urbanization gradient suggests that male blue tits and great tits have limited 
movements along the urban–rural gradient. While this interpretation should be confirmed using a capture-
mark-recapture or a radiotracking approach, the concentrations of some MTEs (especially zinc) in bird feathers 
appears like a promising tool to gain insight into natal and breeding dispersal along the urban–rural gradient61.

While the association between MTE concentrations and urbanization level were equivalent in both tit species 
and in both age categories, blue tits exhibited higher levels of copper, lead and arsenic than great tits. Similarly, 
previous studies also measured higher levels of MTEs in the feathers of blue tits than of great tits16,62,63 (but see64). 
Such a difference may result from differences in diet, metabolism or MTE transfer into the feathers, the latest 
depending on the concentrations of keratin and melanin in the feather65,66. For instance, previous studies suggest 
that great tits and blue tits differ in regard to their exposure, metabolism and/or need of calcium24,67. Yet, calcium 
downregulates lead and cadmium absorption in birds68–70. Further investigation on the underlying mechanisms 
explaining the higher levels of MTEs in blue tits than in great tits are needed to understand whether the blue tit 
is likely to show a higher response to urban MTE pollution. Our study also shows that younger birds have higher 
concentrations of lead, and to a lower extent zinc, than older birds. Similarly, experimental studies on laboratory 
animals and data on humans showed that lead concentrations are higher in young than in older individuals as a 
result of age-related lead gastrointestinal absorption rate71. This result suggests that young birds are more likely to 
respond to urban MTE lead pollution than older ones. In line with this hypothesis, several studies demonstrated 
the deleterious effects of urban lead pollution on nestlings16,26,72. Finally, we should highlight the fact that this 
study measured MTE concentrations in males only; although previous studies measured only weak gender-related 
differences in MTE concentrations in feathers63,64, we cannot exclude that MTE exposure and metabolism may 
vary between the sexes. Therefore, further studies are needed to generalize our results to both sexes.

Importantly, the levels of lead measured in individuals sampled in more urbanized areas (19.6 ppm in indi-
viduals caught in city centres) were more than two times higher than the levels shown to induce reproductive 
impairments or to alter immunity in other bird species26,72,73. Altogether, those results suggest that the effects 
of urban copper, zinc and lead pollution on birds (e.g., on their survival, reproductive success, immunity, corti-
costerone levels and plumage colouration15,16,26,72–75) are expected to increase from less to more urbanized envi-
ronments. In line with this prediction, rates of phenotypic change are greater in urban environments compared 
with non-urban landscapes2 and numerous studies measured phenotypic divergence between urban and rural 
populations3. Consequently, we can hypothesize that some of those urban-driven phenotypic changes (e.g., oxi-
dative balance, xenobiotic metabolism, immunity, gene expression) may be triggered by urban MTE pollution. 
For instance, in the great tit, genes involved in antioxidant defences are expressed at a higher rate in individuals 
sampled within the city of Malmö (Sweden) than in their counterparts sampled in an adjacent forest; those 
individuals also exhibited a higher expression of the genes involved in xenobiotic metabolism76. Similar patterns 
were measured in the white-footed mouse (Peromyscus leucopus)77. The toxicity of several MTEs, including lead, 
resulting partly from the fact that they induce oxidative damages78, suggests that urban MTE exposure may trig-
ger such modification in gene expression levels79.

Phenotypic differences can result from adaptive or non-adaptive adjustments1,80,81. As the exposure to urban 
MTEs is often associated with detrimental effects on bird fitness16,26,72, urban MTE pollution is likely to exert 
selective pressures on populations inhabiting more urbanized environments. Importantly, this study reveals that 
urban MTE-triggered selective pressure is likely to be directional and consistent across a large number of urban 
sites, and thereby conducive to the emergence of parallel responses at the genetic and/or phenotypic level17. As 
a matter of fact, there is some evidence that more melanistic individuals transfer higher amounts of MTEs in 
their teguments (i.e. feathers and skin)72,82 and are positively selected in environments polluted with MTEs72,82–84. 
Consequently, comparing phenotypic traits (e.g., tegument melanin-based colouration, MTE gastro-intestinal 
absorption rates, antioxidative response, metallothionein expression) and allele frequency at loci associated 
with the metabolism of MTEs (e.g., GCLC, GCLM and MT2A genes)85,86 along replicated urbanization gradients 
appears as a promising opportunity to study parallel evolution mediated by urbanization17.

Data availability
Data are available on GitHub at https://​github.​com/​Mario​nChat​elain/​10.​1038-​s41598-​021-​99329-2.
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