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Abstract

Endophytic fungi play an important role in plant growth. The composition and structure of

endophytes vary in different plant tissues, which are specific habitats for endophyte coloni-

zation. To analyze the diversity and structural composition of endophytic fungi from toothed

clubmoss (Huperzia serrata) that was artificially cultivated for 3 years, we investigated endo-

phytic fungi from the roots, stems and leaves using comparative sequence analysis of the

ITS2 region of the fungal rRNA genes sequenced with high-throughput sequencing technol-

ogy. Seven fungal phyla were identified, and fungal diversity and structure varied across dif-

ferent tissues, with the most distinctive community features found in the roots. A total of 555

operational taxonomic units (OTUs) were detected, and 198 were common to all samples,

and 43, 16, 16 OTUs were unique to the root, stem, leaf samples, respectively. Taxonomic

classification showed that Ascomycota and Basidiomycota were dominant phyla, and Cla-

dosporium, Oidiodendron, Phyllosticta, Sebacina and Ilyonectria were dominant genera.

The relative abundance heat map at the genus level suggested that H. serrata had charac-

teristic endophytic fungal microbiomes. Line discriminant analysis effect size analysis and

principal coordinate analysis demonstrated that fungal communities were tissue-type and

tissue-site specific. Overall, our study provides new insights into the complex composition of

endophytic fungi in H. serrata.

Introduction

Huperzia serrata, a traditional medicinal plant in China, has bioactive properties favorable for

treating fever, schizophrenia, and myasthenia gravis [1, 2]. Huperzine A isolated from H. ser-
rata has a potent anti-acetylcholinesterase (AChE) activity [3], which has been approved in

China as a drug to treat Alzheimer’s disease [4] and is currently used as a supplement for pre-

venting further memory degeneration in USA [5]. However, wild H. serrata shows a low
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huperzine A content (ca. 0.007%), a limited geographic distribution, and an extremely slow

growth [6]. Meanwhile, the excessive mining of wild H. serrata has degraded their habitat [2].

Wild H. serrata populations are insufficient to meet market demand. Therefore, it is very

important and necessary to develop artificial cultivation of H. serrata, however there are still

many challenges to growing H. serrata in a non-wild setting.

Along with emerging research on plant-microbe interactions, accumulating evidences sug-

gest that endophytic fungi play important roles in plant growth [7, 8]. Some endophytic fungi

can benefit plants by producing plant hormones [7], improving stress resistance [8], protecting

plants from phytopathogens [9], and enabling nutrient uptake [10]. Previous studies examin-

ing the endophytic fungi of H. serrata and their secondary metabolic products revealed that

they exhibited various biological activities, including antimicrobial activity, acetylcholinester-

ase inhibitory activity, nematocidal activity, and inhibition of nitric oxide production, among

others [11–14]. In addition, some of endophytic fungi in H. serrata can produce huperzine A

[15–17]. The distribution of some endophytic fungi in the host plants exhibited tissue specific-

ity, which is an important influencing factor for accumulation of bioactive substances in differ-

ent tissues [18, 19]. Although there are many studies focusing on endophytes of H. serrata, the

understanding of the endophytic community in different tissues associated with H. serrata is

still limited. Therefore, it is necessary to study the diversity and composition of endophytes in

different tissues within H. serrata.

The Illumina-based high-throughput sequencing technology can comprehensively reveal

the diversity and composition of plant-associated endophytes [20]. Lee et al. used high-

throughput sequencing technology to reveal diversity of endophytic bacterial, archaeal and

fungal communities inhabiting different rhizocompartments of tomato plants in real-world

environments [21]. Chen et al. used high-throughput sequencing technology to analyze and

compare the endophytic fungal community structures associated with stems and roots of Den-
drobium huoshanense [22]. However, few researches on the diversity and composition of endo-

phytes in H. serrata based on high-throughput sequencing have been conducted.

In the present study, the Illumina-based high-throughput sequencing analysis of the ITS2

region of fungal ribosomal RNA (rRNA) genes was conducted to describe the diversity and

composition of endophytic fungi in the various tissues of H. serrata. As far as we know, this is

the first time that the high-throughput amplicon sequencing has been used to study fungal

community structure and diversity in H. serrata. Our results provide new insights into the fun-

gal communities and lay a foundation for further study of H. serrata.

Materials and methods

Plant materials and treatments

Healthy three-year-old artificially cultivated H. serrata plants were randomly collected in July

2019 from the medicinal plant plantation in Huayuan County, Xiangxi Tujia and Miao Auton-

omous Prefecture, Hunan Province, China. These collected plants were developed from the

mature spores of H. Serrata in the plantation, which guaranteed the exact growth age of them,

and were properly managed, including watering, weeding and deworming. All plant samples

were placed in aseptic bags that were placed on ice and immediately transported back to our

laboratory, and three plants were randomly selected for investigation. After removing all spo-

rangia, the root (marked as R1, R2, R3), stem (marked as S1, S2, S3) and leaf (marked as L1,

L2, L3) samples of all three plants were separately collected using a sterile scissors and surface-

sterilized using a series of washing steps: 70% (v/v) ethanol for 1 min, 3% (v/v) sodium hypo-

chlorite solution for 3 min, 2.5% (w/v) sodium thiosulfate for 5 min, and rinsing the samples

five times with sterile water [21]. Subsequently, nine samples from the root, stem and leaf
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tissues of three H. Serrata plants were used separately to extract the fungal genome DNA

within them.

DNA extraction, PCR amplification, and ITS clone library construction

The root, stem, and leaf samples were rapidly ground to fine powder with liquid nitrogen in a

sterilized and pre-cooled mortar. The resulting powder was then transferred to a bead tube for

total DNA extraction using a MN NucleoSpin 96 Soil DNA kit (Macherey-Nagel, Dueren, Ger-

many) according to the manufacturer instructions. DNA was stored at −20˚C until subsequent

analysis. The target-specific primers ITS1F (5'-CCTGGTCATTTAGAGGAAGTAA-3'), ITS4

(5'-TCCTCCGCTTATTGATATGC-3'), and fITS7 (5'-GTGARTCATCGAATCTTTG -3'),

which do not amplify the chloroplast or mitochondrial rRNA genes of H. serrata, were used to

amplify the ITS region of the fungal rRNA genes. PCRs (50 μL) were assembled and conducted

using a reaction program as follows: 5 min at 94˚C, 35 cycles of 1 min at 94˚C, 50 sec at 54˚C,

and 60 sec at 68˚C, then 10 min at 68˚C. The PCR products were examined on a 1.8% agarose

gel and purified using an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City,

CA, United States). Then, the construction and sequencing of the ITS clone libraries were per-

formed by Beijing Biomarker Biotechnology Co., Ltd (Biomarker Biotechnology, Beijing,

China) using an Illumina HiSeq 2500 platform.

Sequence processing and data analysis

FLASH software (v1.2.11) [23] was used to splice the reads of each sample through overlap,

and the resulting spliced sequences were used as raw tags. Trimmomatic software (v0.33) [24]

was used to filter the spliced raw tags to obtain high-quality tags (clean tags). UCHIME soft-

ware (v8.1) [25] was used to identify and remove chimeric sequences to obtain the final effec-

tive tags, which were further clustered into operational taxonomic units (OTUs) with 97%

pairwise identity.

The representative sequences of OTUs were used to perform taxonomic analysis

through aligned to the UNITE database using QIIME software (v1.7.0) [26]. QIIME software

was also used to select the OTU sequence with the highest abundance at the taxonomic

level of the genus, carry out multiple sequence alignment, construct the phylogenetic tree, and

then create a graph with the Python language tool. R software was used to obtain Venn dia-

grams and microbial community bar plots to characterize the richness of a specific fungal

community.

Alpha diversity indexes, including Chao1, Ace, Shannon and Simpson, were evaluated

using Mothur software (version v.1.30) [27]. In addition, OTU coverage was also counted to

determine whether the sequencing results were representative of the actual microbial commu-

nities in our samples. Rarefaction curves, reflecting the sequencing depth, were calculated and

constructed using QIIME software.

Beta diversity indexes were evaluated using QIIME software to compare the similarity of

different samples in species diversity. Principal Coordinate Analyses (PCoA) utilizing the

Bray-Curtis distances were used to observe the relationships between fungal community struc-

tures in different tissues. Analysis of Unweighted Pair-Group Method with Arithmetic Means

(UPGMA) was carried out to determine whether the samples had significant microbial com-

munity differences in a UPGMA tree. The heat map of genera differences between groups was

drawn based on the OTU-Table to understand the fungal community composition at genus

level among different tissues. Furthermore, Line discriminant analysis effect size (LEfSe) anal-

ysis [28] using Galaxy online (http://huttenhower.sph.harvard.edu/galaxy/) was used to iden-

tify differentially abundant features among samples for biomarker discovery.
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Results

Characteristics of sample sequences

The quality of the sequencing data was evaluated mainly through the statistics of sequence

number, sequence length, GC content, Q20 and Q30 quality values, effective ratio, and other

parameters in each stage (S1 Table). The number of effective tags per sample ranged from

230,078 to 231,811, and the average length of sequences from the root, stem and leaf samples

was 304, 303 and 299 bp, respectively, however the length of sequencing tags in the three tissue

samples mainly fell within the range of 280–370 bp (S1 Fig). The rarefaction curves (Fig 1)

tended to be flat, indicating that our sequencing depth was sufficient. Similarly, more than

0.999 coverage suggested that the ITS libraries were large enough to capture most of the fungal

diversity in the samples used in this study (Table 1).

Richness and diversity of endophytic fungi

A total of 555 OTUs were detected across all of the ITS libraries, including 284 OTUs in the root

samples, 465 OTUs in the stem samples and 484 OTUs in the leaf samples (Table 1). Among

them, 198 OTUs were common to all samples, and 43, 16 and 16 OTUs were exclusive to the

root, stem and leaf samples, respectively (Fig 2). The Chao1 and Ace indexes showed that the

community richness of the endophytic fungi in the leaves was higher than that in the stems and

roots (Table 1). However, the Shannon and Simpson indexes showed that the community diver-

sity of the endophytic fungi in the stems was highest, followed by the leaves and roots (Table 1).

Fig 1. Rarefaction curves based on the ITS2 sequences of endophytic fungi from the root (R), stem (S) and leaf (L)

samples associated with H. serrata.

https://doi.org/10.1371/journal.pone.0242258.g001

Table 1. The richness and diversity indexes of endophytic fungi from the root, stem and leaf samples associated with H. serrata.

Sample origin OTUs Total OTUs ACE Chao1 Simpson Shannon Coverage

Roots 284 555 314.5561 350.1111 0.051 3.4706 0.9998

Stems 465 467.8932 466.5 0.0321 4.1734 1

Leaves 484 501.5221 507.25 0.0475 3.8822 0.9999

https://doi.org/10.1371/journal.pone.0242258.t001
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Taxonomic distribution of endophytic fungi

The taxonomic distribution of endophytic fungi in the roots, stems and leaves of H. serrata
was displayed in Fig 3. After screening out rare OTUs, the remaining OTUs represented 7

phyla, 21 classes, 50 orders, 95 families, and 120 genera (Table 2). The 7 identified phyla were

Fig 2. Venn diagram showing the OTUs shared among the root (R), stem (S) and leaf (L) samples associated with

H. serrata.

https://doi.org/10.1371/journal.pone.0242258.g002

Fig 3. Distribution of endophytic fungi in H. serrata (A) and relative abundances of endophytic fungi at the phylum (B) level and class (C) level in the root (R), stem (S)

and leaf (L) samples of H. serrata.

https://doi.org/10.1371/journal.pone.0242258.g003
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Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota, Mortierellomycota, Mucoro-

mycota, and Olpidiomycota, and the relative abundances of these phyla varied across the three

tissues (Fig 3B). Among them, Ascomycota and Basidiomycota were predominant phyla,

accounting for 71.9% and 13.2% of sequences, respectively, while the other phyla were all

below 1% of sequences (Table 3). In addition, all the phyla were found in the leaf samples, but

Chytridiomycota and Glomeromycota were absent in the root samples and the stem samples,

respectively.

In detail, 21 classes belonging to the 7 phyla were identified (S2 Table). Among them,

20 classes were identified in the leaf and stem samples, respectively, while only 14 classes

were identified in the root samples. The predominant classes (top 10) were Dothideomycetes,

Sordariomycetes, Eurotiomycetes, Tremellomycetes, Leotiomycetes, Agaricomycetes,

Mortierellomycetes, Cystobasidiomycetes, Ustilaginomycetes, and Orbiliomycetes in all

samples (Fig 3C). However, class distributions differed greatly across the three tissues (S2

Table). For example, GS18 was not found in the leaf samples, Glomeromycetes was not found

in the stem samples, and Pezizomycetes, Agaricostilbomycetes, Cystobasidiomycetes, Exobasi-

diomycetes, Utilaginomycetes, Spizellomycetes, GS17 were not found in the root samples (S2

Table).

The top 26 genera (i.e., those with relative abundance > 0.2%) were selected to make a heat-

map clustering (S2 Fig and Table 4), which further indicated that species distributions differed

greatly across the three tissue samples. Among them, 20 genera belonged to Ascomycota,

while 5 belonged to Basidiomycota and 1 belonged to Mortierellomycota. The genera of Oidio-
dendron, Ilyonectria, Chloridium, Russula, Sebacina, Cladophialophora, Periconia, Pezicula,

Roussoella, Scytalidium, Dactylonectria, Papiliotrema, Pochonia, and Verticillium were mainly

distributed in the roots. The genera of Cladosporium, Saitozyma, Pyrenochaetopsis, Claviceps,
Cyphellophora, and Purpureocillium were mainly distributed in the stems, while the dominant

genera in the leaves included Phyllosticta, Serendipita, Devriesia, and Mortierella. In addition,

Botryosphaeria, Scytalidium, and Idriella were the exclusive genera in the root samples, while

Table 2. Numbers of taxa of endophytic fungi in the root, stem and leaf samples of H. serrata.

Sample origin Phylum Class Order Family Genus

Roots 6 14 30 61 80

Stems 6 20 48 91 113

Leaves 7 20 49 90 110

Total 7 21 50 95 120

https://doi.org/10.1371/journal.pone.0242258.t002

Table 3. Distribution of fungal microbiome at phylum level in the root, stem and leaf samples of H. serrata.

Taxon Relative abundance (%)

Roots Stems Leaves

Ascomycota 76.67 76.31 65.07

Basidiomycota 17.29 15.05 28.48

Chytridiomycota 0 0.01 0.004

Glomeromycota 0.07 0 0.0005

Mortierellomycota 0.01 0.18 0.60

Mucoromycota 0.0004 0.03 0.02

Olpidiomycota 0.001 0.16 0.02

Unclassified 5.95 8.26 5.80

https://doi.org/10.1371/journal.pone.0242258.t003
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Phialophora, Lecophagus, Clavaria, and Peniophora were exclusive to the stem samples, and no

genus was exclusive to the leaf samples (S3 Table).

In addition, the endophytic fungi of the root samples possessed a better taxonomic

annotation of their OTUs and harbored a minimum proportion of unclassified OTUs. For

examples, the percentage of classified taxa at the class level in the roots were 85.46%, which

were higher than that in the stems (72.13%) and leaves (59.04%), while 61.65% classified taxa

at genus level in the roots were higher than 29.97% in the stems and 28.84% in the leaves (Fig

3C and S3 Fig).

Comparative analysis of endophytic fungi

Important distinctions were found in the composition of fungal communities in the root, stem

and leaf samples. Two different clusters were observed at the genus level in the UPGMA tree:

the fungal microbiota from H. serrata leaves and stems clustered together, but the roots

formed their own cluster and distinctly separated from those of the stems and leaves (S4 Fig),

suggesting that the endophyte microbiomes of the leaf samples were more similar to that of the

stem samples than to that of the root samples, and that the endophytic fungi of the leaf and

stem samples might share a same origin. PCoA revealed the main variations in fungal commu-

nity composition among the three tissues (Fig 4), and the highest variations in the microbiota

Table 4. Distribution of fungal microbiome at genus level (relative abundance> 0.2%) in the root, stem and leaf samples of H. serrata.

Phyla Class Genus Relative abundance (%)

Roots Stems Leaves

Ascomycota Dothideomycetes Phyllosticta 0.02 0.07 11.64

Cladosporium 2.55 6.52 5.74

Devriesia 0.001 0.20 0.66

Pyrenochaetopsis 0.10 2.29 1.51

Periconia 2.77 0.02 0.02

Roussoella 1.85 1.23 0.08

Eurotiomycetes Cyphellophora 0.001 1.03 0.89

Cladophialophora 6.54 0.50 2.14

Leotiomycetes Pezicula 2.70 0.001 0

Scytalidium 1.73 0 0.001

Oidiodendron 11.55 1.97 0.06

Sordariomycetes Chloridium 8.38 0.10 0.01

Verticillium 0.47 0.09 0.29

Clonostachys 0.28 0.27 0.20

Claviceps 0.0004 1.56 0.12

Pochonia 0.48 0.13 0.02

Trichoderma 0.50 0.72 0.02

Dactylonectria 1.59 0.004 0.001

Ilyonectria 9.70 0.02 0.04

Purpureocillium 0.02 0.41 0.16

Basidiomycota Agaricomycetes Russula 8.29 0 0.001

Sebacina 7.27 4.12 0.31

Serendipita 0.0004 0.003 1.38

Tremellomycetes Papiliotrema 0.50 0.09 0.07

Saitozyma 0.73 3.30 0.12

Mortierellomycota Mortierellomycetes Mortierella 0.01 0.18 0.60

https://doi.org/10.1371/journal.pone.0242258.t004
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of different samples were 25.99% (PC1) and 17.25% (PC2), representing a strong separation

based on the plant tissues.

Significantly different taxon abundances of endophytic fungi were found among the three

tissues, as determined by LEfSe (Fig 5). At the genus level, Pestalotiopsis was significantly

enriched in the stems, while Oidiodendron and Chloridium were more abundant in the roots.

Hannaella exhibited relatively higher abundance in the leaves than in the roots and stems.

These differentially abundant taxa can be considered as potential biomarkers (line discrimi-

nant analysis (LDA) score > 4, P< 0.05).

Discussion

In this study, the endophytic fungi associated with the root, stem and leaf tissues of three-year-

old H. serrata were characterized and compared. Alpha diversity analysis (Chao1, Ace, Shan-

non, Simpson) indicated that richness and diversity of endophytic fungi in the H. serrata root

samples were lowest (Table 1), which were different from those of the D. huoshanense roots

[22], that have a higher richness and diversity of endophytic fungi. A total of 555 fungal OTUs

were detected from the three tissue samples of H. serrata, and were further classified into 7

phyla, 21 classes, 50 orders, 95 families and 120 genera. However, there were still some OTUs

sequences were not taxonomically annotated at different taxon level, such as 38.35% unclassi-

fied taxa (OTUs) at genus level in the root samples (Fig 3C, S3 Fig), indicating that we still

lacked the full knowledges of endophytic fungi of the investigated H. serrata in nature.

The distribution of endophytic fungal taxa varied greatly among different plant tissues,

which might be related to host genotype [29], growing environment [30], and plant age [31].

The root, stem, and leaf tissues of the investigated H. serrata were colonized by some of the

same fungal communities, but in different proportions. Ascomycota and Basidiomycota were

the most abundant phyla in all of the three tissues of H. serrata, which were consistent with the

Fig 4. Comparison of microbial communities in the root (R), stem (S) and leaf (L) samples of H. serrata based on

Bray-Curtis.

https://doi.org/10.1371/journal.pone.0242258.g004

PLOS ONE Huperzia serrata endophytic fungal microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0242258 November 19, 2020 8 / 14

https://doi.org/10.1371/journal.pone.0242258.g004
https://doi.org/10.1371/journal.pone.0242258


Fig 5. Groups from the phylum-to-species level determined to be significant representatives of their sample type based on LEfSe analysis. (A) The

figure shows the taxa with an LDA score greater than 4.0. The length of the histogram represents the influence of different taxa (LDA score), and

different colors represent different grouped taxa. (B) The cladogram represents the taxonomic hierarchical structure of the identified habitat

biomarkers generated using LEfSe. The circles radiating from the inside to the outside of the branching diagram represent the taxonomic levels from

the phylum to the species; each small circle at different classification levels represents a classification at this level, and the diameter of the small circle is
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dominant phyla in the roots of Sinopodophyllum hexandrum [32] and Pennisetum sinese [30],

in the barks of Eucommia ulmoides [33], and the culturable fungal endophytes of H. serrata
[18].

The dominant genera of endophytic fungi differed among the three tissues of the investi-

gated H. serrata in our study. The genera of Oidiodendron and Cladosporium were dominant

in the root and stem samples of the investigated H. serrata, respectively. Some strains of Oidio-
dendron were reported to promote nitrogen uptake and plant growth [34], and exhibit metal

tolerance [35]. Some strains of Cladosporium exhibited an antimicrobial activity against Bacil-
lus cereus IIIM 25 (Gram positive) and Escherichia coli ATCC 25922 (Gram negative) [36], and

effectively reduced the infection of nematodes in some plant roots [37]. The genera of Oidio-
dendron and Cladosporium might confer similar benefit upon the host H. serrata. Some of

endophytic fungi can produce antifungal active substances [38], which can improve their com-

petitiveness and prevent colonization by other fungi. The tetranorlabdane diterpenoids from

the extract of endophytic fungus Botryosphaeria sp. P483 isolated from H. serrata exhibited

obviously antifungal activities against to Gaeumannomyces graminis, Fusarium moniliforme, F.

solani, F. oxysporum and Pyricularia oryzae [11]. Interestingly, the genus of Botryosphaeria
mainly existed in the root samples in our study, which might partly explain why the richness

and diversity of endophytic fungi in the root samples were lower than that in the leaf and stem

samples.

Endophytic fungi are considered as the fungi that live inside healthy plant tissues at a cer-

tain or whole stage of life cycle and do not cause obvious plant diseases [39]. Some endophytic

fungi in the investigated H. serrata were identified as plant pathogenic fungi, such as the domi-

nant genus Phyllosticta (11.56%) in the leaf samples. Phyllosticta was an important group of

plant pathogenic fungi distributed worldwide that causes serious diseases, e.g., citrus and

grapevine black spots [40, 41]. An abundant Phyllosticta in the leaf samples might be attributed

to the investigated H. serrata leaves invaded by this pathogenic fungus, but that did not cause

obvious lesions of the host plant temporarily. Another possible explanation was the limitation

of the surface sterilization method used in this study, which was responsible for these identi-

fied plant pathogenic fungi as endophytes, because this surface sterilization method could not

entirely remove the microorganisms adhered to the tissue surfaces.

Currently, about 12 fungal genera have been reported to produce huperzine A [15–17, 42–

47], of which 7 genera were found in H. serrata in this study. Among them, Cladosporium, Tri-
choderma, and Fusarium with the relative abundance > 0.1% had the highest distribution in

the stems, followed by the leaves and the roots, indicating that the endophytic fungi in the

stems and the leaves were more involved in the synthesis of some secondary metabolites than

those in the roots. Five of the reported fungal genera, that can produce huperzine A, were not

detected in our study, which might be attributed to the investigated H. serrata, because the

planting environment and age of host plant were important factors affecting the composition

of its endophytic fungi. Therefore, it is necessary to further investigate the endophytic micro-

organisms of H. serrata from different growing environments and years, which were beneficial

to obtain a comprehensive understanding of the endophyte community in H. serrata. Besides

these endophytic fungi of the reported genera with an ability to produce huperzine, our results

uncovered that H. serrata contained diverse endophytic fungi of yet unexplored potential

importance, which a reservoir for developing endophyte resources for artificial cultivation H.

serrata and production of useful bioactive compounds.

proportional to the relative abundance. Taxa with no significant differences are shown in yellow, while taxa with significant differences are colored

according to the grouping of the most abundant taxa.

https://doi.org/10.1371/journal.pone.0242258.g005
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Conclusion

In conclusion, this study reveals the community composition and structure of the endophytic

fungi in the roots, stems, and leaves of H. serrata, and found endophytic fungal communities

varying across the three tissues, and uncovered some dominant endophytic fungi in the three

tissues, which benefit further scientific understanding of fungal community ecology in this

medicinally important plant and better to tap functionally important endophytes.
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